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A NOTE ON SUBSTITUTION IN CONDITIONAL DISTRIBUTION!

By MicHAEL D. PERLMAN AND MICHAEL J. WICHURA
University of Chicago

The following proposition is sometimes used in distribution theory: for
each fixed z suppose that T(X, z) has the distribution Q and is independent
of Y; then T(X, Z(Y)) has the distribution Q and is independent of Y. An
example is presented to show this result is false in general. Additional
conditions under which the proposition becomes valid are presented.

Let (Q, &, P) be a probability space. Let (7, %), (%2, &), (%, %), and
(77, &) be measurable spaces and suppose that X: Q — .27, Y: Q-7 Z:
Z > Z,and T: 2 x % — 7 are respectively & — %, F — &, B — &,
and % ® € — < measurable. Let Q be a probability measure on (7, &).
The following proposition is commonly used in multivariate distribution theory
and elsewhere.

PRrOPOSITION 1. Suppose that
(1) X isindependent of Y, and foreach ze€ % the random object
T(X, z) has distribution Q.
Then

2) the random object T(X, Z(Y)) also has distribution Q and is
independent of Y .

ExaMPLE 1 (cf. Rao (1973), 8.b.2). For a well-known application, let X:
p X pand Y:p x 1 be independent, with X ~ W (n, ), n = p, Z p.d. Let
Z(Y) =Y, and for nonzero z: p X 1 define Ty(X, z) = 2’Xz/2’'Zz, T(X, z) =
2Z’27'z/2’X~'z. Then for all z, Ty(X, z) ~ y,* and Ty(X, z) ~ x%_,,,, so by Prop-
osition 1, Ty(X, Y) ~ x,2 and Ty(X, Y) ~ y2_,,, and each is independent of Y.
These facts are used to derive the distribution of Hotelling’s T*-statistic. []

Sometimes, however, one needs to weaken the assumption (1) slightly, as in
the following.

PROPOSITION 2. Suppose that
(3)  foreach zeZ , the random object T(X,z) hasdistribution Q
and is independent of Y .
Then (2) holds.
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ExAMPLE 2. Proposition 2 has been applied by Mitra (1970) in his study of
the matrix-variate beta distribution. Let S,: k X k and S,: k X k be independ-
ent random matrices, with S; ~ Wy(n;, Z) fori = 1,2, n, + n, > k, and X p.d.
Let S = S, + S, and U = S-S, S, where S is a lower triangular square root of
S (any other square root of S could be chosen). In his Lemma 3.4 Mitra applies
Proposition 2 with X = (S,, S,), Y = S, Z(Y) = S~ta, Ty(X, z) = 7/8,z/7’Sz, and
Q, = Beta (n,/2, n,/2), where a: p X 1 is a nonzero fixed vector, and concludes
that a’Ua/a’a ~ Q, and is independent of S. (The independence of Ty(X, z) and
Y = S follows from Theorem 2 of Basu (1955), since S is a complete and suffi-
cient statistic for X while the distribution of Ty(X, z) does not depend on X.)
Other applications of Proposition 2 occur in Mitra’s Lemmas 3.10 and 3.11,
where it is shown that a’a/a’U~'a ~ Beta ((n, — k + 1)/2, n,/2) (provided n, > k)
and LUL' ~ Uif L: k X k is an orthogonal matrix. []

Proposition 2 has a deceptively easy “proof,” which runs as follows:

T(X, z) has distribution Q and is independent of Y, for all z ¢ 2~
= Conditional distribution of T(X, z), given Y =y, is Q, for all y ¢ 2 and
all ze &
= Conditional distribution of T(X, Z(y)), given Y = y, is Q, for all ye 2/
= Conditional distribution of T(X, Z(Y)), given Y = y, is Q, for all ye 2/
= T(X, Z(Y)) has distribution Q, and is independent of Y.

On close inspection, however, this argument breaks down. In fact Proposition
2 is false, as may be seen from

ExaMPLE 3. Take X = Y = Z(Y) to have a uniform distribution on [0, 1]
and take T(x, z) = z[,(x), where I denotes the indicator function. Then T(X, z)
is degenerate at 0 and hence independent of Y for each z, but T(X, Z(Y)) = X
is uniformly distributed on [0, 1] and highly dependent on Y. []

The major flaw in the above “proof” occurs in the first step, wherein the
correct conclusion is that for each z the conditional distribution of T(X, z) given
Y =y is Q for PY~*—almost all y; as the null sets here may depend on z, the
second step may not be permissible.

We now present a variety of supplementary conditions under which Propo-
sition 2 is valid. Suppose first that

“4) Y has a discrete distribution.
Then for each y € 27 and D e &, (3) implies
P(Y = y, T(X, Z(Y)) e D} = P(Y = y, T(X, Z(y)) € D} = P{Y = y}Q(D).
Summing over y yields
(5) P{Y e B, T(X, Z(Y)) € D} = P{Y e B}Q(D)

for each B e &7, which is equivalent to (2).
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In all remaining cases we assume that
(6) X admits a regular conditional probability distribution given Y';

thus we have a family {L, |y e 2’} of probability measures on (22, %) such
that L (A) is <#-measurable for each 4 ¢ %, and
P{Xe A, Ye B} = §, L(A)PYYdy)

for all 4e %, Be <%, where PY~' denotes the probability distribution of Y
induced by P. We remark that if g(x, z) is a bounded, % ® &-measurable
function then § . g(x, z)L (dx) is Z& ® & -measurable in (y, z). This is true if
g is a measurable rectangle, and the general case follows by the approximaticn
argument used to prove Fubini’s Theorem (Neveu (1965), Proposition III.2.1).
In our first theorem we shall also assume that

7" is atopological space, and <7 is such that any finite meas-
@) ure v on <7 is uniquely determined by {{_, Ahdv|he H},

where H is the collection of bounded real continuous functions

on H.
This is the case, for example, if .7 is a metric space and <7 its Borel g-algebra,
or if .77 is a compact space and <7 its Baire o-algebra (Neveu (1965), Propo-
sition I1.7.2).

THEOREM 1. Suppose (6) and (7) hold. Then (3) implies (2) if either

(8a) there exists a first countable topology on Z such that T(x, )

is continuous on %~ forall xe2°, and

(8b) there exists a o-finite measure p on (Z,%’) such that the
complement of any p-null set is dense in %,

or

(9a) &2 and 7/ are topological spaces, with 2/ second countable;
7 and <# are their Baire and Borel g-algebras, respectively,
and

(9b) T(+, z) is continuous on 2 foreach zeZ% , and

(9¢) yo—y in 2/ implies L, — L, weakly, in the sense that

§o9dL, —§, gdL, for all bounded real continuous functions
g on 2.
Proor. It suffices to show that for each 4 ¢ H,
(10) E{HT(X, Z(Y))]| Y} = - hdQ,

since this implies

(11) E{I(YH[T(X, Z(Y))]} = P(Y € B} § - hdQ



1178 MICHAEL D. PERLMAN AND MICHAEL J. WICHURA

for each B € &% which, by (7), implies (5). Define

Py, 2) = § o HT(x, 2)IL(dx), J=1(,hdQ.

By an argument of Bahadur and Bickel (1968, page 378, lines 4-15) the function
¥ — ¢(y, Z(y)) is a version of the conditional expectation of A[T(X, Z(Y))] given
Y, so to prove (10) it suffices to show that

(12) oy, Z(y)) =J for almost all yeZ'.
For each z, y — ¢(y, z) is a version of E{h[T(X, z)]| Y}, so (3) implies

(13) foreach ze 2", ¢(y,z) =J foralmostall yeZ/, where
the exceptional set may depend on z.

Now assume (8). By (13), an application of Fubini’s theorem to the & ® <-
measurable set {(y, z) | ¢(y, z) = J} gives the existence of a PY~'-null set A such
that y ¢ A implies ¢(y, z) = J for p-almost all ze 2" But (8a) and the Lebesgue
dominated convergence theorem imply that ¢(y, «) is continuous on 2°, and
hence (8b) yields

(14) forall ygA, ¢(y,z)=J forall zex,
which implies (12).
Next assume (9). Then ¢(+, z) is continuous on 2’ for each z, so (13) implies

(14) with A taken to be the complement of the support of PY-', i.e., A is the
(countable) union of all open, PY~*-null sets in 2. []

THEOREM 2. Suppose (6) holds. Then (3) implies (2) if

(15a) 2/ isa second countable topological space, with <7 its Borel
o-algebra, and

(15b) Ya—y in 2 implies L, — L, in the setwise sense that
L, (A)— L(A) foreach Ae V.

Proor. It suffices to show that (10) holds when # = I,,, for each D ¢ &, for
this directly yields (5). Now (3) again implies (13), where now

9> 2) = S LIT(x, 2)]Ly(dx), T = Q(D),

and (15b) implies that ¢(-, z) is continuous on Z’ for each z, so (14) holds with A
the complement of the support of PY=*. This implies (12), and therefore (10). []

Some remarks are in order concerning these theorems.

1. All topological assumptions concerning (27, %), (?2/, &%), (%, €), and
(7, Z) are satisfied if they are in fact metric spaces with the associated Borel
c-algebras, and 2/ is separable.

2. Inspection of the proof of Theorem 1 shows that in (8a), continuity of
T(x, «) on 2 could be replaced by the weaker hypothesis that for almost all
y € Z, T(x, ) is continuous at Z(y) for L -almost all x. However, this hypothesis
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requires detailed knowledge of the L,’s, about which virtually nothing except
their existence may be known. Example 3 shows that “T(x, «) is continuous at
Z(y) for L -almost all x” cannot be replaced by “T(x, «) is continuous at Z(y)
for PX~'-almost all x” two sentences above.

3. A typical measure p satisfying (8b) is Lebesgue measure on a Euclidean
space. In this case, the continuity assumption in (8a) can be weakened. Thus
if 27is an interval on the real line, it is enough to assume that T'(x, «) is either
right or left continuous at each point in 2"

4. By Scheffe’s theorem (Rao (1973), 2c. 4(xv)), the hypothesis of setwise
convergence in (15b) holds if the L ’s all have densities with respect to some
o-finite measure on (27, .%") and these densities vary continuously with y. As
can be seen from Example 2, however, detailed knowledge about the L,’s may not
be available; thus condition (8) is probably more useful than either (9) or (15).

Finally, it is of interest to compare Proposition 2 to the oft-used

PRroPOSITION 3. Suppose (6) holds. If

(16)  foralmost all yeZ', the conditional distribution of T(X, z)
given Y=y (ie., L/ T(+,z)") equals Q forall ze¢ %,
then (2) holds.

The validity of Proposition 3 is immediate, since (16) implies that (14) holds,
where ¢(y, z) and J are defined as in the proof of Theorem 2. At first sight, (3)
and (16) seem to be equivalent. As Example 3 shows, however, (3) is in fact
strictly weaker than (16)—indeed, too weak, unless buttressed by additional
assumptions such as (8), (9), or (15). Also, notice that Proposition 3 implies
Proposition 1, for if X is independent of Y then we may take L, = PX~'forall y.
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