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LOWER SEMICONTINUOUS STOCHASTIC GAMES
WITH IMPERFECT INFORMATION

By SaiLes K. SENGUPTA
University of Missouri—Kansas City

Shapley’s stochastic game is considered in a more general setting, with
the accumulated payoff being regarded as a function on the space of infinite
trajectories, and the set of states of the system taken as a compact metric
space. It has been shown that any game with a lower semicontinuous pay-
off has a value and one of the players has an optimal strategy. As a con-
sequence, in Shapley’s game both players have optimal strategies.

1. Introduction. Infinite move games with perfect information have been
considered by several authors [2], [3], [4], [5], [6] with successive improvements
in their results, although the question as to exactly when such games have a
value remains open. Blackwell [1] has considered infinite games with a simple
kind of information lag, namely, at each state the simultaneous choices of the
two players determine the play. He has proved that if the payoff is the indicator
function of a G, set on the space of trajectories, then the game is determined.
We consider here a variation suggested by Blackwell where the simultaneous
choices of the players determine the transition probabilities to the state space
according to a given law and prove that any game with a payoff which is lower
semicontinuous on the trajectory space is determined. This result, as a special
case, implies the determinedness of Shapley’s stochastic games in [6].

2. Statement of the theorem. Let /, J be two finite sets and S a compact
metric space. Let Z =17 x J x S and H is the space of all infinite sequences
h=(z,2, ---)and z, € Z and ¢ is a bounded Baire function on H. To each ¢
and initial state s, € S corresponds a 0-sum two person game I',(s,), to be played
as follows: starting from state s, (known to both) players A and B respectively
choose i, eI and j, € J simultaneously. Depending on their choices a referee
moves the state of the system to s, € S according to the transition law g(+ | s,, iy, 1)
known to both, and then announces the triple (i,, j,, 5;). The process is repeated
with the simultaneous choices of i,/ by A and j,eJ by B followed by the
referee’s move to s, € S according to the given transition law, etc. The result,
an infinite sequence of triples preceded by s, € S is an element in S x H. Let II
be the set of all partial histories p = (85, 2z, -+, 2,), n =0,1,2, -..; then a
strategy a(B) for A(B) associates with each partial history a regular conditional
probability distribution on I(J). A pair («, ) together with the transition law
g determines a probability distribution P,, on H (P,, depends on s,, a fact which
will be understood) and A’s expected income is E,, (¢), E,, denoting the expec-
tation under P,,. ‘
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The lower and upper values of the game I', starting at 5, will be denoted by

L(p) = sup, inf, E,,(¢)
and
U(SD) = infﬁ Supa Eaﬁ(so)

respectively. If L(p) = U(¢), the common value is called the value of the game I'..

THEOREM. If ¢ is lower semicontinuous on H then U has a value and B has an
optimal strategy.

Proor. For any partial history p and for a fixed k we define a game I'*(p),
that starts from p and has a payoff equal to

@u(h) = infy,, o(R)

the infimum being taken over all 4’ that agrees with 4 up to the kth triplet (de-
note this by # £ k). We first prove the

PRrOPOSITION. (a) The game I'*(p) has a value v*(p) and

(b) The value of T'*(p) is equal to the value of the matrix game whose (i, j)th
coordinate is

§vups (1), u) dq(u|s, i, ) -

We prove the existence in (a) by induction on k. The case k = 0 is trivial since
we have a game with constant payoff. The induction hypothesis is: The game
I'(p) has a value and both players have optimal strategies for allpand m < k —1
and all bounded measurable function ¢. We then prove the same for m = k.
Without loss of generality we may assume p has less than k triplets, for other-
wise we have again a constant payoff situation.

We set

720 s 2y (7)) = S ou(ps -+ s Zy)(i5 5 u) dq(u) .

In the matrix game with payoff y(z,, - - -, z,_,, (i, J)), there exists a value say y*
and optimal strategies 2*, p* where 1*, p* are probability distributions on 7 and
J respectively (given z, ---,z,_,). By the induction hypothesis, there exists a
value of the game with payoff y*(z,, - - -, z,_,) (considered as an infinite game)
and A and B have both optimal strategies say a,* and p,* respectively. Let us
define a* for A as the strategy which follows a* up to the (k — 1)th stage and
then takes 1* followed by arbitrary moves afterwards and likewise g* for B is
(B,*, p*) followed by arbitrary moves thereafter. We claim that a*, p* are
respectively the optimal strategies for A and B in I'*(p) and hence the game has a
value, namely E,.,. (2, - - -, 2;). We first note that by construction of 7, 2*, p*,

Ep, S 020 -+ 05 2 i, jyu)dq(u) = Epp § 0205 + -+ Z4_1n 1, 5 ) dg(u)
Z E S oz - vs 20505 ], 1) dg(u)

where p(2) are the conditional distributions on the kth coordinate space J(I)



556 SAILES K. SENGUPTA

given z,, - .., z,_, under an arbitrary strategy S(«). Thus for this  we have

EppEpe § 0120y + -5 i) (05 ]5 ) dq(u)
= Eal*p Ep § @215 <oy Z,_4)(is ] u) dq(u)
=E, 7" Z Egppp7* = v, s2y.
The last inequality follows by optimality of 8,*. Thus for all 8 for B we have

Ea"ﬁ(gok) g (R

Similarly for arbitrary strategy a of A we get

Eaﬁ*(gok) é ('

Thus v, is the value and a*, 8* are respectively optimal strategies for A and B.
We now prove the second assertion in the proposition:

vi(p) = Val|[§ v(p, (i, ], u)) dg(u| L, ))I] »
where Val ||4,,]| for any matrix (4,;) stands for the value of the corresponding
matrix game. By the previous result, for any ze Z and any partial history p
there exist optimal strategies a*(z), p*(z) satisfying
V(pz) = Eguiay g [21(P'D)] 5
where p’ is the partial history p followed by z = (i, j, u).
Now consider the matrix game with payoff
u(py (i) = § vi(pz) dg(u) -
This game has optimal strategies 2*, p* say.
Consider the strategy a* = (1*, a*(z)) that is 2* followed by a*(z). Then for

any strategy B (which can be considered as a probability p on J followed by
B(z)) of B one has

Epglpu(p)] = § dPr,(1, ) § dq() § 0u(P'h) dPoerpie
= § dPy,(i,]) § vl(p, 2) dg(u i, ])
= Ey[u(p> ()]
Z Epplu(p, (1)1
Similarly for any strategy a of A,

Eeplow(ph)] = Eplun(ps (5)))] -
Thus E,. .[u,(p, (i, /)], the value of the matrix game ||u,(p, (i,))|| is also the
value of I'(p).
We now come back to the proof of the theorem. First note that v,(p) increases
to W(p) say, as k — oco. The value of a matrix game being a continuous func-
tion of its elements it follows that

1) W(p) = Val||§ W(p, i, ], u) dg(u)]| -
Taking p = (s,), since v,(s,) T W(s,) and A can guarantee at least v,(s,) in I',(s,),
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and so certainly in I', (remembering ¢, < ¢), the lower value L(p) in ', satisfies
L(p) = W(sy)-

We now exhibit a strategy for B which would guarantee the expected payoff
within W(s,) and this would imply that B has an optimal strategy and the game
has a value. We give here a construction analogous to Blackwell’s. Given p,
let B play optimally as in the matrix game

IS Wip, (i, ], ) dqu| (& ) -
Then under arbitrary strategy of A if the resulting play is z,, z,, - - -, then
W(so)’ W(So’ zl)’ W(so’ 21 zz)’ e
is an expectation decreasing martingale. This follows from (1) and the construc-
tion of the optimal strategy, since
E(W(Sgs 235 > Znyr) | W(S0)5 - - - W(Sps 215 ++ +5 2,))
= Val||§ W(p, i, ], u) dg (u]i, )]
= W(p) where p = (50,2, -+, 2,).
Hence
W(se) = E(W(So. 2,)) = =+ = E(W(Ss 235 ++ +5 2,)) = E(0,(895 245 -+, 2,)) .

But ¢, = v,(z,, -+, z,). Hence E(p,) < W(s,). But by lower semicontinuity of
¢, 0, T ¢. Hence E(p) < W(s,), proving that B can guarantee an expected payoff
within W(s,) and the corresponding strategy of B is optimal.

COROLLARY. If ¢ is continuous, then the game is determined and both players
have optimal strategies.

Proor. Interchange the roles of the players and consider the payoff — ¢.

ReMARK 1. In Shapley’s ([6]) stochastic game the payoff is accumulated over
stages, the nth stage of the game producing a payoff a(u,_,, z,) = 4, say, with a
discounting factor 8" (8 < 1), so that the accumulated payoff equals

) lim, ., (k-1 4 BY) -

With S finite, the fact that finite dimensional functions on the history space are
continuous and the fact that the 4,’s assume only a finite number of values and
so are bounded, it follows that the expression (2) is the uniform limit of a se-
quence of continuous functions on the history space. So (2) is continuous itself,
the game is determined and both players have optimal strategies.

REMARK 2. If one could prove that for a ¢ satisfying the property that the
set [h: o(h) = c], is a G, set for any real c, the game I', has a value, then he
could conclude that Shapley’s game with expected average cost criterion is deter-
mined too.

ReMARK 3. The function ¢,(h) = inf,. %, ¢(%’) has been assumed to be measur-
able in the preceding. In fact it is lower semicontinuous. Here is a proof. It
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is enough to show that for all ¢, if
(3) ok >c and A" R, then lim inf ¢, (") = c.

Suppose not; then there exists a subsequence {n’} of {n} such that for all »’,
¢u(h*') < c. This implies that there exists A~ £ A such that

4) o(h*y < c  forall n'.

The space Q being compact, there exists a convergent subsequence {A*'} of {A*'}
converging to A° say. Thus from (4) lim inf p(A"') < ¢. But lim inf p(A*") =
o(h°) by Ls.c. of . Hence ¢ = ¢(h°) = ¢,(h°), contradicting (3).

REMARK 4. It will be interesting to know if B has a stationary optimal strategy.
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