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A CENTRAL LIMIT THEOREM UNDER CONTIGUOUS
ALTERNATIVES

By K. BEHNEN AND G. NEUHAUS
University of Freiburg

In the statistical literature Le Cam’s third lemma (cf. Hajek and Sidak
(1967), page 208) is extensively used in order to get asymptotic normality
of a statistic S, under contiguous alternatives from asymptotic normality
of S» under the nullhypothesis. Since Le Cam’s lemma utilizes the joint
asymptotic normality of S, and log-likelihood-ratio log L, which is a suf-
ficient but in general not a necessary condition for contiguity, it is not
possible to get asymptotic normality of S, for all contiguous alternatives
from this lemma. On the other hand one is interested in the limiting
distribution of S, under all contiguous alternatives in order to get general
power and efficiency results for the respective tests. In this paper we utilize
a truncation method in order to prove asymptotic normality under all
contiguousalternatives from asymptotic normality under the nullhypothesis
for sums of independent random variables which are interesting in rank
test theory, since they often are asymptotically equivalent to certain rank
statistics under the nullhypothesis, and thus under contiguous alternatives,
too.

For each ne N let random variables Z,,,i =1, .--, n, be given which are
independent under the nullhypothesis H,: &(Z,,) = P,;,i =1, - .-, n, as well as
under the alternative K: &(Z,,) = Q,;,i = 1, - - -, n, where the P,, and Q,, are
probability measures on the real line such that the sequence {Q,} of product
measures Q, = X7, Q,; is contiguous (in the sense of Hajek and Sidak (1967),
page 202) to the sequence {P,} of product measures P, = X7, P,,. (For sim-
plicity reasons we omit i =1, ..., n,j =1, ..., n,and n — co in the sequel.)
Moreover, we assume without loss of generality

SZdPM(Z):o, Szzde'(z)zl'
Then we want to consider statistics of the form
(1) So = 22105205 6,, =0, 2o =1,

and pose the question under what conditions asymptotic normality of S, under
H, implies asymptotic normality of S, under K. Statistics of the form (1) play
a central role in the theory of rank tests, since they often are asymptotically
equivalent to certain rank statistics under H, and thus under K, too. The
limiting distribution of S, under K is needed for power examinations of the
respective tests. Up to now the tool for deriving the limiting distributions under
contiguous alternatives was Le Cam’s third lemma (cf. Hajek and Sidak (1967),
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pagé 208) which states that weak convergence of the pairs (S,, log L,) to a
normal distribution R(g,, g, 7. 5% 71) With g, = — 47,7 under the nullhypothe-
sis H, implies asymptotic normality of S, to R(¢, + 7., 7,") under the alternatives
K, where L, is the likelihood ratio dQ,/dP,. Clearly, a necessary condition for
applying Le Cam’s third lemma is the weak convergence of log L, to a normal
distribution J(—137;%, ;%) under H,. This is a sufficient but in general not a
necessary condition for contiguity of {Q,} to {P,}. In cases where {Q,} is
contiguous to {P,} but the above mentioned asymptotic normality of log L, does
not hold the described approach breaks down. Below we shall give an example
where log L, has nonnormal asymptotic distribution. In the sequel we shall
describe a truncation technique for proving asymptotic normality of S, which
works for general contiguous alternatives. Moreover, our result is simpler to
apply, even in cases where Le Cam’s third lemma is applicable, since the relatively
difficult proof of joint asymptotic normality of (S,, log L,) under P, is superfluous.
First in Behnen (1971), (1972) this truncation technique was used in special
situations. Since the proof is omitted there, we shall formulate it here in a
more general setting.

THEOREM. Let the sequence {Q,} be contiguous to the sequence {P,} and let the
constants a,; and the random variables Z,, in S, = Y}, 0,,Z,; fulfill the following
conditions

(i) max,s,;,—0, 3,02, =1,0,,20,i=1,...,n,

(if) max; §.5x,) 2* dP,(z) — O for all sequences {M,} of positive numbers tending
to infinity.

Then S, under P, converges in distribution to a standard normal distribution:

@) LSy | P) = RO, 1),

and there exists a sequence {a,} of real numbers such that under Q,,
©) &S, — a,]Q.) = RO, 1)

holds true.

REMARK 1. From the assumptions (i) and (ii) we can show that, for each n
and i/ there exist measurable, real-valued, bounded functions #,; such that

(4) S hni de' =0 ’
() max, § (h,(z) — 2)*dP,(z) >0,
©) max; g, max;sup, k3 (z) —» 0.

Take for example
hni = h:n' - S h:n‘ de', s

h,(z) =z if |z| < (max;o,;)¥,

=0 elsewhere.
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The proof of the theorem shows that the sequence {a,} may have the form
(7) a, = Zi O i S hni dQni .

REMARK 2. Any sequence {a,} of the theorem is bounded, since convergence
of a subsequence {a,} to infinity would imply either

Pu(Sy <ay)—1, Q.S <ay)—1,
or

P.(S, <a,)—0, Q,.(S, <a,)—13
which contradicts, in any case, the contiguity of {Q,} to {P,}.

Before proving the theorem we give a simple example, where Le Cam’s third
lemma is not applicable whereas our theorem applies. It should be mentioned
that it is easy to construct trivial examples by mixing different contiguous
sequences such that log L, has not a limiting distribution.

ExampLE. For eachneNandi= 1, ...,nlet P,, and Q,; be normal distri-
butionS, Pm; = %(0, 1), Qmj = m(o’ Tiz)s with 2'.2 — exp(z_i) > 1. Then we have
1
—log Ly(z,, - - -, 2,) = <7 - 2n+1) RN e — .

Therefore the monotone convergence theorem implies the existence of a limiting
distribution of L, under P, with expectation 1, and Le Cam’s first lemma (cf.
Hajek and Sidak (1967), page 203) implies the contiguity of {Q,} to {P,}. Since
condition (ii) is obviously fulfilled, the theorem is applicable whereas Le Cam’s
third lemma cannot work since the limiting distribution of log L, is apparently
a nonnormal distribution.

Proor. First we prove an auxiliary result on contiguity which may be
interesting in its own right.

PROPOSITION. For each ne N let P, and Q, be probability measures on some
measurable space (Q,, A,). Then contiguity of {Q,} to {P,} implies

8) limsup, .. [|P, — Q.|| < 1.

Moreover, in the special situation of product measures P, = Xr_, P,, and Q =
Xi-1 Q,i» the inequality (8) implies

®) lim sup, o 3% [Py — Quillf < o0 .

Here the distance ||P — Q|| of P and Q defined on (Q, %) is given by |P — Q|| =
sup {|P(4) — Q(A)|: A e A}.

PROOF OF THE PROPOSITION. Suppose that (8) is not true. Then, with the

notation p1, = P, 4+ Q,, p, = dP,/dp,, q, = dQ,/dp,, B, = {q, > p,}, there exists
a subsequence {n’} of N such that

Qn’(Bn’) - Pn’(Bn’) = ||Pn’ - Qn’” — 1.
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This entails P,.(B,)— 0 and Q,.(B,)— 1 which contradicts the contiguity
assumption. Hence (8) holds.

For proving (9) we use the additional notation p,, = P,; + Q,;, p,; = dP,;/du,,,
Gni = dQ,;/dp,,;, out, s.c. and p, = X, p,. Then we get following chain of
inequalities.

L —||P, — Q]| =1—4%§ |Pn — qul dpty = § (Pu A q,) dpt = § (P'nq'n)4 dp,,
= I1: § (Puiqni)* dtti < TLi (§ Pui A 9ai) Qttai § (Pai V Qi) Atte)?
= Hz ((1 - IIPm’ - Qm”)(l + ||Pm‘ - Qm'”))4
=L (1 — [[Pui — Quid)? < exp(—=(}) ZslIPa; — Quill’) -
Thus it is obvious that (8) implies (9).

ProoOF OF THE THEOREM. Given ¢ > 0, let us define M, = ¢/max;o,,. Then
the right side of the obvious (cf. assumption (i)) inequality

2i0n $topglel>el z*dP,,(z) < max, Sesa, 2" dPi(2)

tends to zero according to (i) and (ii). Therefore, Lindeberg’s condition for {S,}
is fulfilled, and (2) is proved. In order to prove (3) let &,, be functions which
fulfill the conditions (4), (5), and (6) stated in Remark 1, and define

Sn = 20wt Z,) -
Then, from (4), (5), and (i), we have
§ (Sn - S,)dpP, = 3,03, § (h,; — 2)’dP,; < max, § (h,, — z)*dP,; — 0.
This, together with the contiguity assumption, implies
S,—S,—0  in probability under {Q,}.

Thus, it suffices to prove (3) with S, instead of S,, which can be done by
Lindeberg’s theorem: In a first step we get

(10) ol =it —0 if a, =0, (h,d0,,
because of (4), (i), (6), and (9), which imply

Zin = 200 (§ 1 4Q0:) = 205 00§ BuiGui — Pai) Atta)’

< max, ¢, max; sup, k2,(z) >, 4/|Q.. — Pul* = o(1).

In a second step we get
(11) =it i = (0nh — a,)" Q.
because of (10), (5), (6), (i), and (9), which imply
1 — 70| =2 (00 — m)|l = Zionl§ 22 dP(2) — § ,dQ, | + 0.
max, [§ (2% — k) dPy| + Xi 0l § Mol Pai — Gui) Attad + 0(1)
o(1) + (Z;0n; s (V Hoal Pas — il dprai)’)?
o(1) + max, a,, max; sup, k, (2)(Z; o%; 20 4|Pa; — Quill)t = 0(1) -

IAIA IIA
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Now, in a last step, we show that Lindeberg’s condition holds true for {S, —
3:a,). Lete> 0begiven. Then, if n is sufficiently large, we have

1
T 2 Zi S(z:la”ihni(z)-ambern) (anihni - am‘)2 de‘ =0 ’

n

because of (i), (6), (10), (11), and
|0, 1ai(2) — a,| < max; o, max; sup, |h,#(z)| + max,|a,, .

REMARK 3. The truncation technique of this proof can be applied, with
suitable modifications, in many situations where sums of independent random
variables are considered under the nullhypothesis as well as under contiguous
alternatives. An example where sums of independent Hilbert-space random
variables are treated in this way is given in Neuhaus (1973).

REMARK 4. At the Oberwolfach meeting in November, 1974, Professor L.
Le Cam pointed out that the asymptotic normality of S, under Q, can be proved
by the general version of Le Cam’s third lemma (cf. Le Cam (1960)) and the
representation of infinitely divisible distributions. But our proof is more ele-
mentary and contains the form of the centering constants a,, which is useful
for asymptotic power investigations. ‘
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