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In many situations one is faced with the task of constructing a linear
order, or ranking, of n objects based on data derived from a paired com-
parison experiment. Alternatively, one may desire to estimate the prefer-
ence relation on the set of objects. Numerous criteria appear in the
literature, and in practice, under which rankings or preferences may be
selected. The main emphasis of this paper is on developing a general ap-
proach to maximum likelihood estimation of rankings and preferences.
Utilizing what we term f criteria, our results unify and extend both the
theory of constrained maximum likelihood ranking estimation and the
work of Singh and Thompson on preference estimation. In addition, we
show that a specific mathematical programming problem subsumes the
problem of finding a maximum likelihood ranking and also that an efficient
branch search algorithm can be used to find maximum likelihood prefer-
ences. Four specific fcriteria are selected for illustration and each is applied
to three examples from the paired comparison literature.

1. Introduction. In many situations one is faced with the task of constructing
a linear order, or ranking, of n objects, A4,, 4,, - - -, 4,, based on data derived
from a paired comparison experiment. Alternatively, one may wish to find the
preference relationship existing among the objects based on the same data. In
a paired comparison experiment distinct pairs of objects are compared: A, with
A; exactly k;; times. The data are n,;, the number,of times 4, has been preferred
to A;, t;;, the number of times they are tied, and n;,, the number of times 4;
has been preferred to 4,.

Certain situations naturally produce paired comparisons such as the sporting
events, football, basketball, and baseball which involve only two teams. The
associated season records of wins, ties, and losses for the teams of interest con-
stitute the data. In other situations, such as food tasting, paired comparisons
are desirable because of the difficulty of distinguishing preferences when more
than two objects are considered simultaneously.

It may happen that the data suggest a natural ranking or preference relation.
On the other hand, due to inconsistencies, ties, or failure to directly compare
some objects, a natural choice may not be apparent. The intent of this paper
is to extend and un/ify the statistical theory which underlies both the selection
of natural rankings and preferences and selection made in the more complex
case of inconsistencies, ties, or incomplete comparisons.
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A stochastic model for paired comparison data has been given as: N =
J1si<jsn ki; paired comparisons are assumed to occur independently with z}; the
probability of 4, being preferred over A4;, r¥ the probability of 4, tying 4;, and
7} the probability of 4; being preferred over 4,. In other words, N independent
comparisons are conducted, three possible outcomes for each, with the proba-
bility of each outcome dependent on the objects being compared.

Kendall and Smith (1939) initiated the early statistical work on whether a
ranking might reasonably be inferred from the data, dealing with the case where
no ties were allowed and all k;; = 1. They introduced a statistic d which was
based on the number of circular triads present in the data. One of the prime
motivations for its use was its ready computability. Slater (1961) argued against
the use of d since it gave unequal weights to inconsistencies and proposed a
statistic i, the minimum total number of inconsistencies that can be achieved
in any ranking. His test for the existence of a ranking was based on the null
hypothesis that the model holds with all z}; = 4, all 7} = 0, and all k,; = 1.

If the data pass Slater’s test, a minimum total inconsistency ranking v-as
selected. He called these rankings nearest neighbor rankings. One disadvantage
of Slater’s statistic is the apparent difficulty in computing it. Remage and
Thompson (1966) show that a procedure suggested by Alway fails, and give a
dynamic programming algorithm for its computation. Other methods are avail-
able for the computation of i, e.g., the linear programming formulation of De
Cani (1969), the branch and bound algorithm of De Cani (1972), and the branch
search algorithm of Flueck and Korsh (1974). Kendall (1955) mentioned ranking
under a nearest neighbor criterion and under a row sum criterion. Ford (1957)
also deals with row sum ranking.

Singh and Thompson (1968), in a fundamental paper, study the selection of
rankings and preferences in the context of a general theory of statistical infer-
ence. The likelihood function, given the observations, serves as the statistical
basis for this purpose. The main emphasis of their paper is on the selection of
a maximum likelihood preference which need not imply a unique ranking. They
achieve a characterization of these preferences using graph theory.

They also consider a number of alternative approaches including the selection
of a maximum likelihood weak stochastic ranking. De Cani (1969) deals with
weak stochastic rankings for the case of all k,; = k, Remage and Thompson for
the case 7}, = 0, and Thompson and Remage (1964) for the case of all r% =0
and all k;; = 1.

Other authors, including Brunk (1960), Bradley-Terry (1952), and Mosteller
(1951), investigate the theory of paired comparisons, but invoke additional as-
sumptions on the ¥ and ¥ of the stochastic model. David (1963) summarizes
this work, and we will not pursue these parametric approaches.

In the present paper the emphasis is on developing a general unifying approach
to constrained maximum likelihood estimation of rankings and preferences. In
Section 3 we give initial results which generalize those of Singh and Thompson
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to what we call f rankings and to f preferences selected under f criteria. In
Section 4 we study maximum likelihood f rankings. Our main conclusion is
that the estimation of optimal rankings may be achieved by solving a specific
mathemathical programming problem, and any algorithm for its solution will
find optimal rankings. Section 5 introduces a branch search algorithm for maxi-
mum likelihood (ml) preferences, and for purposes of illustration and clarifica-
tion Section 6 presents four specific f criteria; weak stochastic, preference,
semipreference, and row sum. Three numerical examples are solved under each
of the criteria. Some confusion seems to exist in the literature in connection
with the selection of rankings or preferences. We resolve this problem.

2. Preliminaries. We take the likelihood function to be:

nii tiio Mg
T T T
gl 1,0 !

(1) L(z) = [lisi<jsa

where the vector © = (755, 719, T1g> 7135 * * *» Fams T1ms * * * » Finmtyns Tin—pyn) With 7,5 +

Tig + T = 1,0 < 7y 74 s
Since n;;, = 1 — m,;; — 7,;, there are only 2(3) independent arguments of L, the
7,;’s and the 7,;’s. We may write log L(x) as a constant plus

(2) Diisiciza Kij(fi;10g w; + 7.5 108 145 + 75 log my;)

where
iy = Myilki; s Tis = tilkis s 7y = nylks; for k;; >0,

and we will take
Ry, =T =% =% if ‘k;=0.
To simplify notation define:
¢ij(m) = k(A log mi; + Fislogry; + & log wy) 5
then (2) becomes
(22) Disi<isa €15(T) = ¢(x) -

The #, whose components are given by (#,;, 7;;) for all i, j, is the usual ml
estimator of the population parameter vector z*. It is well known that L(x)
has a unique maximum at #. In the following, = will denote either an estimator

or estimate of r*.
Let f(m:;, 15> ®;) be any function of (=, 7, 7;) for which S, =
{7 | f(z:;5 715> ;) = O for all i, j} is closed and bounded.

A ranking R is an f ranking w.r.t. = iff, whenever A; precedes 4; in R,
Sy 7i4s ) = 0. Let

L(”R) = ma’xnsR isan f ranking w.r.t. = L(ﬂ)

and take I' to be the set of all rankings.
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A maximum likelihood f ranking R, is an f ranking satisfying:
L(np) = maxger L(np) -

The maximizing r,’s will be taken as estimators of 7* when selecting rankings
under an f criterion. We call such a = an f optimal estimate or f-optimal.

The selection of f corresponds to establishing a criterion for ranking, namely
4; must be ranked no higher than 4, if “A, is at least as good as 4,,” i.e. iff
f(mijs 7455 ;) = 0. Let us say that an inconsistency occurs in an f ranking if
A; precedes A; in the ranking and f(x,;, 7;, 7;;) < 0. We note that with respect
to 7, all ml f rankings will have zero inconsistencies. We will take such rankings
as estimates of the population rankings. Therefore, we are assuming that with
respect to 7*, the population rankings have zero inconsistencies.

We will consider three relations D «(x), C/(x), and T (x) which are intended
to capture the idea of “preferred”, “equivalent”, and “extended preferred” re-
spectively. If (4,, A;) € Dy(n), C«(x), or T«(x) we will say that A4, is preferred
to A;, 4, is equivalent to A;, or 4, is preferred (in an extended manner) to
A;, respectively. These are required before we can introduce the idea of an f
preference.

D (r) is the relation induced by f and ©:
(Ais A5) e Dy(m)  Mff flmji 1ij 7i5) < O
Intuitively, if (4;, A;) € Dy(x) then, under the criterion f, “A, is preferred to

A4;” iff A; is not at least as good as 4,. Note that D/ (r) need not be transitive
or asymmetric.

Cy(x) is the relation induced by f and =:
(4;, A;) € Cy(m) iff f(mj 745 75) =0 and  f(my, 745 m;) = 0.

If (4;, A;) € C«(), then, under the criterion f, “A, is at least as good as 4,” and
“A; is at least as good as 4,” so that neither is preferred to the other. In this
case we term them equivalent.

A natural way of treating the equivalence of two objects is: if 4, and 4;
are equivalent then any object that is preferred to one is preferred to the other
and any object over which one is preferred the other is preferred over also.
This allows us to “extend” the concept of a “preferred” relation to T /(). That
is, (A;, 4;) € Ty(r) iff either A4, is preferred to 4;, 4, is preferred to some object
which is preferred to 4;, or 4, is equivalent to some object which is preferred
to A;.

The relation C, U D «(r) induces-a relation T (n): (A;, 4;) € T«(x) iff a directed
path exists from A, to 4; in C; U D (), the union of C,(x) and D (). That
is, iff there exists Ay gy - o5 Ay such that (Aij, Aij ) €C; U Dy(m) for j =
1,2, ..., r — 1, with at least one (Aij» As;,,) € D () and 4, = 4, A4, = A;.

A ranking R is consistent with a relation T if (A4,, A;) € T implies A, precedes A4;
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in R. That is, R is consistent with T iff R satisfies the constraints imposed by
T. More than one ranking may be consistent with 7. In this terminology an
f ranking is a ranking consistent with D,(x). Define T, (7) as the relation
induced by D(x). A relation will be called a preference if it is transitive and
asymmetric. A relation T = T((r) will be called an f preference when it is a
preference. Let

L(”T) = SupzaT isan f preference w.r.t. L(ﬂ)

and take p to be the set of all T/(x,) that are preferences. A maximum likelihood
f preference T, is an f preference satisfying:

L(zy,) = max,, L(n,) .

The maximizing z,’s will be taken as estimators of z* when selecting prefer-
ences under an f criterion. We call such a z an fp optimal estimate or fp-optimal.

Suppose z*, the actual population parameter vector, were known. How would
we select a relation, T(z*), so that if (4,, 4;) € T(z*), we accept A, as being
preferred to A;, in some sense? If we assume objects are being compared on
the same basis or scale, then it seems reasonable to require that T(z*) be tran-
sitive and asymmetric. This is a requirement we might be unwilling to make
if more than one basis for comparison is presumed. Note that accepting the
requirement that 7(z*) be a preference relation still leaves open the possibility
that more than one ranking may be consistent with it.

In the following, we attempt to estimate preferences based on statistical con-
siderations. The theory developed here assumes that, with respect to z*, the
population relation 7(x*) is a preference. Note that the sense in which 4, is
preferred to A4; has been assumed to be dependent only upon (=}, 7¥, =) and
expressible as an f criterion. The intriguing que‘stion of which, if any, of these
criteria meaningfully serve as models for how subjects determine rankings or
preferences will not be examined.

3. Initial results.

LemMA. T((r) and T, (x) are preferences iff at least one ranking is consistent
with D /(r).

ProoF. Ty~ and T, (n) are preferences iff D, (z) is asymmetric. D/(x) is

asymmetric i» at least one ranking is consistent with it.
In general more rankings will be consistent with C, U D/(x) than Tx(z). In the
event that T,(r) is a preference, a ranking is consistent with C, U D () iff it is
consistent with T((z). A ranking is consistent with T, (x) iff it is consistent
with D (r).

Suppose we are given a ranking R and find a r, 7, which maximizes the
likelihood, subject to the constraint that the ranking be an f ranking. Such a 7,
must exist since ¢(r) is a concave function, by a lemma of Singh and Thompson,
and is being maximized over the closed and bounded set S,. Let L(my) =
maxg.r L(nz). Then Ty (ny) is a preference and R, is consistent with D (7).
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Thus 7, must be a # which maximizes the likelihood, subject to the constraint
that T, (n,) be a preference. Thus n, is f-optimal. We have proved the
following theorem.

THEOREM 1. Given an f-optimal w, only maximum likelihood f rankings are con-
sistent with D (), there must be at least one such ranking, and each such ranking is
consistent with one and only one D /().

Consequently, whether we select an R whose =, yields maximal L(x) subject
to the constraint that R be an f ranking w.r.t. =, or we find an f optimal =
which maximizes L(r) subject to the constraint that T, ,(z) be a preference
and then select an R consistent with T, ,(x), we are selecting from exactly
the same set of rankings. In short, the ranking and the preference viewpoint
are dual.

To summarize: The selection of a ml f ranking may be viewed in two ways.

(i) Either given a ranking R, find = which maximizes the likelihood subject
to the constraint that the given ranking be an f ranking w.r.t. m; those R
that maximize the likelihood are ml f rankings and the corresponding =’s are
Sf-optimal.

(ii) Or find = which maximizes the likelihood subject to the constraint that
Ty s (m) be a preference; all rankings consistent with 7, ,(7) are ml f rankings
and there may be more than one = which is f~optimal.

Given a ranking R, suppose that 4; precedes 4; in R and f(#,;, 7;, #;) = 0.
Then the (7, j)th component of =, (zf, 1%, n%), may be taken to be (%,;, 7:;, #;,)-
If f(#:;5 7:55 #55) > O, then (zf, rE, z%) will yield a ¢ ;(z;) which is strictly less
than c¢,;;(#), assuming k,; > 0. This follows from a well-known information
theory inequality (Rao, page 17, 1965). Hence a ml f ranking must correspond
to a subset of Dy(#) which is asymmetric and which is not contained in any
other asymmetric subset of D(#). Such a subset is called a maximal circuit free
subbigraph for D (%) in the terminology of Singh and Thompson.

Since Ty(z) contains T, (7), Tz () is also a preference for fp-optimal =’s.
Hence L(z,) = L(n,) when =, is f-optimal and =, is fp-optimal. Also, when
Ty(r) is a preference, a ranking will be consistent with T,(x) iff it is consistent
with Ty (n). If L(z,) = L(x,) then any ranking consistent with T'(z,) is a ml
f ranking,

Singh and Thompson emphasize the selection of a maximum likelihood pref-
erence. At one extreme this might be the null preference with which all rank-
ings are consistent, and at the other extreme this might be a complete relation,
with which a unique ranking is consistent.

Consider a fp-optimal = and the corresponding ml preferences 7;(z). Suppose
that (4;, 4;) & T«(x), but (4;, 4;) € C(#) or (4;, A;) € Dy(#). Let n’ be the same
as m, except (mi;, rijp w5) = (R Tijs £3s) (F (Tojs 7455 T0))-  If Ty(n’) is also a
preference, then c(z') must be strictly greater than c(x) since ¢;;(z") > ¢,;(n),
Rao (1965). The contradicts the assumption that T,(r) is a ml preference.
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A ml preference T «(x) is induced by C, U D(x).
Take
Cy(m, ) = Cp(m) — {(Ais A;) | (Air 4;) & Cx(R)}
Dy(r, £) = Dy(m) — {(Ais 4;) [ (4is 4;) & D(7)}
A(m, #) = Cy(m, #) U D=, #) and
B(w, #) = [CAm) — CAR)] U [Dp(x) — Dy#)] .

Note that A(x, #) is a subbigraph of C, U D (%), and B(z, #) is disjoint from
C; U Dy(#) and from A(zx, #). Clearly C, U Dr) = A(x, #) U B(m, #). By
Theorem 4 of Singh and Thompson such a union induces a preference iff it is
circuit free. We conclude that no (4,, 4;) could be removed from B(r, #) and
added to A(w, #) with the resultant union remaining circuit free. Hence A(x,7#)
is a maximal subbigraph of C, U D,(#). B(r, #) represents those (4,, 4;) that
are in Cy(r) but not in Cy(%), or in D/ (z) but not in D,(#). Under some f’s
B(r, #) will always be null, and under others it need not be null. We thus have
the following result.

THEOREM 2. Let « be fp-optimal and B(rx,#) = C, U DJn) — A(n, #). Then
any ml preference is induced by A(w, #) U B(r, &) where A(x, &) is a maximal sub-
bigraph of C, U D4(%).

COROLLARY. Any (A,, 4;) not in C, U D) will not be in C, U D () when =
is fp-optimal.
This generalizes Theorem 12 of Singh and Thompson. Under their specific
criterion B(r, #) is always null. In this case A(x, #) is called a maximal circuit
free subbigraph of C, U D(#).

We note that ¢, ;(z), for z f-optimal or = fp-optimal, may be determined in
principle from # and f. Consequently # may be regarded as a sufficient statistic
w.r.t. selecting ml f rankings or ml preferences.

4. Maximum likelihood rankings. We know that c¢(x;) = c¢(x), for all =
w.r.t. which R is an f ranking. The c,;(r;) are really functions of only
(z%, rE, n},) which are in turn determined directly from # and f. The contri-
bution of the k;; paired comparisons of 4, with A; is either ¢,;(x) or ¢, ;(zx);
depending on whether A, precedes A4; in R or not, where R’ is the same as R,
except i and j are interchanged. The problem of finding a ml f ranking then
becomes:

(3) maximizezer Xigicicn Cii(7r) -

Let H/(#) be the set of all R such that if 4, immediately precedes 4; in R,
then f(ﬁij’ ?ij’ ﬁj‘t) g 0.

THEOREM 3. All ml f rankings belong to H /(#).

PROOF. Suppose some ml f ranking R ¢ H/(#). Then some A, immediately
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precedes A;, but ¢;;(rz) < ¢;;(7r). If we interchange 4; and 4; to obtain R’
then c(zy) = ¢(my) + €;j(Tr) — €5(7s) > ¢(nz), because no other c,;’s are af-
fected by the interchange. This contradicts the assumption that R is a ml f
ranking.

The results of De Cani (1969) show that (3) may be solved as a linear pro-
gramming problem with ()n(n — 1)(n — 2) constraints and (§)(n + 1)(n)(n — 1)
variables. De Cani (1972) has also presented a branch and bound algorithm
as an alternative method for finding solutions. This algorithm appears to be a
significant improvement over the dynamic programming algorithm of Remage
and Thompson in terms of average behavior, although its worst case is an ex-
haustive search through all rankings.

Remage and Thompson do not mention the possibility of incorporating the
fact that a solution must belong to H,(%), in order to reduce the search. It
does not appear to be readily incorporated into De Cani’s branch and bound
algorithm, except at the last stage. Singh and Thompson would, in effect,
search through all rankings in H(#). In Flueck and Korsh (1974) we present
a branch search algorithm which searches through only H (%), but allows sig-
nificant pruning to occur.

5. Maximum likelihood preferences. For the problem of selecting a prefer-
ence, under an f criterion, consider the estimator = of #*. Initially we take #
as the estimator of #*. It is determined by the basic comparisons of the (4,, 4,).
If T«(#) is a preference then it is a ml preference and we would consider it a
natural preference. Otherwise, the comparisons between the 4, and A4 ; which
are estimated by # are inconsistent, and no natural preference is apparent.
Consequently, under the assumption of no inconsistencies in the population,
the estimate of one or more of these basic comparisons must be altered. We
discuss these alterations.

As shown in Section 3, selecting a ml preference under an f criterion amounts
to selecting a preference with a maximal 4(x, #) component of C, U D ,(#) which
yields a maximum likelihood C; U D,(r). This preference may be thought of
as arising from C, U D/(#) by performing operations on each of its (4,, 4,),
and there may be an infinite number of z’s which induce it. Suppose this
preference is induced by C, U D/(x). Let us say that an undirected line (—)
occurs between 4, and A; in C, U D «(#) if (4;, 4;) € Cy(#), a directed line (—)
occurs from A, to 4; if (4;, A;) € D (%), but (A4;, A;) ¢ D (%), two directed lines ()
occur between 4, and 4; if both (4,, 4;) and (4;, 4,) are in D/ (%), and a blank
line occurs between 4, and A4; otherwise. The operations on C, U D (%) that
yield C, U D,(z) may, in general, change any one of these four types of lines
between 4; and A; to any one of the others except the two directed lines. Under
some f criteria this choice of operations may be further limited. To find a
candidate for a ml preference a number of these operations must be performed
on C, U Dy(#). As indicated, this amounts to selecting both a line type for each
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A; and A; pair and a (=;;, 7,;) which will best induce the line and yield a maximal
¢;;(wr) component of ¢(r). A constraint on the selection is that the resultant
C; U Dy(z) must have a maximal A(z, #) component of C, U D,(#). Finally,
all the candidates which maximize the likelihood are ml preferences and their
=’s are fp-optimal.

In Singh and Thompson it was shown that only maximal circuit free (mcf)
subbigraphs of C, U D4(#) need be considered when searching for a ml prefer-
ence under their specific f criterion, and our Theorem 2 extends this result.
Still, the number of such subbigraphs may be very large. We now present an
algorithm for finding ml preferences, under general f criteria, which appears
to be much more efficient, on the average, than searching through all mcf
subbigraphs.

For each (4,4, ) let (@, . ¥i,,) maximize ¢,  subject to
S(#ijs 7455 %5) 2 0. We emphasize that if (4;,, 4;,, )€ C, U Dy(#) then ¢ ;
is maximized by (#;,;,, s 71,1,,,)- We now assign a unique 7(R) to some rankings
R= 4,4, -4, Take (7, (R), T, (R) to be (Fiipyp Tirirss) for
k=1,2,...,n— 1. Now starting with k = 3 and progressing sequentially to
k = n, consider (4, , 4, ), starting with j = k — 2 and regressing sequentially
toj = 1. Take (7;;,(R), 1:;1,(R)) to be such that it maximizes c,,, subject to
the constraint that C, U D (z(R, j, k,)) be circuit free. If no such maximum exists,
this R will be ignored. C; U Dy(n(R, j, k)) denotes the {(4; , 4, ) € C;U D y«(x(R)):
J<r<s<kors=r+1,1<r<k—2}). We then associate the unique
preference induced by C, U D (x(R)) with the ranking R. We call C; U D/(n(R))
the relation generated by R.

THEOREM 4. Let C; U D((r) induce a ml preference. At least one ranking R that
is consistent with this ml preference will generate C; U D (x).

Proor. Let D, = {R|R is consistent with the ml preference induced by
C; U Dy(r) but A, precedes 4; in R for all (4, , 4;) belonging to D4(%) but
not to Dy(z)}. Any R e D, cannot yield an (4, , 4;) in Dy(z(R)) and not in
D(m). Suppose (4, , 4;) belongs to Cx(#) but not to Cy(z). Then a directed
path must exist from either 4; to 4, or from 4, to 4, in C; U Dy(w). Assume
it is from 4, to 4, . Let C, denote the set of all rankings R such that for any
(A4;,, 4;) € Cy(®) but not to Cyr), R=A; --- A, A --- A --- A, and
A; -+ A, represents a directed path from A4, to A4, in C; U Dy(x). Then
D, n C, contains all rankings R which generate C, U D/(x(R))’s that induce
C, U Dy(x). The significance of this theorem is that it allows a sequential,
systematic generation of all possible ml preferences and only ml preferences.
The branch search algorithm of Flueck and Korsh may be modified to yield a
branch search algorithm for preferences based on the above theorem.

6. Examples. We will consider four distinct f criteria in order to illustrate
our results and clarify some previous misconceptions. All but one are taken
from the paired comparison literature. The criteria are:
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weak stochastic—f(m;;, 1:;» ™) = Tyj — Tjs
preference—f(x;;, 1:5> ©;) < 0 if 7;; > max (w5, 7:;)
= 0if y;; > max (w;;, 7;;)
> 0 otherwise.
semi-preference—f(T;, 1:5 Tj;) = Ty; — MAX (T34, 745)-
row-sum—f(z;;, v:;» ;) = ®;; — 7. In this case, the z,; of our model are
interpreted as )}, «;./(23, 7}, + DI, 7},.), where #}, = n,[k,,.

Note that other f functions may yield the same criteria.

Hence,

a ranking is a weak stochastic ranking if, whenever 4; precedes 4; in the
ranking, =,; = 7,

a ranking is a preference ranking if, whenever 4, precedes 4; in the ranking,
either z;; = max (z;;, 7,;) Or r;; = max (w,;, 7;),

a ranking is a semi-preference ranking if, whenever A4, precedes A4; in the
ranking, ,; = max (r;;, 7;;), and

a ranking is a row sum ranking if, whenever 4, precedes 4; in the ranking
Zr 77"1’2-)' ; Z'r 77";'1"

We emphasize that we are not arguing that only these criteria should be used,
nor that they are equally appropriate. In some circumstances one or more may
be inappropriate. For example, unless we are willing to assume that D, (7*) is
asymmetric the semi-preference criterion would not be appropriate.

The corresponding D, (7), D,(), D,,(=), and D, (=) are given by:

(A;y A;) € D, (7) iff ©,;>m,

(5) (A Aj) € Dy(m)  iff  7; > max (zy, 145)
(4;, A;) € D, (7) iff max (7, r:;) > 70, and
(A 4)eD,(x) il T, > 5,7,

To indicate the derivation of the above statements we consider preference
ranking. By definition (4;, 4;) € D (x) iff f(z};, 7:;» 7,;) < 0, and R is a prefer-
ence ranking iff f(z;;, 7,5, 7;;) = 0. Consequently f(x,;, 1., 7;;) = 0 iff 7,; =
max (7, 7;5) OF 74y = Max (g, 7;). SO f(7)i5 7455 7y5) = 0iff 7y, = max (my4, 75)
or 7j; Z Max (w5, 7). Thus flzs, 1i5 my;) < 0iff m;, < max (myj, 1) and 7, <
max (rj;, 7;;). That is, iff 7,; > max (7, 7;;)-

Under each of the above criteria, we now give the estimator =, (defined in
Section 3) of z* used in selecting a ranking. It has been shown by De Cani
(1969) that for weak stochastic ranking, =, is given by:

(6) (7% 15%) = Rigs Ti) if Ty 2 Ty
= <___ﬁ“ ':lz' s , fij> otherwise,

when A4; precedes 4; in R.
Preference rankings select those rankings that also would be chosen under
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the criterion suggested by Singh and Thompson. From Theorem 10 of Singh
and Thompson we know that 7, is:

(w5 1i5) = (Rig> Tis) if #;; = max (#;;, fi;) or
(7 Fi; = max (£, &)
= (75 %) otherwise,
when 4, precedes 4; in R.
The (af;, y5;, n%;) are the pooled estimates obtained from (7;;, 745, #;) by re-
placing each of its two largest components by one-half of {1 — min (#;;, 74;> %)}
For semi-preference rankings it is easy to show that z is

(7% 15) = Rips T45) if #,; = max (%, 7:;)
(8) = (a5 155) if min (%, 7,;) < #,;; < max (2, 7:;)

= <ﬁL_§ﬂi— , fz,) if #;<7;=#; and 7,;<4%

=% otherwise,

when A4, precedes 4; in R.

Finally, for row sum rankings, the row sum-optimal x is not known in closed
form but can be found by an iterative procedure (Ford (1957)). However, any
ranking in H,(#) will be a ml row sum ranking since its =, may always be
taken as 7.

Note that for the row sum criteria used here, ties have been given zero
weight. Ranking under the weak stochastic or row sum criteria ignores ties
only in the sense that they do not enter into the definition of D, (7) or D, ().
If we wish them to have nonzero weights, then our definition of row sum rank-
ing may be extended and may result in different rankings and preferences.

For each of the four f criteria we now give (r,;, 7;;) and their corresponding
operations on C; U D (). These yield only these z’s which can induce possible
ml preferences.

Under a weak stochastic criterion Singh and Thompson, Section 5, have
shown:

(T 763) = Bigs i3) if line type between A4, and A4; is
) not to be changed,
= (.ﬁw_‘;ﬂa e ,.) otherwise.

This only allows some (4;, 4;) € D, (%) not to appear in D, (r) in which case
they must appear in C,(z). In other words, a directed line may be changed to
an undirected line, but to no other type. If in the definition of directed path
i=j, r=n41, and the 4;, are all distinct for i < j < n, then we call the
path an elementary circuit. Hence, as pointed out by Singh and Thompson, an
elementary circuit in C,, U D, (%) will result in the ml preference being null.
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This is because all (4,, 4;) € D, (#) must then be removed, if a preference is to
be obtained. This results in no directed paths and consequently a ml preference
which is null.

Under a preference criterion, Theorem 10 of Singh and Thompson gives:

(mijs 145) = (®ijs Fis) if line type between A4, and 4; is not to be
(10) changed,
= (75 15) otherwise.

This only allows some (4;, 4;) € D (%) not to appear in D, () and some
(4;5 4;) € C (%) not to appear in C (7). In other words, a directed line may be
changed to a blank line and an undirected line may be changed to a blank
line. Although = allows only these changes to be made, they are all that are
needed. Theorem 13 of Singh and Thompson shows that when C; U Dy(#) is
a complete relation, then if a unique ranking is consistent with a ml preference
that ranking is a ml preference ranking. This result can be generalized to f
ranking criteria. This criterion selects those preferences that also would be

chosen under the criterion suggested by Singh and Thompson.
Under a semi-preference criterion:

(11) (Tigs T45) = Rags P15) if line type between A4, and 4, is not to
be changed.
An A4; — A; can be changed only to 4, — A; and this is accomplished by:

(g5 145) = (=5 115) if 7> T 2 Tis

= (ﬁt’__:lz_ﬁ"i‘ ’ ?i:') if #;>7;2%; and 7; <4
=33 if #;>¢;,=2%;, and 7;>4% orif #,;,=7,>%,.
An A4; 2 A; can be changed to,
A, — A; by:
(®ijs 733) = (7555 755) if 7> %; =%
orto 4, — A; by:
(T 1) =3 %) >
An A; — A; cannot be changed if #,; = #;, = 7,; but can be changed to,
A; — A; by:
(migs 145) = (”i:‘ s ﬁﬂ—;?’—l)

or to A; — A, by:

(7355 745) = (ﬂif ; Iij ’ %is ;— Fis ) whenever #;; = #;, > Tii

It is not difficult to see that if an elementary path exists in C,, U D,,(#) then
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the ml preference will be null, similar to the situation for the weak stochastic
criterion.
Under a row sum criterion:
(12) (755 745) = (Rijs Tij) if line type between A, and A4;is
not to be changed,

= (—_”iﬂ' ;— Tii, fij> otherwise.

We conclude by applying each of the four f criteria to three numerical examples.
Example one has the following paired comparison data:

n, =2, =3, ny =1
n; =0, =13, ny =3
Ry =2, fy =2, Ny =2

The relations C, U D/ (%) and D/(#), from which the estimators may be con-
structed, are shown graphically in Figure 1 for each of the four criteria.

VA NVA VAN

3 A2
Dwsi® CysUDys(#) Dp (#) CpuD, (#)
/ /0 N
osp () Cgp UDgp () Dys (7) Crg UDys ()
Fi1G. 1.

The weak stochastic-optimal =, = (3, $, 0, 3, 4, 4) and the ml weak stochastic
ranking is A4;A4,4,. As expected, we see that T,(x) is null for = weak
stochastic p-optimal since C,, U D, (%) has at least one elementary directed
path (4; to A, for example).

The preference-optimal 7, = (&, 5, 0, &, %, 1), and all six rankings are ml
preference rankings (that is all rankings are indistinguishable). The ml prefer-
ence T,(z) is null. The semi-preference-optimal =, = (%, 1%, 0, 3, §, §) and
the ml semi-preference ranking is 4,4, 4,. The ml preference T,,(x) is null as
we expected. For row sum ranking, 7, = (3, 3, 0, 4, 1, 1), and the ml row sum
ranking is 4,A4,4,. This unique ranking is consistent with the ml row sum
preference.

Example two, from Singh and Thompson, has the following paired comparison



PAIRED COMPARISON RANKING 859

data;
n12:2, t12=1, n21=3
ng,=4, t,=1, n, =1
n14=0a t14=4’ n41=2
Ry =1, ty =3, Ny = 2
n2‘=1, tﬂzz, n4,=3
n, =4, t, =0, ng,=2.

AN M N
7 i v
Az Az A3 Az
Dys (m) Cws UDys () Dp () Cp UDp (#)
AN AN A N
o g T \47

AP A3 , A3A A3 \
Dsp (7’) Csp UDSP('"') Drs (7’) crs UDrs(ﬂ')
FiaG. 2.

Figure 2 graphically presents the relations D /(%) and C, U D4(#) for this ex-
ample under each of the four criteria. De Cani has investigated this example
under the weak stochastic ranking criterion and found the unique ml weak
stochastic ranking to be 4,4, 4,4,. We note that the ml preference for the
weak stochastic criterion must be null since an elementary directed path exists
from A, to A,, namely A4, 4, A4, A; A,. For this same data, Singh and Thompson
found the ml preference rankings to be 4, 4,4,4, and 4,4, A4, 4,, and the ml
preference, under the preference criterion, to be {(4;, 4,), (4, 45), (4s 4y),
(A,, A;)}. Under the semi-preference ranking criterion, the ml semi-preference
ranking is 4,4, A, A, and the ml preference is null. Lastly, the ml row sum
rankings are A4, 4,4, A, and A4, 4, A, A,. The ml preference under the row sum
criterion is {(Ay, 4), (Ay 4, (Ai A), (A Ay), (A, A}

In his examination of this example, De Cani (1969) was apparently surprised
to find that Singh and Thompson discarded the A4, 4, 4, 4, ranking, when as he
says, “Singh and Thompson obtained this ranking as the ranking with the least
uncertainty.” It should be clear from the development presented in this paper
that A4,4,4;4, is not properly referred to as “the ranking with the least un-
certainty.” Rather, it is the preference associated with this ranking that has
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the least uncertainty (greatest likelihood), and 4, 4, 4, 4, is only one of the four
rankings consistent with this preference.

It also should be evident that different ranking criteria may produce vastly
different rankings; a result that has apparently been a source of some confusion
tn the literature (De Cani (1969)). In particular, although the (1, 4) component
of the f-optimal = is (7, 71> Ts) = (0, %, 4), and thus 4, has a zero estimated
probability of losing to 4,, both of the preference rankings placed A4, above 4,
while all other criteria placed A4, above 4,. In short, with respect to the four
criteria, A, A4, A;A;,, A A A, A, and A, 4,4, 4,, A, A, A, A, and A, 4,4, 4, and
A, A, A, A;, each have zero total inconsistencies, respectively.

It should be noted that whenever #,; = min (%,;, 7;;, #;;) for all i, j, then the
weak stochastic, preference, and semi-preference ranking criteria all yield the
same solution. In particular, if no ties are present and all k;; = 1, then all these
criteria simply become the minimum total inconsistency criterion.

As the third example, consider the circular triad, David (1971); k;; = kyy =
ky = ny, = ny = n, = 1. All but the row sum criterion reduce to the minimum
total inconsistency criterion. Under this criterion there are three ml prefer-
ences:  {(Ay Ay), (A 40> (Ap A} {(As A5 (Apy Ap), (A 4], and {(Ay, 4y),
(A4s, Ay), (A}, A;)}.  There are also three ml rankings: 4,4,4,;, 4,4,4,, and
A, A, A,. Each of these rankings is consistent with exactly one of the three ml
preferences. However, under the row sum criterion the ml preference is null
and each of the six possible rankings is a ml row sum ranking.
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