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A CONJECTURE OF BERRY REGARDING
A BERNOULLI TWO-ARMED BANDIT

By V. M. JosHI
Maharashtra Government, Bombay

Two independent Bernoulli processes (arms) have unknown success
probabilities p and 2. The initial (a priori) information about p and 2 is
expressed by probability distributions

dR(p) = Crpro(1 — p)ro’ du(p) for the right arm,
dL(2) = Cr 2l(1 — A)lo’ dp(2) for the left arm,

where p is any arbitrary measure on the unit interval.” A specified number
n of observations is made sequentially, the arm selected at each stage de-
pending on the previous observations and the initial information. A con-
jecture of Berry states that if the initial information present about the right
arm (given by ro + ro’) is not greater than that present for the left arm
(lo + Io’) and the initial expected value of p is not less than that of 2, then
for any n the advantage (in terms of expected number of successes) of taking
the first observation on the right arm is never less than that for the left
arm. A proof of this conjecture is given in this paper.

and

1. Introduction. In a recent paper dealing with the Bernoulli two-armed
bandit Berry [1] has stated three conjectures A, B and C. In the following we
prove the conjecture B. As we have to refer frequently to formulas in Berry’s
paper [1], for brevity they are denoted by starred numbers to distinguish them
from equations in this paper. The symbols and terms used in the following have
the same meanings and definitions as in [1]. A brief explanation of the notation
and the structure of the problem is given below. For more details Sections 1
and 2 of [1] may be referred to.

Writing for convenience ry, r), - - - in place of r, #’, etc. in (2.1)*, (2.2)*, we
take the initial (prior) probability distributions R and L of the Bernoulli parame-
ters p and 2 for the right arm 22 and the left arm & as

(1i) dR(p) = Co(1 — p)o dpt4(p) ,
(L) dL(2) = C, (1 — 2)4 dp (2)

where Cp, C, are normalizing constants, ¢, ¢, arbitrary positive measures on
[0, 1], and r,, 1)/, L, I arbitrary real numbers, such that the integrals of the
right-hand side of (1i) and (lii) converge. N_ = r, + r, is the “amount of
initial information” about .22 and N_ = [, 4 [, that about . E(p|R) and
E(2| L) are respectively the expectations of p and 2 with respect to the distri-
butions R and L. n is the total number of observations to be made and A (R, L)
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the expected advantage obtained by taking the first observation on the right arm
. Berry’s conjecture B ([1], page 892) is the following.

CoNJECTUREB. If o, = p_, r, +r/ <1l + 1/, and E(o|R) = E(2|L), then
A, (R, L) = 0 for all n.

2. Posterior expectations of p, . In accordance with the condition in the
conjecture, we assume throughout the following that

(2) Vo =fg, = say.
Let (r, ') denote a variable point in the real plane for which
3) Jo (1 — p)7" dp(p) < oo

where p is the measure in (2).

The region of the real plane on which (3) holds is called the possibility region
for 4, ([1], page 874). (ry 1)) (lp» I,) in (1i) and (1ii) are obviously points in the
possibility region of p. Similarly, if (r, ') lies in the possibility region, so does
the point (r + m, r’ + n) for any m, n = O (provided that x(0, 1) > 0). We
refer to the distribution in (3) as the distribution (7, #’). We denote by E(p|r, ')
the expectation of p with respect to the distribution

(4) dF(p) = Ko"(1 — p)” dp(p)

where K = K(r, r') is the normalizing constant. E(o|r, r’) denotes the same func-
tionas E(p|r, r', p) in [1]. We drop the symbol ¢ as the measure remains fixed
throughout the following.

If ¢ is a one-point measure then E(p|r, #') has a constant value independent
of (r, r') and the conjecture is satisfied trivially. In the following, to the end of
the proof of Lemma 2.2, we make the following assumption.

AssuMPTION 2.1. The measure # in (2) is not a one-point measure.
Next let
dE(p|r, ')
T
e

(5) A(r, ') =

By Lemma 4.6 in [1] both the numerator and denominator in (5) are finite and
positive, i.e.

. OE(p|r r') o
(61) — >0,
" 0E(p|r, ')
6 0
(61i) A7 <

LEMMA 2.1. As the point (r, r') moves along a curve on which E(p|r, r'") has a
constant value in the direction in which r and r' increase, A(r, r') is non-decreasing.
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Proor. As shown in the proof of Lemma 5.1 in [1], along the curve

@) E(p|r, r') = constant
(®) ;r, A(r, 1) >0

by (6i), (6ii).
Let D denote the directional derivative of any function of (r, r) along the
curve (7), in the direction in which r and r’ increase. Putting

) k = I:l + <d—rr’_> jl~ = [1 + A4%r, r)]"¢,
we have by (8), .
(10) Da(r, 1) = k (2T 7 9 )

ke {atr ) PA ) | 040 )

Next by differentiating (5), we obtain after some manipulation,

(11 DA(r, Py = —k, {A”(r, r’)%i)
.
+ 24(r, ) PRI T FHoLr 2
aror' ar?
where
. 0E(p|r, r’):]‘1
1 k = k[—-—_— .
(1) ! ar

Let E denote the expectations with respect to the distribution (r, 7). Then

(12) E(o[r, 1) = [ 071 — o) dp()][§; 07(1 — o) dpe(0)]™* -

By differentiating the right-hand side of (12) we obtain the second order deriva-
tives with respect to r, v’ of E(p|r, r’). Substituting these in (11) we obtain

where by (11i), (9) and (61)
(1) k= k[ PEOIRT g, s [P0 5
and

as  He)="Helnr)

[log o — E(log p)]

—2BCI T f1og (1 — ) — Elog (1 — o))
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Since
IE(]r ') _ Cov (p, log (1 — )
or'
and
IE(e|r ") _ coy (0, log p) ,
or
H(p) in (13) is the same as the function defined in (4.11)*. H(p) satisfies
(16) E{H(o)[o — E(p)]} = 0.

Substituting for H(p) by (15) and using (16) we obtain,
E{le — E(p)]H*(0)}

an =l — B[ 2ZEn D 10y o - 21N 10g (1 — ) |}
- ai%l_il - E{[p — E(p)]H(p) log o}
— aE(Pa|r", r') . E{[,o _ E(p)]H(,O) log(l — p)} .

In (17) E{[(p — E(p)]H(p) log p} = 0 by (4.11)* and E{[p — E()]H(p) log (1 —
p)} < 0 by the observations below (4.15)*. Hence using (6i), (6ii), we have
from (17),

(18) E{[o — E(0)]H*(p)} < 0.
Since k, in (13) = 0 by (14), it follows from (18), that
(19) DA(r, ") = 0.

This completes the proof of Lemma 2.1.

Note 2.1. The result (22) of the following lemma means that under the con-
ditions of the lemma the directional derivative of E(o|r, r’) in the direction of
the vector (C, 1) is non-increasing as we move along the curve defined by (7) in
the direction in which r increases.

LemMa 2.2. If (r, 1"), (I, I') are points such that

(201) rsil,

(20ii) E(o|r, 'y = E(p|L, 1"

(and therefore r < 1), and C is a number satisfying

(21) C= AT

then,

@2  cEelnr) OEeInr) o ¢ OEe|LY) | Ee|LD)
or or' ol ol
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Proor. Using (5) we obtain that (22) is equivalent to

(23) [C — A(r, )] a—E(—’%’—r—') > [C ~ A( I')] Q&Pall’_’_)

By (20i) and (20ii), Lemma 2.1 applies. Using that lemma and (21) we.get

24 C—Arr)=C—AlLINZ0.
Hence the lemma is proved by showing that
(25) Bp|r 1) 5 FE(p|LT) 5 ¢
or ol
By (4.9)*
(26) 9 A =0.
or

Hence by (5)

0|, r) PEp|r ) |, 3E(plrr) PEpln ) S g
or oror' or' or? =

@7

Dividing (27) throughout by 0E(p | r, r')/dr, which is positive by (6i), we obtain

(28) FE@IN ) 4,y 4 TERINT)
ar? or or'
Hence,
(29) p2%elnr) o,
r

where, again D denotes the derivative along the curve defined by (7). Hence
(25) follows from (29) and (6i), and (25) combined with (24) yields (23).
This completes the proof of Lemma 2.2. We now prove the following.

THEOREM 2.1. If ry < Iy, r/ < 1), E(o| 1y, 1)) = E(0 |1y, 1)), and m, n are any
nonnegative numbers such that

(30) Ep|ly + m, I + n) = E(p|n, 1) »

then

(1) E(o|ry+ m, 1’ +n) = E(o|ly + m, I’ + n).
COROLLARY 2.1. The inequality (31) holds if (30) is substituted by

(32) E(o|r,+ m,r/ + n) = E(o|r, 1) -

Note 2.2. For any point (r, #’) in the region of possibility of y, obviously
E(p|r,r') = E(A|r, r'). Hence we freely interchange p and 4 in this expression.

Proor. If 4 is a one-point measure the theorem is true trivially. In the fol-
lowing we therefore assume that 4 is not a one-point measure. By the assumption
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in the theorem
(33) E(p| 1, I) < E(o| s ry) .

Consider a variable point (/, /') which moves from the point ([, /') along the
line defined by

(34) I+ 0 =1+ 1

in the direction in which / increases, and consequently /’ decreases. By (6i) and
(6ii) E(o|l, I) is strictly increasing and continuous as (/, /) moves along the
line. It therefore follows from (33), that there exists a unique point ([, [,') on
the line defined by (34), such that

(351) E(p|L, 1)) = E(p| o 1) »

(35ii) Lzl i),

Since by assumption in the theorem [, > r,, it follows from (35ii) that
(361i) L=r.

Hence by (8) and (351i)

(36ii) L'=r.

Since by (35ii)
L+m=Il+m, I'4+n<sl) +n
we obtain (recalling Note 2.2) by using (6i), (6ii), (30) and (35i)
Ep|lL+m I/ 4+ n) = E(e|l, + m, I 4+ n)
(37) = E(o|r n)
=E(|L, ).

Let P, be a point (I, I), which moves continuously from the point (I, [,’) to the
point (I, + m, ' + n). We shall show that there exists a differentiable path T,
at each point of which the slope of the tangent to T, is not less than the value
of A(l, ') at that point. Consider the path defined by

’ -1
(38) %:A@m+[@%%ﬁ}u%mmA+my+@_mm@my

By differentiating E(p |/, I') along the path we obtain using (5),
1 ,
(39) L BIL 1) = LBl + m 1+ m) = Ee] L 1)

= a constant.

Integrate both sides of (39) with respct to /' from I/ = I to I’ = [/ 4 n. Let I*
be the value assumed by / when I’ = [ 4 n. Cancelling out the common term
—E(p |1, 1) on both sides we obtain that

(40) E(o|I*, I} + n) = E(o|l, + m, I/ + n).
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From (40), it follows by (6i) that I* =/, + m. Thus the path T, defined by
(38) goes from the point (I, I) to the point (I, + m, I, 4+ n). As 0E(p|l, I')/ol
is positive by (6i) and the expression in braces in (38) is positive by (37), the
path T satisfies

dl

(41) T = AL D)
at each point of the path.

Next let P, be a point with coordinates (r, r’), such that as P, moves along
T,, P, moves along a path T,, defined by

(421) r=r+0-=1),

(42ii) E(|r, ") = E(p|L ).

From (35i), (42i) and (42ii) it follows that when P, starts at (,, [,), P, starts at
the point (r, ,’). As P, moves along the path T,, r, r’ and [ are functions of /'.

Differentiating both sides of (42ii), with respect to ', we get, after using (421)
that

’ ’ 4 4
@3 Belnr) dr | 9Eplnr) _SE@ILY) d L OEEILD)
or dr or dl dr or
In (43) put
(44) r=r+ @=L +vl),
so that
dr _dl | dv
45 — =4 .
43) dar d’ + dl’
Substituting by (45) in (43), we obtain that
, L) d E(p|L, I
@ OHelnr) o (ABeILD) d 9Bl D)
or dl ol dr or
_ fHelnrd | okelr.r))
or  dI dr' '
We next show that (46) implies that
dv
47 — =
( ) dll -

In the left-hand side of (46), by (61)

(48) 0E(e|nr) S ¢,
or

In the right-hand side of (46) we apply Lemma 2.2. From (42i) we have by
(36ii)

(49i) r=0r—{'—r)l

and hence by (42ii) and (8)

(49ii) r<i.
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By (49i), (42ii) and (41) the conditions (20i), (20ii) and (21) of Lemma 2.2 are
respectively satisfied taking C = di/dl’. Hence the right-hand side of (46) is < 0
by (22).

At the start of the motion when P, is at (I, /'), P, is at (r,, r,/). Hence

(50) r=r when [=1,.
Substituting by (50) in (44) we obtain that in the initial position
(51) (1) =0.

(51) and (47) combined yield that throughout the motion

(52) ('Y< 0.

In particular when P, reaches the point (/, + m, [’ 4 n), the coordinates of P,
using (42i), (44) and (52) are given by

(53i) r'=r'+n,
and
(53ii) r=r+m+vl/ +nr,+m.

Hence using (53ii) and (6i) in the first step, (42ii) in the second and (35ii), (61)
and (6ii) in the third we obtain that
(54) E(o|ro+ m,ry +n) = E(o|r*,ry + n) = E(o|l, + m, I + n)
= E(o|ly 4+ m, 1l + n)

as asserted in (31). This completes the proof of Theorem 2.1.

The proof of Corollary 2.1 follows immediately, since when (32) holds, if (30)
holds, (31) holds by the theorem, and if (30) does not hold then

E(o|ry 1)) > E(o|ly +m, I + n),

which combined with (32) gives (31). This completes the proof of Corollary 2.1.

3. Berry’s conjecture. We are now in a position to prove Berry’s conjecture.
It is necessary, however, to prove a wider result which includes the conjecture
as a special case.

In the statement of the conjecture in Section 1, A (R, L) denotes the expected
advantage when the first of n observations is taken on the right arm. We shall
use the symbol A, (r, r’; [, I') to denote the expected advantage in taking the first

of n observations on the right arm, when the probability distribution of p is
given by (4), and that of 2 by

(55) dF,(2) = K (1 — )" dpe .

As in (3.2)* forany r, #/, I, I’ we put A, ~(r, r'; [, I'’) = min {0, A, (r, r’; [, I')} and
A (r, s L, 1) = max {0, A, (r, "5 1, I)}.

THEOREM 3.1. The distributions of p and A being as given in (li) and (1ii), if
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(my, ny), (my, n,) are arbitrary pairs of nonnegative real numbers and if the following
relations hold viz.,

(561)  E(p|my+ romy + 1) Z E(o|m; + 1oy ny + 1)) Z E(o| 1, 1)

(561i) E(p [0 1) = E(p |1y 1))
and
(56iii) ntrn =L+ 1,

then for all integers n,
(57) A(ro 4+ my, v + n5 by + my, 1) + 1)
+ A, (rg + my, v + g5 by + my; I/ +n)=0.
CoROLLARY 3.1. Under the conditions of Theorem 3.1
(58) Au(ry + myy v + nyy Iy + my, 1) + 1) =0 forall n.
Proor. The proof is by induction. Let n = 1. By (3.8)* we have
(59) A(rg + my, 1! + ny, by + my, I + ny)
=E(o|r,+ my, 1 + n) — E(p|l, + my, I + ny)
=0,
by (56i), and (31) in Theorem 2.1. Hence (57) holds for n = 1. Now suppose
that (57) and consequently (58) hold for all » < j. In (3.7)* putn = j + 1, and
substitute respectively (7, + my, r,’ + n,) for R, (I, + my, I, + n,) for L. Note
that R in [1] means the distribution specified by the pair (r, + m, + 1, r,’ + n,)
and ¢R that by the pair (r, + my, r,/ + n, 4+ 1). We thus obtain from (3.7)*
Aj+1(ro +my, ) 4 gl my, I+ ny)
= E(o|r, + my, 1y + ”1)Aj+(ro +m A+ L+ onl+ my, )+ ny)
+[1 = E(o|ry+ my, 1 + n)]
(60) X Aj+(ro + myr 40+ 10+ my, 1)+ ny)
+ E(o |l + my, I + ny)
X Aj_(ro +myr 4 n5l 4 my+ 1, 1) 4 ny)
+ [1 — E(o |l + my I + ny)]
X A (ro + my 1!+ ng b+ my, I my 1)
By (4.16)* and using A (r, r'; I, I') = —A,(I, I'; r, '), we have
(61) Aj(ro +myr’ A ongly 4 my, I A ny 1)
= Aj("o + my, v A gl + my, I A+ ny) = 0
by (58) which holds for n = j by the inductive ilypothesis. Hence by (61)
(62) Air(ro+my v +n3ly+my, I +n,4+1)=0.
By (561i) the condition (32) of Corollary 2.1 is satisfied with (m, n) = (my, ny).
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Hence by that corollary

(63) E(o|ry + my, 1 + ny) = E(p|l, + my, I + n,) .
(63) combined with (56i) yields
(64) E(o|ry + my, 1y + m) = E(p|l, + my, ly + n,) .

Using (62) and (64), we obtain from (60) that

Aj+1(r0 + my, ) + ny, by 4 my, I+ 1)
(65) = E(p|ly + my, I + n){A; (ro + my + Lor + s by 4 my, I + 1)
+ A (r + my, 1 A+ ny; ly+my+ 1,1 + ny)}.
By (4.16)* ;
(66) Ajrg+ my + 1, 1 + ny by + my, Iy + ny)
= Aj(ro + my, ry + ny Ly + my, I+ n) = 0
where the last step follows from (58) and the inductive hypothesis for n = j.
Hence,
(67) Aj(rg+ my + 1,7 + ni by + my, I + 15)
=A[ry+m + Lr) 4 nsly+ my, I + 1)
We substitute by (67) in the right-hand side of (65) and then apply (57) by the
inductive hypothesis for n = j. Note that the inductive hypothesis in the theo-
rem for n < j is assumed to be true not only for the particular pairs of non-
negative numbers (m,, n,), (m,, n,) and the particular distributions (r,, ), (s 1),
but for arbitrary pairs of nonnegative numbers (m,, n,’), (mj', n,’) and for distri-
butions (r, '), (I, I'), where (r, r') and (I, I') are any points in the possibility
region of y, as defined in the remark below (3). This point is of crucial impor-
tance in the further argument.
In (57) putting
(m/, /) = (1,0),  (m),n)=(0,0),
(r 1) = (ro + my, 1’ + my), (L) =+ my, I + )
we obtain that the right-hand side of (65) = 0. Hence (58) holds forn =j + 1.

We next show that (57) holds for n = j + 1. By rearranging the terms of (60)
and using (62), we obtain

Aji(ry + my, v + n I 4 my, I + 1)
= E(p|ry + my, 1 + m){A;(ry + my + 1,1 4 3 by + my, I + n,)
(68) — Ao+ my, 1 4 my + 15 by + my, I + ny)}
+ Ar(rg + my, vy A+ n A L L+ my, I+ 1)
+ E(o|ly + my I + ny)
X Aj_("o +my, ) + nly+ my 4 LI+ 0y
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In view of (56ii) and Corollary 2.1,
(69) E(o|ry+ my, 1 + m) = E(o|ly, + my, I + n,).
Also by (4.16)*,
Ai(ro + my+ Lor + nis by + my, I+ my)
= A:i(ro + my, v + ng; 1+ my, I + ny)
which is nonnegative by (58) and the inductive hypothesis. Hence
(70) Ar(rg+m + 1,7 + ns by + my, I + ny)
=0;ro+ m 4+ Lr) + ns by + my, I + ny) .
Since the term in braces in (68) is nonnegative by (4. 16)* by (69) and (70) the
first term in the right-hand side of (68) is
= E(o|ly + my, I + n){A(rg + my 4+ 1,7 + 05 L, + my, 1) + ny)
— Ay + my, ) + g+ L+ my, I+ n)}
Hence after a slight rearrangement of the terms in (68),
A, a(ro + my, v + 0y Iy + my, I + ny)
= E(o|ly+ myly + n)A(rg + my + 1,7 + 05 Iy + my, I, + ny)
(71) + 1 = (ol + my i + m)]
X A (rg + my, v 4+ ny 4 15l 4 my, I + ny)
+ E(o|ly + my, Iy + ny)
X Ay (rg+ np 1 + myy by + my 4+ 1,17 + ny) .
Again applying (3.7)*,
A, i(ro + myy 1) + ng5 Iy + my, I + ny)
= E(o|ry + my, vy + m)A; (ry + my + 1,1 4 ny; Iy + my, Iy + ny)
+ [1 = E(o|ry + my, 1 + 1,)]
(72) X D (rg 4 my, 1 + 1y + Ll + my, I + )
+ E(o|ly + my, Ij + ny)
X Aj_(ro 4 my, 1) + ny by + my + 1, Iy + n)
+[1 — E(o|l, + my, I + )]
X A (r + Moy 1 + 13 by + my, I +my + 1) .
Using (63) in the first term in the right-hand side of (72) and noting that its
second term is nonnegative we obtain that
A oi(ro + my 1+ ngy by + my, I + ny)
= E(o|l, + my, Iy + ”z)Aj+(ro + my+ 1L, r) 4 nyy by + my, I + ny)
(73) + E(o|ly + my, I + m)
X DA (rg + My, v + n5 by + my 4+ 1, I + ny)
+ [1 — E(o |l + my I + ny)]
X Aj_(ro + my, 1y + ng3 Iy 4+ my, I +n+1).
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Combining (71) and (73), we get
A y(ry + my, v+ ngs by 4 my, I + 1)
+ Aj+1(ro + my, ry + ny; Iy + my, I + ”1)
= E(o|ly + my Iy + n){D(re + my + L + nsly + my, I 4 ny)
+ A (rg 4+ myy 1 + ng5 Ly 4 my + Ll + m)}
(74) + [1 — E(o |l + my, I + ny)]
X Q¥ (ro + myy 1)+ 1y 1 L+ my I 4 1)
+ A7 (rg 4 my, 1) + 1y Iy + my, I + n, 4 1)}
+ E(o|l, + my, I + ny)
X A (r + my + 1, 1) + my b + my I 4 1)
+ A (rg 4 my, 1 + 1y I+ my + 1,1 + ny)}.
We next show that each expression in braces in the right-hand side of (74) is

nonnegative.
Recalling the note below (67), in the right-hand side of (74) in the expression

in braces in the first term, say T;, put
(m/, n') = (m, + 1, n), (my', ny') = (my, ny)
(rr)y=(r/s1) &I =(Usl).

Since E(o|r,+ m, + 1,1/ + n) = E(o|r, + my, 1 + m), (my', 1)), (my, ny'),
(r, ), (I, I') satisfy the conditions of the theorem. Hence by the inductive
hypothesis for n = j (57) holds. Hence T, = 0.

Let T, denote the second expression within braces in the right-hand side of
(74). Here two alternatives are possible viz.,

(75) E(o|ry + my 1 + n)) = E(o|ly + my, Iy +n + 1)
or not. Suppose (75) holds. Putting
(r 1) = (ry+ my 1 + n3) @G =y + my by + n 4 1)
m1’=n1’=m2'=nz’=0,
the conditions of the theorem are satisfied for the distributions (r, 7’), (/, ') and
nonnegative numbers (m,, n,), (my', n,/) and hence by the inductive hypothesis
we have for n = j by (58)
Ay(ry + my, 1 + 13 Iy+m,lf +n+1)=0
so that
(76) A= (ry + my, ry + ng by + my, I+ n + 1)=0.

Hence
T,=0.

Alternatively suppose (75) does not hold. Then by (75) and (56i)
(77) E(o|ly + my, I + n 4 1) > E(o|ry + ma 1 + ny) = E(p|r 1) -
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Thus the condition (30) in Theorem 2.1 is satisfied and we have by that theorem
E(p|ry+ myr) +m+ 1) 2 Eo|l, + my, I/ +n + 1) by (31).
Putting
(m/, n) = (my, n, + 1), (my, nyy = (my, n,)
nr)y=@Fern), G =0h),
the conditions of the Theorem 3.1 are satisfied for (r, r’) etc., and hence by the
inductive hypothesis, (57) holds for n = j, so that T, = 0. Thus under either
of the alternatives, i.e., whether (75) holds or not, T, > 0.
By an exactly analogous argument it follows that the expression in braces in

the third term in the right-hand side of (74), T, say, is ndnnegative. As in (74),
T,, T, T, are all nonnegative; we obtain that

(78) left-hand side of (74) = 0.

The second term in the left-hand side of (74) may be either (a) non-positive or
(b) positive. If it is non-positive,
(79) A i(ro + myy v + 1y Iy 4 my, I 4 ny)

= A5 (ro + myy 1 + 13 by + my, I 4 my)

Substituting by (79) in (78), we obtain that (57) holds for n = j + 1. If alter-
native (b) holds the

(80) Az (ro + my, 1) + g5 Iy + my, I + 1) =0.
It has already been shown from (67) that (58) holds for n =j 4 1, i.e.,
(81) A.’f-l-l(ro + ml’ rO, + nl; 10 + ml’ IO’ + nl) % 0 M

(80) and (81) combined give that (57) holds for n = j + 1. Thus under both
alternatives (a) and (b), if (57) holds for n = j, it holds for n = j 4 1. Since it
holds for n = 1, it holds for all n. This completes the proof of Theorem 3.1.
Corollary 3.1 follows as a trivial consequence.

4. Concluding remarks. The proof of Berry’s conjecture is obtained as a
particular case of Corollary 3.1 by putting m; = n, = my = n, = 0. This com-
pletes the proof of the conjecture.

Under the assumption

(82) E(o|ro 1) = E(o |l b) »

among other assumptions, we have shown that

(83) A (ry s 1, 1)) =0 forall n.

By modifying the proofs slightly, it is seen that the stronger result
(84) A (ry 15 1, 1)) > 0
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holds if either

(851) E(p|res 1) > E(o| L, 1))
or
(85ii) Ep|rpr) =E@p|lhl), rn+tr <L+,

and ¢ is not a one- or two-point distribution. If (85i) holds then the argument
from (34) to (35) shows that in this case, in Theorem 2.1, we obtain in place of

E(|ry+ m,r’ +n) = E|l + m, I/ + n)
the stronger result
(86) E(p|r, + my ry + 1) > E(p |l + my, " + n) .
If (85ii) holds then we again obtain (86) by using the fact that strict inequality

holds in (26) by (4.9)*. Then using the strict inequality in (86) and the argu-
ments of Theorems 2.1, 3.1, we obtain the stronger result in (84).
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