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CONVERGENCE OF THE REDUCED EMPIRICAL PROCESS
FOR NON-LLD. RANDOM VECTORS

By GeorG NEUHAUS
University of Freiburg

Any triangular array of row independent random vectors with continu-
ous df’s has a standard reduction to random vectors with values in the unit
cube. The reduced empirical process belonging to the transformed random
vectors is always relatively compact. Weak convergence to a (necessarily
Gaussian) process holds iff the corresponding covariance kernel converges
pointwise.

1. Notation and results. Foreveryn > 1let X, = (X7, -+, Xi,),j=1, -,
n, be independent random k-vectors with continuous df’s F,7. The df F, =
(1/n) 33»_, F,7 has marginal df’s F,,,i = 1, ..., k (say) which define random
vectors

(1.1) UnJ':(Ufm ...,Uﬁ;k):(Fm(Xj;l), "”Fnk(Xz;k))’ j= 1, ..., n,
with df’s
(1.2) an:Fnj°(F;11""’F;kl s j:l,...,n,

where F} is the left continuous inverse of F,;,,i =1, ..., k.
The df G, = (1/n) }%_, G,7 has uniform marginals G,; and consequently

(1.3)  [G) — G, (s)| S k|t —s| Vi,seE, =[0,1F Vnx1,

where |f| = max {|t,|:i=1, ..., k}, t = (t;, -+, t,) € R
Let G,° be the resulting empirical df of the U,7,j = 1, ..., n. Then we get the
reduced empirical process of X,7,j =1, ..., n,

(1.4) X.() = n¥(G(t) — G,(2)) te E,,
with corresponding covariance kernel
(1.5) EX,(t) - X,(5) = K, (t,5) = G (s A 1) — —1— »n, G - GLis),

n

t,se E,,
where s At = (s, Aty -+, 8, A L),
Since X,( ) takes values in D,, see e.g. Neuhaus (1971), we can formulate a

THEOREM. (i) For any triangular array of row independent random vectors X,7,
j=1,.--,n, n=1, having continuous df’s

(1.6) the sequence (X,(+))nz1 is relatively compact on D, (furnished
with the Skorohod-topology).
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(ii) If for some K
(1.7) K, (s, 1) — K(s, 1) Vs, teE,,

then there exists a Gaussian process X with sample paths in C, and covariance kernel
K for which

(1.8) X,=X on D, (weak convergence).

On the other hand, if the finite dimensional distributions of X, converge to those of
some process X, then X is Gaussian and (1.7) holds with K the covariance kernel
of X.

2. Proof. We shall point out that the proof of Neuhaus (1971), pages 1293-
1294, where the i.i.d. case is treated extends almost literally to the non-i.i.d.
case considered here. The proof loc. cit. is a k-dimensional extension of the
“classical” 1-dimensional proof as presented in Parthasarathy (1967). Since
this proof is quick and almost self-contained it seems an appropriate one in
handling the reduced empirical process.

While proving the 1-dimensional version of the above theorem Shorack (1973)
introduced the linearly interpolated process S, of X, having §,(i/n) = X,(i/n) for
i =0, ...,nand used only the supremum metric; but we feel it is much simpler
to introduce a Skorohod type metric and work directly with X,. The crucial
point of his proof is the not quite immediate inequality

(1.9) E|S,(f) — S,(s)]* < 144)t — s Vs, te0,1].

For X, itself such an inequality does not hold in general; nevertheless, it holds
almost:

For every k = 1, r = 1 there exists a constant Q = Q(k, r) independent of
n = 1 with

(1.10) EX() — X)W < Q- | —si”  t,seEp|t—s = .
n

For the 1-dimensional case (1.10) (with r = 2) is elementary and was used by
Shorack (1973), too. But even in the general case k > 1, (1.10) (withr = k 4 1)
and (1.3) are all that one really needs, since the proof of the statement

(1.11) lim,_, lim sup,_,., P({sup {| X,(?) - X)|:|t—sZL0}=e}) =0,
Ve >0,

as given in Neuhaus (1971), pages 1293-1294, works without any change if
(4.1) resp. Lemma 5.2 loc. cit. is replaced by (1.3) resp. (1.10) above. The
rest of the Theorem then follows immediately; see e.g. Shorack (1973).
Therefore, all that remains to do is verify (1.10) for general k > 1, r = 1.
By the way, let us mention that in Sen (1970) (1.10) was claimed for k = 1 and
every r = 1 without the restriction |t — 5| = (1/n); but for example in the 1-
dimensional i.i.d. case (1.10) (with r = 2) becomes incorrect for |t — 5| — 0.



530 GEORG NEUHAUS

Proor oF (1.10). For every family X, ..., X, of independent integrable rv’s
the rth moment

E(Xia Xy = X E(Xy -+ X))

can be rewritten as a finite sum of terms like
(1.12) + IThes 2% Toas (BEX Pve)bon a,,b,,e{0,1,...,r}, 0,21,

with Y37_, »r_,a,,b,, = r. The number of terms (1.12) in the sum as well as
the a,,’s and b,,’s are independent of n. In the case r = 3 we have for example

(113)  B(Siu X)) = (S0 EX) + 2 Din (BX) + Bi EXP — 3 L, EXPEX,
— 3 N1 (EXY Tia EX, + 3 N EXP Do, EX, .

If the X;’s have centered B(l, p,) distribution we get from (1.12), utilizing
EX,=0and |[EX/| < p;, s = 2:

(1.14) E(L5 X" £ D A(X5ap))
with 4, = 0, 4, independent of n.

For s, te E, (without loss of generality s < r componentwise) we define X; =
10,7 — 1,U,%) — p;, p; = G,i(t) — G,i(s). Then (1.10) follows from (1.14)
and (1.3). [T

ReMARK. Koul (1970) used still another approach in proving relative
compactness of the 1-dimensional “weighted” reduced empirical process. He
employed the well-kknown fluctuation inequalities of Billingsley (1968) (Section
12). It is clear how to get k-dimensional versions of Koul’s (1970) results by
using the multidimensional fluctuation inequalities of Bickel and Wichura (1971).
Since this approach is rather involved one would look for a straightforward
proof of relative compactness of the empirical process. This was our aim in
the proof above. On the other hand, adapting our approach to the weighted
empirical process seems not quite immediate and would make the proof involved,
too.

Acknowledgment. I am thankful to the referee for his suggestions improving
the readability of this note.
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