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THE ASYMPTOTIC DISTRIBUTION THEORY OF THE EMPIRIC
CDF FOR MIXING STOCHASTIC PROCESSES

By JosepH L. GASTWIRTH! AND HERMAN RUBIN?
The George Washington University and Purdue University

This paper introduces a new mixing condition for stationary processes
which is weaker than ¢-mixing but stronger than strong mixing. Many
processes arising in applications, e.g., first order autoregressive processes,
obey the conditions. The main result is that the empiric cdf of a sample
from such processes converges to a Gaussian process.

1. Introduction and summary. The purpose of this paper is to lay the prob-
abilistic foundations for a study of the large sample theory of robust estimators
for dependent processes. While there is substantial literature on the convergence
of the empiric cdf to a Brownian bridge for i.i.d. observations, only recently [1]
have these results been extended to dependent processes. In order to derive the
resuits, we introduce a new mixing condition which is stronger than Rosenblatt’s
strong mixing [2], [9] yet weaker than the concept of mixing introduced by Doob
[3] and used by Billingsley [1].

The new mixing condition is presented in Section 2 and several first order
autoregressive processes are shown to satisfy it. The third section is concerned
with proving the convergence of the empiric cdf to a Gaussian process. In the
companion paper [4] the results are illustrated by deriving the asymptotic dis-
tribution of general linear combinations of order statistics.

2. Mixing conditions and their applications to statistics of the form > f(X).
In order for functions of a stochastic process to obey a central limit theorem
some sort of asymptotic independence is usually required. Therefore, we de-
velop analogs of Rosenblatt’s mixing number and introduce another measure of
dependence, between Rosenblatt’s and Doob’s, which is readily computable.

If{X;}, iel, and {X,}, j € J, are two indexed families of rv’s the mixing number
measuring the dependence between them is

.1) a(l; J) = sup, 5 |P(4B) — P(A)P(B)| ,
where the range of A is the Borel field generated by the {X;}, i € /, and the range
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810 JOSEPH L. GASTWIRTH AND HERMAN RUBIN

of B is the Borel field generated by the {X}, jeJ. Rosenblatt’s mixing number
for stationary processes will be denoted by «, and is defined as

2.2) a, = a(l; J),
where I = {i; i < 0} and J = {j; j = n}. For finite sets of rv’s I = {i}, ---, i,}
and J = {j,, - - -, J,} the mixing number (2.1) will be denoted by
(2.3) LI - PR A
Our measure of dependence is defined in terms of a function measuring the

conditional deviation from independence. Let W = {X, i € I} have distribution
Rand Z = {X,, j € J} have distribution Q, and (W, Z) have distribution P; then

(24 Al J; y) = § |P(dz] y) — Q(dz)| -

In the case where ordinary conditional probability distributions exist A(Z; J; y)
is the total variation of the difference between the conditional distribution of z
given W = y and the marginal distribution of z. In the general situation A(Z; J; -)
is defined to satisfy

2.5)  SAW@ T »)9(p)R(dy)
= supuz: [§§ (9, 2)9(y)P(dy, dz) — §§ h(y, 2)9(y)R(dy)Q(dz)]

for all positive R-integrable g. The analog of (2.3) is

(2.6) Ay - vsigs i =5 Js Y) = A 5 9)

where I = {i;, ---,i,}and J = {j,, ---,,}. We also define

(2.7) A(n; y) = M T3 ),

where I = {i: i < 0}and J = {j: j = n}, and

(2-8) A, = § A y) dR(y) = ||A@)]l; -

For stationary processes, if i, < --. < i, <j; < --- £J,, it is obvious that
(2.9) IAGy s g3 fis == s Judlls S TAM)LS

where n = j; — i,.

ReEMARKS. The quantity ||A(Z; J)||, equals the total variation of P — Q x R.
Moreover,

(2.10) a(l; 7y < |IA, D)L/

On the other hand, conditions using the s-norms of the function (2.3) are weaker
than those depending on the concept of ¢ mixing introduced by Doob [3] and
developed by Billingsley [1] and Serfling [12]. Indeed, for stationary processes
Billingsley’s ¢, is [|A(7)]]/2-

At this stage it seems appropriate to illustrate the computability of reasonable
bounds for the s-norms of A(k) for first order autoregressive processes. For
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Markov processes A(k) = A(0; k) and A, = ||A(0; k)||,. Using the representation
(2.11) X, = o*X, + U,

and, denoting the stationary density of X, by f, the mass of the non-absolutely
continuous component of the distribution of U, by M,, and the density of the
absolutely continuous component by f,, we have

(2.12) AQ; k3 y) = M, + § 1f(x) — fulx — o)l dx..
If the density f is not supported on a bounded interval of the real line, then
(2.13) sup, AO; k; y) = 2.

This shows that autoregressive processes are not ¢ mixing. We now discuss three
examples. Since all the examples have symmetric marginals the results are in-
dependent of the sign of p. Hence, we assume p > 0.

ExaMPLE 1. Our first example is the double-exponential process. Using the
characterization due to Gastwirth and Wolff [5] it is seen that M, = p* and

fu%) = 3)(1 — 6™) exp(—|x — p*y]). Thus,

A0, k, ) = 0™ + § B)lexp[—|x[] — (1 — p™) exp[—|x — p*y]| dx
(2.14) < 0% 4§ § 0% exp(—|x]) dx

+ § @ — p¥)lexp(—|x]) — exp(—|x — o*y))| dx
= 20 + 3lo"yI(1 — p™) -
Moreover, the Minkowski inequality implies that
(2.15) IAGKs = 20% 4 [0*1@)HY
so that A, < Cle*|.
ExaMpLE 2. For Gaussian Markov processes we must bound
(2.16) A(0; k; )
= (271')_‘*’ S°_°°°

exp[—(x — o*)'/2(1 — p™)] _ exp[—x2/2]‘ dx .
(T o™
In order that the reader can more easily follow the computations, we will use
o instead of p* until formula (2.22). We see that A(0; k; y) is bounded by

exp[—(x — py)’/2(1 — p*)] _ exp[—x*/2(1 — p?)]
(1 — )t (I — o)t
i e |EXP[—XY2(1 — p?
+ (@n)t i, (2P g i ;2)& 0 exp[—x’/Z]ldx.
The first term of (2.17) is treated by noting that both functions are probability

densities which are equal when x = py/2. If y > 0 this integrand is positive
when x > py/2 (when y < 0, the reverse is true but the same bound occurs by

(2.17)  @m)b =, dx
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symmetry) so that

(@2m)-t | [FPL=( — ))2(1 — )] _ exp[—x72(1 — A]] 4,
(1 — e (1 — o)t

_ 2 I
= @i = e [P (= ey))2(1 — e
(2.18) — exp[_x2/2(1 _ ‘02)]] dx
2

~ [@od — AF ow2 . exp[—2(1 — p%)] dt

=F%W%ﬁ%mwwumw
< _Kleyl
(A =e)

The right side of (2.17) is bounded by observing that the integrand is bounded
by Cx*o*exp[—x*/2] when |exp|[—x’0*/2(1 — p*)] — (1 — p%} < 0. When
lexp[ —x*0%/2(1 — p?)] — (1 — % > 0, an application of Taylor’s theorem
yields the bound

(2.19) (1 — p)~ — 1] < BoY(1 — p?)?

which implies that the integrand is bounded by Bp®exp[—x*/2]. In any case
the integrand in the right side of (2.17) is bounded by
(2.20) (Ax* + B)p’exp[—x*/2]/(1 — p*)?}

so the second term of (2.17) is bounded by Kp®>. When. [p| is bounded away
from 1, expression (2.17) is bounded by

Kp? K?
(2.21) (bﬂw+ajg§=lw+qwu

where (1 — p?)~* is absorbed in the constants C,, C,. Thus

—?¥21d
022) I8l = G+ 1y FREIED G 1

More generally, applying the Minkowski inequality yields
(2.23) AL = Cop™ + Cilolr]”

where g, is the sth absolute moment of a unit normal rv.

Notice that (2.23) is very similar to the result (2.15) obtained for the double-
exponential process and one might be tempted to conjecture that for Markov
processes A, = A(0, k) < C|p*|. Our final example shows that this is not true.

ExampLE 3. For the Cauchy process, U, is a Cauchy rv with scale parameter
(1 — p*), so that

(224 AO; ks y) = a7t §2u (1 + ¥)7 (1 — )71+ (e — 7)1 = 7)) 7 dx,
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where y = p*. Expression (2.24) is less than or equal to

A 4+ )7 = (1= 7)1 4 21— 7)) dx
(2.25) N (G R O by (OO
— (=74 (= )1 = 7)) dx.
We discuss the case where y > 0. The left side of (2.25) is a difference of two

probability densities which are equal when x = +(1 — y)! and the factor
(I 4+ x*~*is larger when x > (1 — 7)}. Hence the left side of (2.25) is

< 2z! S|au|>(1—r)‘It [(1 4+ x®)~t — (1 — T)_1(1 + */(1 — 7)2)_1| dx
(2.26) =47 o [(1+ 27 = (1 =717 4 Y1 — 7)) dx

= 4r—'arctan (1 — y)~* — arctan (1 — 7)}] < 27.
The second integral in (2.25) is handled by substituting w = x(1 — y)~'and z =
(1 — 7)™, yielding
(2.27) 71§ ’ L 1

A+w—=27% 14w

which is the difference of two Cauchy densities with locations z and 0 respec-
tively and the densities are equal when w = z/2. The same type of argument
used above shows that expression (2.27) is

b

(2.28) < 4n~'arctan arctan (7| y|) < Carctan y|y|

2(1 =7) (1 —7)
if y < 4. Thus

(2.29) A(0; k; y) < 27 + Carctan 7|y
and
1 1/s
(2.30) 1A, < 27 + €[ § Jaretan () — s dy | -
(1 + 57

By decomposing the range of integration and using elementary inequalities one
can show that

(2:31) AR, < 27 + Ko

where K, is a constant depending on s. More interesting is the case where s = 1.
Here

(2.32) (=, [arctan yy|(1 4 y*)~'dy

2
o[ s by + 5 i

where we use the bound arctan x < x for y < (y)~'. The right side of (2.32) is

@33)  s2[@rlog(l+ ()Y + T | =7 +rlog(l+ (),
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so that

(2.34) AR, < C,o* + Cyotlog (1 + ).

For large x, log (1 4 x) is essentially log x so that log (1 4 p~*) is nearly
2k log (1/p), which implies that

(2.35) AR, < Ao* + Bl .

ReMARK. If one refines the argument to get lower bounds on A(k), one can
show that the k term in (2.35) cannot be eliminated.

In order to prove the asymptotic normality of rv’s of the form S, = >} f(X,),
where f is a bounded function, we present the result in terms of the mixing
numbers. First we recall the following lemma due to Ibragimov [6].

LemMma 2.1, If U and V are bounded by C, and C, respectively and U is measur-
able w.r.t. the Borel field generated by X, for i e I and V is measurable w.r.t. the
Borel field generated by {X;; j € J}, then

(2.36) Cov (U, V) £ 4C,C,a(l; J) .

We now formally state

THEOREM 2.1. Whenever {X,} is a strongly mixing S.S.P. such that
(2.37) S a0, k) < oo,
(2.38) T Zjurassies min (@(0, j; k), (03, k), a(0, k3 j)) = O(n) ,
and
(2.39) DX Tirsuseemin (@0 iy i 4 o i + j + K),

a0, i+ i+ j+ k), a(0,i,i+ j;i+ j+ k)) = O(n),

then any statistic of the form S, = Y.\1_, f(X,), where f is a bounded function, is
asymptotically normally distributed, i.e.,

(2.40) n[S, — E(S,)] = MO, a9,
where ¢* = lim,,_,,, n='V(S,,).
ReMARK. These conditions show that asymptotic normality is determined by

the strength of dependence of various subsets of four rv’s, which suggests that
strong mixing should not be necessary.

Proor. The result will follow once the fourth moment condition of the Blum-
Rosenblatt Theorem is verified, i.e., letting 4, = f(X;) — E[f(X,)], E|> A4;|* must
be O(n?). Expanding E|}; 4,* = 313 3. D] E(4; 4; A, A)) one obtains

ZoBAM + 4 54 55 E(A°4)) + 6 21 3ic; E(4247)
(2.41) + 12 X1 Fic; Zn E(Ai4; 4%
_I_ 24 Z Z Z Zi<i<k<l E(ALAJAIGAZ) *
As the A, are bounded with mean 0, 3] E(4,*) < Kn, Y, E(4°A4;) < Kn® and
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2.2 E(A24;%) < Kn®, when K is an appropriate constant. Now
E(A;A; A = E(A, A;)E(A4,%) + Cov (4, A4;; Ay)

(2.42) = Cov (4;; 4; 4,7

= Cov (4,4, A4;) .
Bounding the covariances by Lemma 2.1 yields

|E(4, 4, 43| < |E(AA)E(A4)] + Ka(i, J; k)
(2.43) < Ka(i; j, k)
=< Ka(i, k; j) .

Since E(A4; A;) = E(A)E(A;) 4+ Cov (4,, 4;), |E(A;4;)| < Ka(0,j — i),

(2.44) 2 2i<i Lun |E(A,A))|E(4,°) < n’K 77, a(0, k) .

As E(4,4; 42) < |E(A4, A,)|E(A4,)* + K min (a(i, j; k), a(is ], k), a(i, k; ),
22 Diici<n B(A;A; A7)

(2.45) < K Y2, a(0, k)

+ nK 335, min (2(0, j; k), a(0; j, k), a(0, k3 j)) ,

where j — i and k — j are now denoted by j and k. The fourth order terms are
handled by noting that if i < j < k < [, then

|E(A; A; A A))| < |E(A; 4,)|| E(A 4y)] + Ke(i, j5 k, 1)
(2.46) =< Ka(i; j, k, I)
< Ka(i,j, k;1).
As
(2.47) DL X Dicicna [E(A A E(4, 4)| < iKY (L7, a(0, 7)),

Z Z Z Zi<i<k<l |E(Az AiAk Al)l
(2.48) = K% a0, NI’ + K X X X Xicjcra min (a(i, j; &, 1),
a(i; j, k, 1), a(i, j, k; 1)) .
The second term on the right side of (2.48) is

S Kn L2 Yivknsa min{a(0, j3 j + k, j + k + 1),
a0;j,j+ kj+k+ 1), a0,/,] + k;j+ k + D}
when j, k and I now denote j — i, k — jand [ — k. Thus, assumptions (2.37),
(2.38), and (2.39) imply that (2.45) and (2.48) are O(n?), so that the conditions

of the Blum-Rosenblatt theorem hold.
An important Corollary of Theorem 2.1 is

CorOLLARY 2.1. Let {X;} obey the conditions of Theorem 2.1, then the finite
dimensional marginal distributions of the empiric process n[F,(tf) — F(t)] converges
to a multivariate normal distribution.
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Proor. For any ¢, F,(f) = n~' }17 I,(f), where [,(¢) is 1 if X; < ¢ and O other-
wise. Foranyset 1, - -, 1, of k values of #, any linear combination }}%_, a; F,(t;)
is a function of the form n-* }}7_, f(X;) and Theorem 2.1 applies.

REMARKS.

1) Corollary 2.1 includes the asymptotic normality of the sign test statistic.

2) The conditions of Theorem 2.1 hold whenever }; k’«, = O(n).

3) Since a, < A,, Theorem 2.1 is valid whenever ) kA, = O(n). This con-
dition is easily verified for the three examples discussed as )] k’A, converges in
all three examples.

We conclude this section by showing that for Gaussian processes the sign test
statistic is asymptotically normally distributed if }; |o,| < oo. Since bounded
functions f have finite variance and the normal distribution is determined by
its moments we can approximate f in L* (w.r.t. the normal distribution) by a
polynomial P, so that ||f — P|| = ||fi|| < e. The statistic n=* 37, P,(X;) is
asymptotically normally distributed by Sun’s Theorem [13]. The variance of
n=t 3 fUX) < e 23, |0, where we have bounded Cov (f,(X)),f.(X;)) by
¢|0;-;| by Sarmanov’s Lemma [10]. By the Mann-Wald Theorem [7], the result
follows.

3. The convergence of the empric cdf to a Gaussian process. In this section
we show that the empiric cdf of a strong mixing S.S.P. converges to a Gaussian
process provided that the A (or @) functions defined in Section 2 obey some
regularity conditions. These conditions are weaker than Doob’s concept of ¢
mixing so that our result is stronger than Billingsley’s Theorem 22.1. In par-
ticular, the Gaussian, Cauchy and double-exponential first order autoregressive
processes are not ¢ mixing but satisfy our conditions. For Gaussian processes,
a special result is derived showing that }; |p,| < oo suffices to guarantee the
convergence of the empiric cdf to a Gaussian process.

The first step in the proof is an application of a lemma of Rubin [11] which
gives verifiable conditions which imply Prokhorov’s necessary and sufficient
condition for processes to converge to a limiting process with a.s. continuous
sample paths. The next step is to apply Theorem 2.1 to prove that the finite
dimensional marginal distributions converge to the appropriate multivariate
Gaussian distribution.

Before stating our main result we prove a generalization of Doob’s Lemma
7.1 [3] which applies to our A functions. Specifically we have

Lemma 3.1. If f and g are functions such that E(|f(X)|?) < oo, E(|9(Y)|") < oo
and if 1/r + 1/g + 1/s =1and 1 < q,r, s < oo, then

(3.1) |Cov (AX), 9M)| = 2| I£ 1l [Igll1AY+]l, ,

where A is defined in Section 2.
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Proor. Writing
(3.2) Cov [fAX)9(Y)] = § 9N f()[dP(x|y) — dQ(x)]} dR()

and applying the Holder inequality to g(y) and &(y) = § f(x)[dP(x|y) — dQ(x)]
yields

(3-3) [Cov f(LX9(Y)| = [V l9)I" dROI - [§ [R()I* dR()T* »
where r~* 4 t~* = 1. Since
h(y) = §f(x) sgn (dP(x|y) — dQ(x))|dP(x|y) — dO(x)| ,
applying Holder’s inequality yields
34 )" < (§ If)[1dP(x|y) — dQE)DA* () -
Setting 1/t = 1/q + 1/s applying the Holder inequality again yields
(3.5 VIfl1eP(x|y) — dQ()| = (V1/x)|*ldP(x|y) — dQ(x)])"* - [A()I™
so that the second factor on the right side of (3.3) is bounded by the sth root of
(3.6) § (S 1/GIdP(x | y) — dQ(x)|)"* - [A())*¥**¥7 dR(y) -
Applying the Holder inequality once more shows that (3.6) is
G- =[N IARNNEP(x]|y) — dR)]) dR(y)]"* - [§ A™+(y) dR(y)]
and (3.1) follows by taking rth roots and noting that
V1§ 1f()]|dP(x | y) — dQ(x)| dR()

(3:3) = § 117 § [|dP(x[y) + dQ(x)[]14R(y)
= 2 { |f(x)|"dO(x) -

A further useful generalization is

LEMMA 3.2. If f; has support F,, g, has support G,, where the sets F, are pairwise
disjoint and the sets G, are pairwise disjoint, then

(3-9) 31 Cov (fir )] < 2Vl llglL 1AM,
where f = Y. fi, 9 = Y. 9; and g, r, s are as in Lemma 3.1.

PRrOOF. Observe that in deriving Lemma 3.1 only that part of A(y) for y in
the support of g is used. Letting X, denote the indicator function of the set
G;and A, = AX;, Lemma 3.1 implies that

(3.10) Cov (fis 92) = 27| il f19sllal |83, -

The conclusion follows by applying Holder’s inequality to the series and using
the fact that the supporting sets of each function are disjoint.
The main technical result of the section is given by
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THEOREM 3.1. Whenever {X,} is a S.S.P. such that
(3.11) 2= 1A, K, < oo,
(:12) X jseza min ([[AO, /3 j + Kl [1A0; /s j + K)ll.) = (n(log m)~°)
(13 Zivjrsa min (JAQ; 40 + jo i+ j + Kl [0, 558+ Jo i + 7+ Kl
1A, i, i + js i + j + K)|I.) = o(n(log n)~*)

and either

(3.14a) o1 [|A, k)|, < o0 for some s > 1
or

(3.14b) «(0, k) = O(k-*(log k)=°-*),

then the empiric process n*[F,(f) — F(t)] obeys the conditions of Prokhorov’s conti-
nuity theorem, i.e., as n — oo it converges to a process with a.s. continuous paths
if the finite dimensional marginals converge.

Because of the importance of Theorem 3.1 we make the

DEFINITION. A process {X;} obeying the conditions of Theorem 3.1 is a
strongly mixing A, process.

Before proceeding to the proof of the theorem we recall some useful results
due to Rubin [11].

LemMA 3.3 (Rubin). Let X, be a separable process defined on [0, 1] such that

(3.15) X,(t+u)— X,(t) > —¢,(w) for u>0,
where ¢,, is increasing on (0, 1), and for some 2 > 0
A P — 1\ |2
(3.16) B0 - % (L5 S r < oo
For any ¢ > 0, let R,(¢c) be the smallest integer such that
(3.17) Pu27F) < e
The Prokhorov continuity condition is satisfied if for every ¢ > 0 and > 0
(3.18) lim sup, 5% 72 < .

A frequently useful corollary is
Lemma 3.4. If X, is a separable process satisfying (3.15) and
(3’19) EIXn(t + ll) - "Yn(t)llI < ¢n(u)

then Prokhorov’s condition is satisfied if for every ¢ > 0 and y > O there is an |
such that

(3.20) lim sup, 337 (26,27 < 7,
where R is as in Lemma 3.3.

REMARK. If 7, in Lemma 3.3 or ¢, in Lemma 3.4 can be written as a sum
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of a fixed finite number of functions satisfying (3.18) or (3.20) respectively, the
conclusion follows.

Proor oF THEOREM 3.1. Letting Y; = F(X;) one can transform the empiric
process to the unit interval and we shall assume that this has been done. We shall
verify that the conditions of Lemma 3.3 are satisfied where 2 = 4, ¢,(u) = ntu
and R, (¢) is the smallest integer greater than log (1/¢) + 4 log n, where logarithms
are taken to the base 2. Let By(r, u) = 1if Y, e[¢t, 7 + u) and O otherwise and
let A,(t, u) = B,(t, u) — u. We shall omit the arguments # and ¢ where no con-
fusion will arise. The computation of the bounds on the fourth moments re-
quired to verify condition (3.18) is similar to the derivation of Theorem 2.1.
First we note that if V(r,u) = TJE, A,-k(t, u), W(t,u) = 1J5., Aig(t, u), then
[V| <1, E|V|* < 2u for all ¢ =1, E|W|" < 2u for r = 1, and Lemma 3.1
implies that

(3.21) |Cov (¥, W)| < min (2Va(2u)Va+V/7||A-Va||,, Cu)

where C is a constant.

Note that any product of 4,’s is a constant plus a linear combination of indi-
cator functions (of sets whose probabilities are < u), and if the intervals [z,
t; + u) are disjoint
(3.22) > |Cov (V(t;, t, + uw), W(t,, t, + u))| < M2YVe||A-Y1)|, .

Clearly (3.22) is minimized when ¢ = oo and s = 1. (For the duration of this
proof ||+|| without a subscript will denote ||+||,.)

We now bound the terms in the expansion of n=2 32., E{>1%_, A((j — 1)/27,
J/29)}. Arguing as in Section 2, but using more powerful bounds, we obtain

(3.23) n S, o B(AS) < 2fn,
n~? zz 1 D=1 Dterens E(A2A))
(3.24) =n % 1 Dber Dt COV (4,3 A4))

=n Zk=l L MIJAGK, D < 2Mn~* 33, [[AO, B[

n=? 2i L Dher Dtenees E(A2A4))
(3.25) =02 50 T X E(ANEAD) + 1 55 Tas X Cov (43 4))
<4274 2Mn= X3, A, B

and

Next
N0 D Dheiem B4 A A,)

(3-26) S NN E Y BAS)E(A A,)|

+ 7 22 3 3 min (|Cov (4% 4, 4,)],

|Cov (4,%4,, A,)|, |Cov (4,°4,,, A)]) .

The first term is bounded by 4 - 2-* 37, ||A(0, I)|| and the second is bounded by
(3-27)  Mn 355 min (||A(ks L m)||, Ak, I m)|l, [[Ak, ms; D))

< 6Mn~' 33 min ([|AO; £, D, [JAQQ, &3 D)) -
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The most complicated term is
24n7 3 DX 2 Yk<icman E(Ar A, 4, A,)|
(3.28) < 24n7 3 | E(A A) E(Ay Ay)|
+ 24n7* 351 31203 min (|Cov (4, 4;, A 4],
|Cov (A4,, 4,4, 4,)|, |Cov (4, 4, A4, 4,)]) -
Treating the second term in a manner similar to that used for the second term
of (3.26) shows that it is

(3.29) < 24Mn =t Y ks min (||AQO; £, 0+ f, i 4 j + k)|

1AQ, 558+ jy i+ j + B IAQ, & i+ j3 47 + K)I]) -
There are two alternative bounds for the first term in (3.28). Using Lemma 3.1
or the factor E(4, 4,) gives the bound

48n=3 2y B R D X 2 |AKS DI E(Ans A4)l -

Applying Lemma 3.2 (with ¢ =0) to the factor E(4,4,) shows that
21 |E(A, A4,)| < ||A(myh)||,. Thus, the final bound is

(3.30) K@) L 1A, Kl X (1A, m)l], -

Alternatively we can apply Ibragimov’s lemma to E(4, 4,) and treat £(4,, 4,)
as before. The resulting bound is

(3.31) M i, min (2, (0, 1)) X, A, K| -
Putting terms together we see that
(3.32) i EIX(I2) — X((U = D2 = X3 Coins

where the {’s are the various bounds derived above. To check that (3.18) is
satisfied note that there are O(log n) terms and each summand {,,, in the bound
for 7,, is either o((log n)~*) uniformly in i or the series )2, ({,:,)"* converges
uniformly in n.

ReEMARK. If the original {X;} are strongly mixing, the conditions of Theorem
3.1 are stronger than the conditions of Theorem 2.1, so that the finite dimen-
sional marginals of the empiric process converge to a multivariate normal dis-
tribution and the process converges to a Gaussian process.

A useful corollary is

COROLLARY 3.1. Whenever {X,} is a strongly mixing s.s.p. such that A, =
o(k=%(log k)=*), n[F,(r) — F(t)] converges to a Gaussian process with a.s. continuous
paths.

Proor. Since a(0, k) and ||A(0, k)|| < A,, (3.11) and (3.14b) are satisfied. The
left side of (3.12) is less than 2 >17_; kA, and the left side of (3.13) is less than
3 35 k*A, so the result will follow once }; k%A, is shown to be o(n(log n)=°). AsA,
is o(k~*(log k)~°) and as the logarithm function is slowly varying we are done.
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REMARK. By the monotonicity of A, no better result of this type can be
obtained.

REMARK. Theorem 3.1 applies to the three Markov processes discussed in
Section 2.
An alternate theorem using only the mixing numbers is

THEOREM 3.2. Whenever X, is a strongly mixing s.s.p. such that a, = o(k7?),
then the empiric process ni[F,(t) — F(t)] converges to a Gaussian process.

Proor. The finite dimensional marginals converge to Gaussian marginals by
Theorem 2.1. The verification of Prokhorov’s conditions proceeds as before
except that Lemma 3.4 is used and the covariances are bounded by K min (u, a).
In the expansion of n—2E(}; A,)* the worst terms, as in Theorem 3.1 are those

in the expansion of
Z Z Z Zk<l<m<h E(Ak Al Am Ah) ’

where the bound is
(3.33) M(3;, min (u, a))* + Mn=' 3] k* min (4, @) .

It can be shown that in the second term the # does not improve the bound
appreciably, therefore to satisfy (3.20) we require that
1 — Zé(l-l-Rn(e)))

1 —2-¢

is < 5. Thesecond factor approaches a limit and 2% < 2nt/c. This is equiva-
lent to the first factor being o(1) or 3} k*a, = o(nt). As a, is a monotonically
decreasing sequence this reduces to a, = o (k™).

Now we examine the first term in (3.33) which depends on

(3.35)  Yp.min (27, @) < TN 27 4+ Taspu = 27% + 0(27%)
which is O(2~%), where we have used the assumption that a, = o(k~%). Hence
(3.36) 3B [24(72_ min (27, )’} < M Y2, 270

which can be made less than » if [ is chosen sufficiently large.
As before a much better result can be obtained when the original rv’s {X}
are a Gaussian process. We require

(3.34) SO 2Mn' Y, Ka)t = QB OMn-t S kay)t

LEMMA 3.5. Forevery M >0, 8 > 0, m > 0 there exists a number ¢ > 0 and poly-
nomials S, R, R independent of M, such that whenever X,, X,, Yy, - - -, Y, are jointly
normal with means 0, variances 1, E(X,X,) = p, E(X,Y;) = t,; and the covariance
matrix of the (X, Y) vector has determinant exceeding 6, 0 < a< b=<a+ M,

B, = I, (X)), « = E(B,), then forally,a <y, < bfori=1, ..., m,
|E(B, — a)(B, — a)| Y = y) — E((B, — a)(B, — q))|
(3-37) = aSQ)(|lo| Lt L=t 7l + Tliz 271 (74l

if miniZj|rij|<-g— or m=1,
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(3:38)  |E((B; — «)(B; — @)| Y = y) — E((B; — a)(B; — a))|
< MPR(®)(lo| Xias Ziarltisl + Tics Zfalmigl)  otherwise.
Proor. The conditional distribution of X, and X, given Y}, ..., Y, is normal
with means 7,Q-'Y and covariance matrix

(3.39) 2(0s 71y 7) = (:} f;’) (::) 0-Y(r,75) »

where Q is the covariance matrix of the Y’s. By the uniform nonsingularity,
all elements of Q—! are bounded by 1/6 and all elements of Z-(p, 7,, 7,) as well
as the determinant of that matrix are bounded by 1/4.

Let
P(p, 73, 73, ¥) |
.40 =0 1] | S —
(3.49) e de 27| Z(p, 745 To)|}
X exp{—3(x — T'Q7Yy)'Z (o, 7, T,)(x — 'Q7Yy)} dx, dx, .
Then expanding,
E((B, — a)(B, — a)| Y = y) — E((B, — a)(B, — «))
(3.41) = P(p, 7y, 75, ¥) — P(0, 0, 7,, y) — P(0, 7,, 0, )

— P(p, 0,0, y) + 2P0, 0,0, y),
since & = {% (27)~t exp(—3x?) dx.
Now the right-hand expression in (3.41) is
§5 [Po(to, 1Ty 175, y) — P,(1p, 0, 0, y)]o
+ [P (10, 17y, 173, y) — P (0, 17, 0, )]z
(3.42) + [P, (10, tTy, 173, §) — P, (0, 0, 17y, )7, dt
=0 § [Poe (205 5715 5T, ) + P, (50, tr1,575, y)]oT,
+ [Pprz(tp, STy, 5Ty, ¥) + Pprz(sp, 5Ty, 174, ¥)] 07,
+ [Pe,e, (505 171, 5T, y) + P, (50, 5Ty, 175, Y)]7i 7, ds dt .
Since 7, and ¢, are vectors, by P, 7, we mean };; P, 7, etc.
Hence the expression is bounded by

0°P(r, t, t,)
or oty

*P(r, t,, t,)
or oty

+ XX |7ulle] sup

)

O*P(r, t,, t,)
0t,; 0ty;

+ 2 |7yl sup

(3.43)  |ol( X [rul sup

2

where the sup is over the smallest convex set generated by the covariance ma-
trices. An elementary algebraic argument shows that all matrices involved in
the argument are uniformly non-singular, so that we can differentiate under the
integral sign and obtain the result that all second derivatives of the integrand
of (3.40) are bounded by a polynomial R(d), which proves (3.38).
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If min, 33, |z,;| < 1/26 or m = 1, the sum of the regression coefficients will not
be near 1 for both variables, and hence for all x, y witha < x;, < b,a < y;<b

(3.44) (x — Q7 WYZ(p, Ty, Ty) Hx — QYY) = b — 5.
We may assume r < 2. Now

(3.45) b {betdx, dx, = (|} et dx)?
< (et dy) < (18 e dxy (b — @)~

from which (3.37) follows with ¢ = r, § = 2zM* "e°R.

Now let us verify the Prokhorov continuity condition for stationary Gaussian
process with 37 [p;]| < co. Instead of using the usual probability integral trans-
form, let us transform to density 6¢(1 — 7), i.e., P(Y; < f) = 32 — 2. We now
have ni({F,,(t + u) — Fy(t + u)} — {F,4({) — Fy(f)}) > —6ntu, which is not es-
sentially different from the case of the probability integral transform.

The proof of Rubin’s lemma involves showing that

B(5) - (> 0) o

where 37 {; < ¢. We shall bound all except the extreme terms for each i by a
4th moment Markov inequality, and the extreme ones by the Tchebychev in-
equality. We can even use a fixed number instead of {, for the extreme terms.
Now

(3.47) E[(X.27) — X.(0))] = —’11— 22 E(4,4;),

(3.46) Ry 3t P(

i=k 3=0

where 4, =1, ,,(X;) — a, a = (¢, (27)"texp(—4x?) dx = 3 .27% — 21-%,
Now E(4;) = a(l — a) and by Sarmonov’s lemma [10], |E(4;4;)| =< a|p;_4|-
Thus

(3-48) E[(X,(27%) — X,(0))'] < 3(1 4 2 B [:)™™,

and hence P(|X,(27%) — X,(0)] > ¢) < Ke~?2-%, which is more than adequate for
our purposes.

For the remaining terms, we proceed as before to verify Rubin’s lemma. We
will illustrate the use of Lemma 3.5 only on the fourth-order terms; the others
are even easier.

Let B, =1,,,,Y;), «a = E(B;), A, = B, — @, and t = . The termsfors < }
give an equal contribution. Let i < j < k < [ and consider
(3:49) = E([E(A,4;] X, X)) — E(A4,4;)]B, B)
— aBE([E(4,4;| X,) — E(4,4,)1B,)
— aE([E(A, 4;| X,) — E(4,4,)]B,) .

If |ou| + |0a] < 6/2 or |o;u] + |0;:] < /2, we can apply (3.37) to all terms on
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the right side of (3.49), obtaining
|E(A; A; A, A) — E(A; A;)E(A, 4)|
(3.50) = 3a*°Q(b)(|0il(|0akl + |0l + los] + [04l)
+ (ol + loal)(oel + l04l)) -

If [ou| + lou] = /2and |o,] + [0, = 3/2, we just use 6M*aQ(b) (0| + oul) X
(les] + |pj|) as a bound. Furthermore, a < 6(1 — f)u. Also, since the normal
tail drops off rapidly, (1 — #)'*°Q(b) and (1 — f)R(b) are uniformly bounded for
all terms. Hence, except for a multiple of n terms, if i < j < k < I

|E(A4; 4; Ay A)| < |E(A; A;)||E(A A
+ Ku**(|pyl(|ow] + 10al + [07] + 105
(3.51) + (leal + leal)(eanl + l0:l))
< wloillowl + Ku*(logl(loal + 1ol + loul + l0al)
+ (o] + loal)(05] + 104l)) -

The sum of these terms is bounded by n*M(u? + u'*+°) since }; |p,_;| < co. The
remaining terms are bounded by Ka, or 6KM?*(1 — f)R(b)u, so that their sum is
bounded by Cnu. We obtain similar results for the other terms. Consequently,
we can apply Rubin’s lemma with ¢,(x) = M(u* + u'*°) + Du/n.
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