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WEAK CONVERGENCE OF EMPIRICAL DISTRIBUTION
FUNCTIONS OF RANDOM VARIABLES SUBJECT
TO PERTURBATIONS AND SCALE FACTORS

By J. S. RAo' AND J. SETHURAMAN?
Indiana University and Florida State University

The weak convergence of empirical distribution functions subject to
random perturbations and scale factors to a Gaussian process is established.
This result is used to study the efficiencies of tests based on spacings in
goodness-of-fit problem:s.

1. Introduction and summary. The weak convergence of empirical distribution
functions of independent identically distributed random variables is well known
and has been studied by several authors, notably Doob (1949) and Donsker
(1951). In an earlier paper of ours, Sethuraman and Rao (1970), while studying
the asymptotic efficiencies of tests based on spacings, we found a need to study
the weak convergence of empirical distribution functions of random variables
subject to random perturbations and scale factors. We study this problem in
this paper.

The statistical problem of testing goodness-of-fit using spacings tests is briefly
as follows. Let X, X,, ---, X,_; be (n — 1) independent random variables with
a common distribution function. The goodness-of-fit problem is to test if this
distribution function is equal to a specified one. A simple probability integral
transformation on the random variables would permit us to equate the specified
distribution function to the uniform distribution on [0, 1]. Thus, from now on,
we shall assume that this reduction has been effected and under the hypothesis,
the observations have a uniform distribution on [0, 1].

Let X/ < X, < ... < X!_, be the order statistics. The sample spacings
Dy, - -+, D,) are defined by

Di:Xi'——Xg_l i=1,~~,n

where we put X = 0, X,’ = 1. Clearly the carrier of the distribution function
must be [0, 1] in order that this definition of the sample spacings is meaningful.
Tests for goodness-of-fit problems based on the spacings have been proposed by
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several authors. See, for instance, Pyke (1965) or Sethuraman and Rao (1970)
and the references contained therein. Important among them are tests based on

Un) = Xt [Dy — 1/n]
L(n) = Zi.log (nDy)/n,

and the class of statistics
Vi(n) = Xt (nDy)"/n, r>—%.

We derive the asymptotic distributions of all these statistics under a smooth se-
quence of alternatives (see Section 3) using a unified approach. This allows us to
compute the Pitman efficiencies of these various tests as was done in Sethuraman
and Rao (1970).

The material of this paper is divided into three sections. Section 2 treats the
weak convergence problem and is independent of Sethuraman and Rao (1970).
Section 3 shows how one can use the weak convergence results of Section 2 in
problems connected with spacings thus relating the present work to Sethuraman
and Rao (1970).

2. Weak convergence of empirical distribution functions subject to pertur-
bations and scale factors. Let Z,, Z,, ... be independent and identically dis-
tributed random variables with a strictly increasing continuousdistribution function
F(x) with F(0) = 0. Let {a,,, a,,, - -+, a,,}, Z,, n = 1,2, - - . be positive random
variables that may depend on Z,, Z,, - - -.

Let
2.1) I(y;x)=1, if y<x,
=0, if y>ux,
and write
(2:2) Fo(x) = XDia l(Zifes x)/n
(2-3) F(x) = Bt A Z /(0 Z,); X)[n -

Then we say that F,(x)[F,(x)]is the empirical distribution function of {Z,/a,,, - - -,
Z,Ja ZJ(anZ,)s -+ -5 Z,)(@,,2Z,)}], that is, of {Z,, - .., Z,} subject to pertur-
bations {a,,, - -, a,,} [perturbations {a,,, -- -, @,,} and scale factor Z,]. The
distinction between a perturbation, «,,, and a scale factor, Z,, arises from the
conditions they satisfy, which are of the form

a,, =1+ 01,(71'5) ,
Z, =14 0,(n).

(For any random variable X, we write X, = o,(n7?) if ntX, — 0 in probability
and we write X, = O,(n"?) if for each ¢ > 0, there is a K, < oo such that
P{n*X,| > K} < ¢ for all n.) These conditions are made more precise in (2.13),
(2.18) and (2.23).
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Define
(2.4) G,(x) = X, Flxay)n
(2.5) Pu(%) = M(F,(x) — G,(x)),
(2.6) Du(x) = 1(F,(x) — G,(x) , 0<x< oo

where we put 7,(+4 o0) = #,(+ o) = 0.

Our main aim in this section is to prove that {5,(x), 0 < x < oo} and {7,(x),
0 < x < oo} converge weakly to Gaussian processes under suitable conditions
on F(x), {&,, -+, a,,} and Z,. The main results are found in Theorems 2.4,
2.5, 2.6, and 2.8 and Corollaries 2.7 and 2.9.

In order to talk about weak convergence of the above stochastic processes it
is necessary to introduce the space D[0, oo] of functions p(x) on [0, co] which
satisfy the properties

(i) p(x + 0), p(x — 0) exist for each x in (0, oo) and p(x) = p(x + 0),
(ii) p(0 + 0) exists and is equal to p(0),
(iii) lim,_, p(x) exists and is equal to p(oo).

A sequence {p,(x)} in D[0, oo] converges to p(x) in D[0, oo] if there exists a

sequence, {1,(x)}, of monotone one-to-one continuous maps of [0, co] onto [0, oo]

such that as n — oo

sup, [2,(x) — x| -0,

and .
SUp, | Pu(Au(x)) — p(x)| =0 .

This convergence corresponds to the J;-topology of Skorohod on the space
D[0, o] and makes it a topologically complete separable metric space. See
Skorohod (1956).

A sequence of stochastic processes {p,(x), x = 0} converges weakly to a pro-
cess {p(x), x = 0} in D[0, oo] if

(2.7) E[A (D] = E[A(p(+))]

for every functional .S*(-) on D[0, co] which is bounded and continuous in the
topology just described. When this happens, we have, by the invariance prin-
ciple, the very useful conclusion that the distribution of the real-valued random
variable S p,(+)) converges weakly to the distribution of <A p(-)) for every func-
tional .~(+) on D[0, o] which is continuous a.e. with respect to {p(x), x = 0}.

Let p(x) be a one-to-one monotone continuous map of [0, co] onto [0, 1].
For any function ¢(z) in D[0, 1], let p(x) = g(z(x)). This map from D[O0, 1] to
D[0, o] is continuous and has a continuous inverse (when D[0, 1] is endowed
with the Ji-topology of Skorohod) and is therefore a homeomorphism. Thus
the study of convergence of probability measures on D[0, o] can be reduced to
the study of convergence of probability measures on D[0, 1], which is by now
classical. See for instance Skorohod (1956), Sethuraman (1965), Billingsley
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(1968). The following theorem gives a well-known sufficient condition for the
compactness and convergence of a sequence of stochastic processes in D[0, 1];
see Chentsov (1956), Sethuraman (1965) or Billingsley (1968).

THEOREM 2.1. Let{q,(#),0 =< p <1}, n=1,2, ... and{g(), 0 < p < 1} be
stochastic processes with values in D[O0, 1] such that

(i) the marginal distributions of {q,(st,), - - -, 4.()} converge to that of {q(r4,), - - -
q(12,)} weakly for every finite subset {¢,, - - -, 1} of [0, 1] and
(ii) there exists a constant C such that

(2:8) E{l9a(r1) — 4u(a)19a(tte) — ()} = CH*

whenever 0 < p, < p, < . <1 and py — ps < h, py — py < h.  Then the se-
quence of stochastic processes {q,(t), 0 < p < 1} converges weakly to the process
{g(m), 0= <1}

Now, let y(x) be a one-to-one monotone continuous transformation of [0, co]
onto [0, 1]. Let p,(x) = ¢,(¢(x)) and p(x) = g(x(x)), 0 < x < co. From our
remark earlier about the homeomorphism between D[0, 1] and D[0, co] induced
by p, the sequence of stochastic processes {g,(¢), 0 < ¢ < 1} converges weakly
to {g(#), 0 < p < 1} if and only if the sequence of processes {p,(x), 0 < x < oo}
converges weakly to {p(x), 0 < x < oo}. This provides us with a technique of
investigating the convergence of our empirical distribution functions.

After this digression on the definition of D[0, co] and weak convergence of
processes on it, we return to our empirical distribution function processes. We
note that for each n, {7,(x), 0 < x < oo} and {7,(x), 0 < x < oo} are in D[0, oo]
and are measurable. We now state two lemmas and go on to the main theorems.

LEmMMA 2.2. Forn=1,2, ..., let {Y,;,i =1, ..., n} be independently dis-
tributed with
(2.9) P(Yy=1)=pu, PYu=0=1—p,, i=1.-n.
Let
(2.10) Y, = 00 (Yo — Pud [ X1 Pui(1 — Pad)]t

Then as n — oo
P(Y, £ x) > O(x)
for each x, where ®(x) = §*, exp(—1/2) dt/(2z)}, if and only if
(2.11) St = 2t Pull — pai) > 0.
See Fisz (1963, page 207) for a proof. A sufficient condition for (2.11) to hold
is that Y77, p,./n be bounded away from 0 and 1.

LemMA 2.3. Let (Y,, Y,, Y;) be a trinomial random variable with P((Y,, Y, Y5) =
(1,0,0)) = py, P((Y1, Yy, Y3) = (0, 1,0)) = p,, P((Yy, Yy, ¥s) = (0,0, 1)) = pyand
pi+p+ps=1. Let Y*=(Y,—p),i=1,2,3. Then

EY*) =0, EY*)=p(—p), EX*Yy)=-pp;;
(2.12)  E(YXY) = ppAl — p)(1 — p;) — popsi(l — 2p)(1 — 2p;) »
i#j,5,j=12,3.
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We are now ready to state and prove the main results on the convergence of
empirical distribution functions subject to perturbations and scale factors. We
begin with a degenerate case.

THEOREM 2.4. Let{a,,i=1,...,n},n=1,2, ... be non-random and let
(2.13) max, ., |a,; — 1| >0 as n-— oo.

Then the sequence of processes {1,(x), 0 < x < oo} defined in (2.5) converges weakly
to a Gaussian process {7(x), 0 < x < oo} in D[0, oco] with mean function zero and
covariance kernel
(2.14) K(x,y) = Fx)(1 — F(y))  for x<y.

Proor. Define the processes {y,(x),0 =< x <1}, {z,(#),0 < ¢ <1} and
{7(#), 0 < ¢ < 1} in D[0, 1] by
(2.15) YuGu(x)) = 7.(%),  Zu(F(X)) = (%) ,

Y(F(x)) = n(x) , 0x<oo.
We will prove the following in order
(i) {ya(), 0 = p < 1} converges weakly to {y(1), 0 = p = 1},
(ii) {z,(v), 0 < » < 1} converges weakly to {y(»), 0 < v < 1},
(iii) {n.(x), 0 < x < oo} converges weakly to {5(x), 0 < x < oo}.

We start with the proof of (i). Fix x. Then

(2.16) 9 (0)/[ D= Fxan)(1 — F(xa,))]t
= 2t [H(Zifans X) — Fxa,)|/[ D1 F(ra)(l — F(xa,)]t
From (2.13) and the fact that F(x) is continuous

to F(xay)(1 — F(xa,))n — F(x)(1 — F(x))

as n — oo. By applying Lemma 2.2, it is easily seen that the distribution of
7n.(x) converges weakly to that of 5(x), for each x. A similar application of the
multivariate extension of Lemma 2.2 shows that the finite dimensional marginal
distributions of {»,(x), 0=<x < o} converge weakly to those of {7(x), 0 < x < co}.
In a similar fashion, it can be seen that the finite dimensional distributions of
{y.(#), 0 < p < 1} converge to those of the Gaussian process {y(y), 0 < ¢ < 1}.
Next, let 0 < g, < p, < p3 < 1. Then

Valtts) = 1a(%5) = Di i Zifay; x;) — F(x;a,,)}/nt
where G,(x;) = p;,j = 1,2, 3. Thus
Vu(ta) = Yulttr) = 2oy Viafnt, Valtts) — Yaps) = Zitcr V[t
where ‘
Vi = I(Z;]a,; x;) — (Z]a,; x) — F(x,a,,) + F(x,a,,),
Vae = H(Zi[@uis X5) — H(Zi[ s X3) — F(Xza,,) + F(Xa,,),
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i,k=1,...,n. Since a,, — 1 uniformly in i, we may assume without loss of
generality that } < a,, < 2 for all n and i. Thus V}, and V,, are Bernoulli
random variables corrected for their means. Then

E{(ya(tts) — Yu(112))*(Patts) — Valta))’}
(2.17) = n2E{( 01 Vi) (= V)

= n_z{Zi,k E( Vi ng) + 2 Xiswr E( ViV Vier Vzi')} .
Let

pu = F(x,a,,) — F(x,a,,) , Pae = F(xza) — F(x,a,;) -
From (2.12) in Lemma 2.3,

E(ViVi) = PuPuws E(Vy Vi) = —PrPai -
Substituting these in (2.17),

E{(yu(tta) = yalt))(7atta) — P2} = 3T Pra)(Zis Pai)
= 3|y — pullps — 1l -
Thus from Theorem 2.1, the sequence of processes {y,(¢), 0 < p < 1} converges
weakly to the Gaussian process {y(z), 0 < ¢ < 1}.

To prove (ii), consider the sequence of monotone continuous one-to-one maps
A,(+) of [0, 1] onto [0, 1] given by

A(p) = F(G 7)) »
where G,~'(+) is the inverse function of G,(+). It is easy to see that

sup, Mn(la) - ﬂl -0, Z,,L(Z”(/,t)) = }'n(fj) .
Hence {z,(v), 0 < v < 1} converges weakly to {y(v), 0 < v < 1}.

To complete the proof of (iii) notice that the transformation x — F(x) is a
monotone continuous one-to-one map of [0, co] onto [0, 1]. Also 2,(x) =
z,(F(x)) and 5(x) = y(F(x)). Thus {5,(x),0 < x < oo} converges weakly to
{n(x), 0 £ x < oo}. This completes the proof of Theorem 2.4.

Now we turn to the case of random perturbations. Throughout, we shall use
an asterisk as a generic symbol on the a,,’s, the empirical distribution functions,
etc. to denote that the a,,’s involved are random variables.

THEOREM 2.5. Let{aX,i=1,..-,n},n=1,2, ... be random and let

(2.18) nt max,, ., |a¥ — a,;| = 0,(1),
where the a,;’s are non-random and satisfy (2.13). Let F(x) have a probability
density function f(x) satisfying

(2.19) sup, |xf(x)| £ C < oo

Let 'F,,* be given by the right-hand side of (2.2) with the a,;’s replaced by aj

nid

i=1, ..., n. Then {p,*(x) = ni(F,*(x) — G,(x)), 0 < x < oo} converges weakly
to the Gaussian process {n(x), 0 < x < co} defined in Theorem 2.4.
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Proor. Given ¢, ¢, > 0, there exists an n, such that
(2.20) P{nt max, |a¥, — a,,| > &} < &,
foralln = n,. Leta,, =a, —¢/mtand a,, = a,;, +e/nt,i=1, ..., n
Let

77‘»1'('x) = Z?:l {I(Zz/amr; X) - F(xanir)}/n% ’

r=1,2. From (2.20) and the monotonicity of /(y; x) in y,

P{u(x) + Zio [F(xau,) — F(xa,)]/nt

= 0.5(%) < (X)) + 20, [F(xa,,) — F()“"n«:)]/né for all xp=1—¢
for n = n,. Using condition (2.19) it is easy to see that
lim, sup, |27, [F(xa,,,) — F(xa,;)]/n| < 2C¢,

for r =1, 2. Since ¢,, ¢, are arbitrary, Theorem 2.5 now follows from Theo-
rem 2.4,

The next theorem concerns itself with non-random perturbations and a random
scale factor Z,.

THEOREM 2.6. Let {a,,i=1,.--,n}, n=1,2, ... be non-random and let
(2.13) hold. Let
(2.21) xf(x) be continuous and tend to 0 as x tendsto oo,
(2.22) x*(1 — F(x)) -0 as x — oo for some a > 0.
Let
(2.23) §,=n¥(Z, — 1) =0,1).
Then
(2.24) SUPrsa e [7a(0) — 74(%) — Xf(0)E,] = 0,(1) ,
where
(2.25) D(X) = Dt Zif (@0 Z,); x) — Fxar,)]/nt

= n¥(F,(xZ,) — G,(x)).
Proor. Now,
f]”(X) = né(Fn(xZ_n) - Gn(x))
(2.26) = n(Fy(x) — Gu(x)) + nH(Z, — 1) T1, xa,, f(xa,)/n
+ n*{F”(xZ—'“) - En(x) - (Zn - l) Z?:l xanif(xani)/n}
= 7a(X) + & Do Xy flxan)/n + Ry(x)  say.
Since a,; — 1 uniformly in i :
(2.27) Tots Xty fXaty) 1 — xf(x)
uniformly in x as n — co. Thus in order to establish (2.24) it is enough to
prove that

(2.28) SUPpseses [Ru(X)] = 0,(1) -
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The proof of (2.28) is completed in (2.44). The main steps are (2.30), (2.42)
and (2.43). Let
(2.29) R, (x,¢c) = 1, {I(Z)/(ca,); x) — [(Z;]a,; x) — (¢ — D)xa,, f(xa,,)}/nt.
Then
R,(x, Z,) = Ry(x) -
For any given ¢ > 0 we can find an L < oo such that
(2.30) P{lZ, — 1| = L/n}} < ¢ forall n.
We now obtain a bound (see (2.42)) for
P{SUPog,crs SUP—yisz/mt [Ra(X, €)] > @}

and 7 > 0. This is done by a standard but unavoidably lengthy method.

Let e, & > 0. We shall choose these constants later in (2.37) and (2.38). The
interval [1 — L/n%, 1 4 L/n?] is covered by L, = [2L/¢] + 1 small intervals of
length ¢, = ¢/n! each, the rth interval being

(2'31) ‘[":‘='< = {C: cr é 4 g cr+1} ’

where ¢, = 1 — L/n* + re,. Similarly, the interval [0, T'] is covered by T, =
[7T/6] + 1 intervals of length 6, = 6/n? each, the sth interval being

(2'32) Ta* = {x: xs ._S_. X é xs+1} ’
where x, = s0,. Let
(2.33) mg = infx”.s* X0ty f(X;) 5 M,; = sup,cp» X, f(xa,;) .

Fix an x. Since a,; — 1 uniformly in i we may assume without loss of gener-
ality that { < a,, < 2 for all n and i. For ce L,*,

Rn(x’ C'r) — ¢ Z?:l xanif(xani)/n é Rn(x’ C)

§ R'n.(x’ cr+1) + € Z%‘=1 xa'n.if(xa'ni)/n *
Thus

(2.34) R,*(x, L) = SUPj,_yi<z/mt [Ra(X; ©)|
= maXy, <, |Ru(x, ¢,)| + ¢ iy xa,, f(xa,,)/n.
Next, for x e T *,
s (Zf(er an); X)) — H(Zif s X,00) — (¢, — 1)A,}/nt
= R,(x,¢,)
< X H(Z(cran)s X)) — H(Zyfass %) — (¢, — Dpair}/n?

where
28121‘ =my, if (CT - 1) é 0 ’
=M, if (¢, —1)>0;
Usir Msi ’ if (Cr — 1) g 0 ’

Il
3

w,  if (,—1)>0.
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Thus

(2.35) SUPps, <7 SUP 1z z/nt Ru(X> €) = SUPogagr [R*(X, L)
< MaX,g,cr MaXog,<r, R, **(s, 1),
where

R, **(s, 1)
(2.36) = max {| i, (H(Z/(¢, @00); %) — HZifotns o) — (¢, — DAY,
| Dt A Z (e a0)s X,02) — HZif@nss X)) — (¢ — Dptasr}m?]}
+ e Nt My/n.
Consider the first term of the right-hand side of the above and write an upper
bound for it as

|20 {I(Z[ (e, @n)s X)) — (Z;[oys; Xg41) — F(Cpx,0) + F(X,10 a,)}l/nt
+ | D {Fle, x ;) — F(X ) — (¢, — DA |/nt 4 ¢ Tty My/n .

Using condition (2.21) we see that for a given @ > 0 we can choose ¢, § and n,
such that

(2'37) |Z?=1 {F(crxsani) - F(xs+1am) — (¢, — l)lm}l/n* 4+ e, My/n < w[2

for all n > n,. Treating the second term of the right-hand side of (2.36) in a
similar fashion we can choose ¢, § and n, such that

(2.38) R, **(s, 1) < max, |1, W l/nt + 02
for n = n,;, where
Woiw = W Z;Jc, a3 x,) — HZJty; Xyin) — F(x,6,0,) + F(Xu41 @) -
Let
(2.39) Prin = [F(X, €, @00) — F(Xy110,)|
and B,,, be independent Bernoulli random variables such that P(B,,;, = 1) = Pui.s

P(B,,=0)=1—p,,, i=1,..-,n Then the joint distribution of {W,,,} is
the same as that of {W3,} given by

W'r)fiu = B’niu - pm:u ’ lf xucr > xu+1 ’
= _Bm,u + p'mu ’ if xucr é xu+1 .
In either case, since the above two cases depend only on # and r and not on i,
P2 Wal/nt > 02}
- P{Zz (Bmu - Pmu) > n*w/Z} + P{Zl (B‘niu - p'm)u) < —n’la)/2} .
For any ¢t > 0, .
P{Zz (Bmlu - pmu) > néa)/Z} é eXP(_méw/z) H?=1 E{exp[t(Bmu - pmu)]}
= a(n, t, ) say.
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Now, E{exp[t(B,., — Prin)l} = (I — piu(1 — €) exp(—1tp,;,). From the defi-
nition of p,,, in (2.39), it follows that for each u and r, sup, n¥p,,, is bounded
by a constant independent of  and r and that };7_, p,../n* converges to a con-
stant which is less than C, (> 0). Writing out (1/n) log a(n, ¢, ») and expanding
the moment generating function we see that
(1/n)log a(n, t, ®) < —{tw/2 + C;t + C\(1 — e*) + O(1/n?)}/n}
< —G,/nt 4+ O(1/n)
for a suitable choice of ¢ with C, > 0. For example, it is sufficient to choose
t = log (1 + 0/2C)).
Thus
(240) P{Zz (Bmlu - Pmu) > n’la)/2} é exp[_czné + 0(1)] 0
for all u and r. We can obtain similarly that
(2.41) P(X: (Buiw — Pui) < —nto[2} < exp[—C,nt 4+ O(1)].
Combining (2.35), (2.36), (2.37), (2.38), (2.40) and (2.41) we have
P{suPys,<r |RW(X)| > @, |Z, — 1| < L/nt}
(2.42) = P{SUPusesr SUP-uisr/mt [Ru(X, €)] > @}
< 2([wT)6] + 1)([2L[e] + 1) exp[—C,nt + O(1)]
which can be made less than ¢ for n > n,.
Using the definition of R,(x) and the fact a,; = %, we find that
P{sup,; [R,(x)| > @, |Z, — 1] = L/n*}

< P{n¥(l — F,(T)) 4+ L sup,sr,, Xf(x) > w}

= P{nY(G(T) — Fu(T)) > @ — Lsup,ar, Xf(x) — ni(l — G(T))}

< Pn(Go(T) — Fy(T)) > @ — LSup,or, xf(x) — n¥(1 — F(T[2))} .
Letting T = 2n¥/?®, we can find n, such that

n(l — F(T/2)) < w/4 and Lsup,,,, xf(x) < w/4
for n = nyin view of (2.21) and (2.22). Since n¥(F,(T) — G,(T)) is asymptotically
normal with mean 0 and variance F(T)(1 — F(T)), uniformly in T,

P{sup.sr [Ry(3)| > o, |Z, — 1| < Ljnt)

(2.43) < P{n¥(G (T) — F,(T)) > w[2}
< 1 — O2[F(T)(1 — FT)P) + ¢
<2¢

for n > n,. Combining (2.30), (2.42) and (2.43) we have

(2.44) P{sUpyc,<o [Ru(¥)| > 0} = 44

for large n. This completes the proof of Theorem 2.6.
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COROLLARY 2.7. Let the conditions of Theorem 2.6 be satisfied. For every finite
collection {x,, - --, x,} let the joint distribution of {n,(x)), - - -, 9,.(x,), §,} converge
to the distribution of {y(x,), - - -, 9(x;), §} which is multivariate normal and where
E@) =0, V(§) =1 and Cov (y(x),§) = a(x). Then the sequence of processes
{7.(x), 0 < x < oo} converges weakly to a Gaussian process {j(x),0 < x < oo}
with mean function zero and covariance kernel

(2.45) K(x,y) = F(x)(1 = F(y)) + xpf(x) f(y) + xf(x)a(y)
+yf(y)alx)  for x=<y.
THEOREM 2.8. Let {a},i=1,..-,n}, n=1,2, ... be random and satisfy
(2.18). Let (2.21), (2.22) and (2.23) hold. Then
(2.46) SUPgsage [72*(X) — 7,%(X) — Xf(x)E,] = 0,(1)

where 7,*(x) = n¥(F,*(xZ,) — G,(x)).
Proor. This theorem follows from Theorem 2.6 in the same way that Theorem
2.5 follows from Theorem 2.4.

COROLLARY 2.9. Under the condition on the convergence of the distributions of
(Pu(%1)s « =+ Nu(xe), §,) stated in Corollary 2.7 and under the conditions of Theorem
2.8, the sequence of stochastic processes {7),*(x), 0 < x < oo} converges weakly to
the Gaussian process {j)(x), 0 < x < oo} defined in Corollary 2.7.

3. Application to tests based on spacings. The theorems of the earlier section
were motivated by the following important application to goodness-of-fit tests
based on spacings and the derivation of their Pitman’s asymptotic relative ef-
ficiencies (ARE’s) which will be considered now.

For computing the ARE’s, it is enough to obtain the limiting distributions
under a sequence of alternatives which converge to the hypothesis. Hence we
will specify the alternative hypothesis by a distribution function 4,(x) depending
on n converging to the uniform distribution, which corresponds to the null
hypothesis. Under the alternative hypothesis, we specify the distribution func-
tion to be given by

3.1 A,(x) = x 4+ L,(x)/n*, 0=x<1
where L,0) = L,(1) =0 and 6 = . We further assume that L,(x) is twice
differentiable on [0, 1] and there is a function L(x) which is twice continuously
differentiable and such that

(32 LO=L1) =0, " sup,s|L,"(x) — ') = ol)

where I(x) and I'(x) are the first and second derivatives of L(x) and 0* =
max (0, 4 — d). This sequence of alternatives is smooth in a certain sense and
has been considered before. For instance, see Cibisov (1961). Notice that for
such smooth alternatives the following also hold:

(3.3) % SUPg, < |L,(X) — L(x)| = o(1),
n®* SUPyc,<: |L, (x) — I(x)] = o(1) .
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Let X, ---, X,_, be (n — 1) independent random variables from A4,(x), n =
2,3, ... with the corresponding ordered observations X' < ... < X, _,. We
should add a suffix n to these observations to show their dependence on n, but
we shall not do so to simplify the notation. Let a,(p)and 4,7(p) denote the

density and the inverse function corresponding to 4,(p). Let

(3.4) kn(p) = au(A,7N(p)) = l:ﬁf_‘%’_(&]'l :

In view of (3.1), (3.2) and (3.3), it can be verified that

(3.5) A7 (p) = p — L(p)fn* + o(1/n%)

(3-6) ki(p) =1+ Up)/n® — L(PI'(p)/n* + o(1/n’*")

where o(+) is uniform in p. Our aim now is to relate the sample spacings from
A,(x) to randomly perturbed and randomly scaled exponential random variables
via the spacings from a uniform distribution on [0, 1].

Let U, -, U, be (n — 1) independently and identically distributed random
variables with uniform distribution on [0, 1]. These are then arranged in in-
creasing order as U,’ < ... < U,_, and the uniform spacings are defined as

(3'7) Ti:Ui’_Ug—l’ i:1,"',n,

where again we put U/ =0, U,’ = 1.

For two random variables X and Y, we write X ~ Y to mean that X and Y
are distributionally equivalent, that is, the distributions of X and Y are identical.
We then have

X/ i=0,..,n} ~{4,7(U/), i =0, .-, n},

and thus
{Dj,i=1,...,n} ~{4,7(U/) — A, (U}_),i=1, ..., n}
(3.8) ={T/k,(U),i=1,...,n, where U, < U, < U/}
={Ta,i=1, .-, n},
where
3.9) a¥, =14+ [U)[n® — L{O)HI'(U)/n* + R,,,
with

sup; nt|R,,| — 0

almost everywhere in view of (3.6). 'Also from the existence of the limiting
distribution of the Kolmogorov-Smirnov statistic, we have

sup, nt|U; — i/n| = 0,(1),
so that
(3.10) sup, n®|I(T,) — I(i/n)| = o0,(1),
sup, |[L(U)I'(U,) — L(i/n)l'(i/n)| = o,(1) .
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Let the non-random a,,; corresponding to a; of (3.9) be defined as
(3.11) a,; = 1 + l(i/n)[n® — L(i/n)l'(i[n)[n* .

Then condition (2.18) of Theorem 2.5 is satisfied, as well as condition (2.13) of
Theorem 2.4. .

Now let Z,, Z,, . - - be independent identically distributed exponential random
variables with density e=2, z > 0. Let Z,* = “Z+ -+ Z)and Z, = Z,*/n.
Then it is well known that

{T,{,l: 1, “"n}"’{Zi/Zn*’i: 1, ...,n}.
Thus (3.8) may be rewritten as

(3.12) {Dy,i=1, . --,n} ~{Z,/]aXZ

Wz i=1, ..., n}.

Under uniform distribution, E(D;) = 1/n for all i. We shall therefore call
{nD;,i =1, ..., n} ‘normalized’ spacings. From (3.12), we have the following
distributional equivalence between the normalized spacings and exponential

random variables
(3.13)° {nD,i=1,...,n} ~{ZJa},Z,,i=1,.--,n}.

The empirical distribution function H,(x) of the normalized spacings is of
central interest in this context and is defined as

(3.14) H,(x) = 23 I(nDy; x)/n, x=0.

Using the equivalence (3.13), we note that

(3.15) {H,(9), x 2 0} ~ {S1, K Z Jat, Z,; x)/n, x = 0)
= {F,*(x), x = 0}

where F,*(+) is as defined in (2.3) with random perturbations. In our termi-
nology F,*(-) denotes the empirical distribution function of the exponential
random variables Z,, Z,, - - - perturbed by the random factors a, and randomly
scaled by Z,. The equivalence in (3.15) says that the distributions of the stochastic
processes {H,(x), x = 0} and {F,*(x), x = 0} coincide in D[0, co].

Thus the problem of finding the asymptotic distribution of {H,(x), x = 0} is
reduced to that of {F,*(x), x = 0}, which has been dealt with in Section 2. It
is easily checked that all the required conditions on the perturbation factors
a’;, on the distribution function F(x) (which is the exponential distribution here),
as well as the condition (2.23) on &, = n¥(Z, — 1) are satisfied. Further, when
the non-random «,, have the structure given in (3.11), using a second order
Taylor expansion, integrating by parts to evaluate § L(p)/(p)dp and the fact
that § I(p) dp = 0, G,(x) of Section 2 can be expressed in the form

(B.16) G, =(1—e?), if 6>1
= (1= ) + (S F(p) dp)e~*(x — X2)nt,  if =1,
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ignoring terms which are of smaller order than n~* uniformly in x. Thus from
Corollary 2.7 we have the following useful theorem.

THEOREM 3.1. Under the alternatives (3.1), the sequence of stochastic processes
{a(x) = n¥(H,(x) — G,(x)), x = 0} converges weakly to the Gaussian process
{€(x), x = 0} in D[0, oo] with mean function zero and covariance kernel

(3.17) K(x,y) = e ¥(1 — e — xye®), 0x=Zy=s .

This theorem on the empirical distribution function of the normalized spacings
forms the basic result for deriving the asymptotic distributions of test statistics
based symmetrically on spacings. From the invariance principle, we have

THEOREM 3.2. Let g(+) be a real-valued measurable function on D[0, co] which
is a.e. continuous with respect to the probability measure induced by the Gaussian
process {{(x), x = O} of the previous theorem. Then the distribution of the real-
valued random variable g({,) converges weakly to the distribution of g({) asn — oo.

Using these results, the limiting distributions of the symmetric spacings test
statistics
Vr(n) = Z;;l (nDi)r/n ’ r > —% ’
(3.18) U(r) = oy D, — 1]/,
L(m) = X log (nDy)[n

have been obtained under the alternatives (3.1) and their ARE’s compared in
Sethuraman and Rao (1970).

One interesting fact that emerges from this analysis is that the symmetric
spacings tests cannot discriminate alternatives 4,(x) if 6 > 1 so that comparison
of the ARE’s must be made for a sequence of alternatives converging to the
hypothesis at the rate of n=%. It has also been demonstrated in Sethuraman and
Rao (1970) that among a wide class of such tests, the test statistic

Vi(n) = 21y (nD;)’[n

due to Greenwood (1946) has the maximum efficiency.

Some further results on the weak convergence of empirical distribution func-
tion of the so called ‘modified spacings’ (see Sethuraman and Rao (1970)) have
also been obtained by the authors and will appear in a future paper.

.
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