ON A GEOMETRICAL METHOD OF CONSTRUCTION OF GROUP DIVISIBLE INCOMPLETE BLOCK DESIGNS

By Noboru Hamada

Ehime University, Japan

In this paper it is shown that a new series of group divisible designs can be obtained by using a geometrical method.

1. Summary. It is shown that by using a geometrical method, we can obtain a new series of group divisible designs with parameters

$$v = (q^{t+1} - q^{\pi+1})/(q-1) , \qquad k = (q^{\mu+1} - q^{\nu+1})/(q-1) ,$$

$$b = q^{(\pi-\nu)(\mu-\nu)}\phi(t-\pi-1, \mu-\nu-1, q)\phi(\pi, \nu, q) ,$$

$$r = q^{(\pi-\nu)(\mu-\nu-1)}\phi(t-\pi-2, \mu-\nu-2, q)\phi(\pi, \nu, q) ,$$

$$(1.1) \qquad \lambda_1 = q^{(\pi-\nu)(\mu-\nu-1)}\phi(t-\pi-2, \mu-\nu-2, q)\phi(\pi-1, \nu-1, q) ,$$

$$\lambda_2 = q^{(\pi-\nu)(\mu-\nu-2)}\phi(t-\pi-3, \mu-\nu-3, q)\phi(\pi, \nu, q) ,$$

$$m = (q^{t-\pi} - 1)/(q-1) , \qquad n = q^{\pi+1} , \qquad p_{11}^1 = q^{\pi+1} - 2 \qquad \text{and}$$

$$p_{11}^2 = 0$$

for any integers t, μ , ν and π (≥ 0) such that

$$(1.2) -1 \le \nu \le \pi < t - 1 \text{and} \pi + \mu - t \le \nu < \mu < t$$

where q is a prime or a prime power and

(1.3)
$$\phi(t, \mu, q) = \frac{(q^{t+1} - 1)(q^t - 1)\cdots(q^{t-\mu+1} - 1)}{(q^{\mu+1} - 1)(q^{\mu} - 1)\cdots(q - 1)}$$

for any integers t and μ such that $0 \le \mu < t$ and $\phi(t, -1, q) = 1$ for $t \ge -1$.

2. Introduction. Group divisible incomplete block designs are an important subclass of partially balanced incomplete block (PBIB) designs [3], [13], [4] with two associate classes and they have been investigated by many authors [1], [2], [5], [6], [7], [8], [9], [10], [11], [12], [14], [15]. They may be defined as follows.

An incomplete block design with v treatments each replicated r times in b blocks of size k is said to be group divisible (GD) if the treatments can be divided into m groups, each with n treatments, so that the treatments belonging to the same group occur together in λ_1 blocks and treatments belonging to different groups occur together in λ_2 blocks. It is known [2] that the GD designs can be divided into three exhaustive and mutually exclusive classes:

- (a) Singular GD designs characterized by $r \lambda_1 = 0$;
- (b) Semi-regular GD designs characterized by $r \lambda_1 > 0$, $rk v\lambda_2 = 0$;
- (c) Regular GD designs characterized by $r \lambda_1 > 0$, $rk v\lambda_2 > 0$.

Received April 1973; revised November 1973.

The purpose of this paper is to show that by using a geometrical method, we can construct, systematically, a new series of group divisible designs with parameters (1.1).

- 3. Points and μ -flats in PG (t, q). With the help of the Galois field GF (q), we can define a finite projective geometry PG (t, q) of t dimensions as a set of points satisfying the following conditions:
- (a) A point in PG (t, q) is represented by (ν) where ν is a nonzero element of GF (q^{t+1}) .
- (b) Two points (ν_1) and (ν_2) represent the same point when and only when there exists a nonzero element σ of GF (q) such that $\nu_1 = \sigma \nu_2$.
 - (c) A μ -flat $(0 \le \mu \le t)$ in PG (t, q) is defined as a set of points

$$\{(a_0\nu_0 + a_1\nu_1 + \cdots + a_{\mu}\nu_{\mu})\}$$

where a's run independently over the elements of GF (q), not all zero and (ν_0) , (ν_1) , \dots , (ν_{μ}) are linearly independent over the coefficient field GF (q), in other words, they do not lie on a $(\mu - 1)$ -flat. For convenience, we denote the empty set \emptyset by (-1)-flat.

Let α be a primitive element of GF (q^{t+1}) . Then, nonzero elements of GF (q^{t+1}) can be represented by α^l $(l=0,1,\cdots,q^{t+1}-2)$ and every point in PG (t,q) is represented by (α^k) $(k=0,1,\cdots,v^*-1)$ where $v^*=(q^{t+1}-1)/(q-1)$.

4. A geometrical method for the generation of GD designs. Let t, π , μ and ν be any integers satisfying the condition (1.2) and let W be a π -flat ($\pi = -1$ or $0 \le \pi < t - 1$) in PG (t, q). We denote by $B_{\pi, \nu}(t, \mu, q)$, the set of all μ -flats V in PG (t, q) such that $V \cap W$ is a ν -flat and denote by $T(t, \pi, q)$, the set of $v = (q^{t+1} - q^{\pi+1})/(q-1)$ points in PG (t, q) which are obtained from all points in PG (t, q) by deleting $(q^{\pi+1} - 1)/(q-1)$ points in the π -flat W. Then, we have the following

THEOREM 4.1. By identifying the points of $T(t, \pi, q)$ with the v treatments and identifying the μ -flats in $B_{\pi,\nu}(t, \mu, q)$ with the b blocks, we obtain a GD design with parameters (1.1) for any integers t, μ, ν and $\pi \geq 0$ satisfying the condition (1.2). The efficiency factors of this design are as follows:

$$\label{eq:within groups} \begin{array}{ll} \text{within groups,} & {}^{\star}E_1=1-\frac{(q-1)(q^{\pi+1}-q^{\nu+1})}{(q^{\pi+1}-1)(q^{\mu+1}-q^{\nu+1})}\,, \\ \\ \text{between groups,} & E_2=\frac{1}{1+e}\,E_1 & \text{where} \\ \\ e=\frac{\lambda_1-\lambda_2}{v\lambda_2}=\frac{\{(q^t-q^{\pi+1})(q^{\nu+1}-1)-(q^{\mu}-q^{\nu+1})(q^{\pi+1}-1)\}}{(q^{\mu}-q^{\nu+1})(q^{\pi+1}-1)v}\,. \end{array}$$

Note that (i) in the special case $\pi = -1$ (i.e., $W = \emptyset$), $\nu = -1$ and the above design reduces to the well-known balanced incomplete block (BIB) design

PG (t, q): μ with parameters

$$v=(q^{t+1}-1)/(q-1)$$
, $b=\phi(t,\mu,q)$, $r=\phi(t-1,\mu-1,q)$, $k=(q^{\mu+1}-1)/(q-1)$ and $\lambda=\phi(t-2,\mu-2,q)$

and (ii) in the special case $\pi = t - 1$ (i.e., W is a hyperplane), $\nu = \mu - 1$ and the above design reduces to the well-known BIB design EG (t, q): μ .

In order to prove this theorem, we prepare the following lemmas.

LEMMA 4.1. The number, b, of μ -flats in $B_{\pi,\nu}(t,\mu,q)$ is equal to

(4.1)
$$b = q^{(\pi-\nu)(\mu-\nu)}\phi(t-\pi-1,\mu-\nu-1,q)\phi(\pi,\nu,q)$$

for any integers t, π , μ and ν satisfying the condition (1.2).

PROOF. The following two cases must be considered.

(i) In the case where ν is a nonnegative integer, it is easy to see that the number of μ -flats V in PG (t,q) such that $V \cap W = U$, where U is a ν -flat in W, is equal to

$$\frac{(q^{t+1}-q^{\pi+1})(q^{t+1}-q^{\pi+2})\cdots(q^{t+1}-q^{\pi+\mu-\nu})}{(q^{\mu+1}-q^{\nu+1})(q^{\mu+1}-q^{\nu+2})\cdots(q^{\mu+1}-q^{\nu+\mu-\nu})},$$

that is, $q^{(\pi-\nu)(\mu-\nu)}\phi(t-\pi-1,\mu-\nu-1,q)$. Since the number of ν -flats U in the π -flat W is equal to $\phi(\pi,\nu,q)$ and there is no μ -flat V in PG (t,q) such that $V\cap W=U_1$ and $V\cap W=U_2$ for ν -flats U_1 and U_2 in W unless $U_1=U_2$, we have the required result.

(ii) Now we consider $\nu = -1$. Since the number of μ -flats in PG (t, q) is equal to $\phi(t, \mu, q)$, it follows from (i) that the number, b, of μ -flats V in PG (t, q) such that $V \cap W = \emptyset$ is equal to

(4.2)
$$b = \phi(t, \mu, q) - \sum_{\nu=0}^{\pi} q^{(\pi-\nu)(\mu-\nu)} \phi(t-\pi-1, \mu-\nu-1, q) \phi(\pi, \nu, q)$$
 where $\phi(t, \nu, q) = 0$ for any integers t and ν such that $t < \nu$ or $\nu \le -2$. Since

(4.3)
$$\sum_{\nu=-1}^{\pi} q^{(\pi-\nu)(\mu-\nu)} \phi(t-\pi-1,\mu-\nu-1,q) \phi(\pi,\nu,q) = \phi(t,\mu,q),$$
 we have $b = q^{(\pi+1)(\mu+1)} \phi(t-\pi-1,\mu,q) \phi(\pi,-1,q)$. This completes the proof.

LEMMA 4.2. Let P be any point in $T(t, \pi, q)$. Then the number, r, of μ -flats in $B_{\pi,\nu}(t, \mu, q)$ passing through the point P is equal to

$$(4.4) r = q^{(\pi-\nu)(\mu-\nu-1)}\phi(t-\pi-2,\mu-\nu-2,q)\phi(\pi,\nu,q)$$

for any integers t, π , μ and ν satisfying the condition (1.2).

PROOF. Let W^* be the $(\pi+1)$ -flat containing the point P and the π -flat W and let U^* be the $(\nu+1)$ -flat containing the point P and a ν -flat U in W. Since the number of μ -flats V in $B_{\pi,\nu}(t,\mu,q)$ passing through the point P such that $V\cap W=U$ is equal to the number of μ -flats V such that $V\cap W^*=U^*$, the number of such μ -flats V is equal to $q^{(\pi-\nu)(\mu-\nu-1)}\phi(t-\pi-2,\mu-\nu-2,q)$.

Since the number of ν -flats U in W is equal to $\phi(\pi, \nu, q)$, we have the required result.

PROOF OF THEOREM 4.1. Since $v = (q^{t+1} - q^{\pi+1})/(q-1)$ and $k = (q^{u+1} - q^{v+1})/(q-1)$, it follows from Lemma 4.1 and Lemma 4.2 that parameters v, b, r and k of this design are given by (1.1). It is, therefore, sufficient to show that this design is a GD design with parameters λ_1 , λ_2 , m, n, p_{11}^1 and p_{11}^2 given in (1.1).

Let $\phi(i)$ $(i=1,2,\dots,v)$ be v integers such that each point $(\alpha^{\phi(i)})$ belongs to $T(t,\pi,q)$ and we define a relationship of association between every pair of v treatments, denoted by $\phi(1), \phi(2), \dots, \phi(v)$, as follows: Two different treatments $\phi(i)$ and $\phi(j)$ are 1st associates or 2nd associates according to whether there does or does not exist a pair (a_1, a_2) of elements of GF (q) such that the point $(a_1 \alpha^{\phi(i)} + a_2 \alpha^{\phi(j)})$ belongs to W.

Let $\phi(i) \stackrel{\iota}{\longleftrightarrow} \phi(j)$ and $\phi(j) \stackrel{\iota}{\longleftrightarrow} \phi(k)$ where " $\phi(l_1) \stackrel{\iota}{\longleftrightarrow} \phi(l_2)$ " means that two treatments $\phi(l_1)$ and $\phi(l_2)$ are 1st associates. Then, there exist a pair (a_1, a_2) of nonzero elements of GF (q) such that

$$(a_1\alpha^{\phi(i)} + a_2\alpha^{\phi(j)}) \in W$$

and a pair (b_1, b_2) of nonzero elements of GF (q) such that

$$(b_1\alpha^{\phi(j)}+b_2\alpha^{\phi(k)})\in W.$$

Since W is a π -flat $(0 \le \pi < t - 1)$, we have

$$(a_2^{-1}a_1\alpha^{\phi(i)}-b_1^{-1}b_2\alpha^{\phi(k)})\in W$$
.

This implies that $\phi(i) \stackrel{\iota}{\longleftrightarrow} \phi(k)$. Therefore, the association defined above is the association scheme of a GD type if $0 < n_1 < v - 1$ where n_1 denotes the number of treatments being 1st associates. Let $(\alpha^{\phi(i)})$ be any point in $T(t, \pi, q)$, that is, $(\alpha^{\phi(i)}) \notin W$. Then, $(a\alpha^{\phi(i)} + \alpha^c) \notin W$ for any nonzero element a of GF (q) and any point (α^c) in the π -flat $W(\pi \ge 0, W \ne \emptyset)$. There exists, therefore, a point $(\alpha^{\phi(i)})$ in $T(t, \pi, q)$ such that

$$(4.5) \qquad (\alpha^{\phi(l)}) = (a\alpha^{\phi(i)} + \alpha^{\circ}).$$

This implies that there exists a pair (a_1, a_2) of elements of GF (q) such that $(a_1\alpha^{\phi(i)}+a_2\alpha^{\phi(l)})=(\alpha^c)$, that is, two treatments $\phi(i)$ and $\phi(l)$ are 1st associates. Conversely, if $\phi(i)$ and $\phi(l)$ are 1st associates, there exist a pair $(a, (\alpha^c))$ of a nonzero element a of GF (q) and a point (α^c) in W which satisfy the condition (4.5). Hence, we have $n_1=(q-1)\phi(\pi,0,q)=q^{\pi+1}-1$ $(0< n_1< v-1)$. From this, we can see that parameters n, m, p_{11}^1 and p_{11}^2 are given by (1.1). It is, therefore, sufficient to show that λ_1 and λ_2 are given by (1.1).

(i) In the case where two treatments $\phi(i)$ and $\phi(j)$ are 1st associates, there exists a unique point (α^f) in the π -flat W such that

$$(\alpha^f) = (a_1 \alpha^{\phi(i)} + a_2 \alpha^{\phi(j)})$$

for some elements a_1 and a_2 of GF (q). Hence, any μ -flat in $B_{\pi,\nu}(t, \mu, q)$ passing through two points $(\alpha^{\phi(i)})$ and $(\alpha^{\phi(j)})$ has to contain the point (α^f) . Let U be

any ν -flat in W passing through the point (α^f) and let U^* be the $(\nu+1)$ -flat containing the ν -flat U and the point $(\alpha^{\phi(i)})$. Since the number of μ -flats V in $B_{\pi,\nu}(t,\,\mu,\,q)$, passing through two points $(\alpha^{\phi(i)})$ and $(\alpha^{\phi(j)})$, such that $V\cap W=U$ is equal to the number of μ -flats V in $B_{\pi,\nu}(t,\,\mu,\,q)$ such that $V\cap W^*=U^*$, where W^* is the $(\pi+1)$ -flat containing the π -flat W and the point $(\alpha^{\phi(i)})$, and the number of ν -flats U in W passing through the point (α^f) is equal to $\phi(\pi-1,\,\nu-1,\,q)$, the number λ_1 of μ -flats in $B_{\pi,\nu}(t,\,\mu,\,q)$ passing through two points $(\alpha^{\phi(i)})$ and $(\alpha^{\phi(j)})$ is equal to

$$\lambda_1 = q^{(\pi^* - \nu^*)(\mu - \nu^*)} \phi(t - \pi^* - 1, \mu - \nu^* - 1, q) \phi(\pi - 1, \nu - 1, q)$$

where $\pi^* = \pi + 1$ and $\nu^* = \nu + 1$.

(ii) In the case where two treatments $\phi(i)$ and $\phi(j)$ are 2nd associates, we can show that the number λ_2 of μ -flats in $B_{\pi,\nu}(t,\mu,q)$ passing through two points $(\alpha^{\phi(i)})$ and $(\alpha^{\phi(j)})$ is equal to

$$\lambda_2 = q^{(\pi^* - \nu^*)(\mu - \nu^*)} \phi(t - \pi^* - 1, \mu - \nu^* - 1, q) \phi(\pi, \nu, q)$$

where $\pi^* = \pi + 2$ and $\nu^* = \nu + 2$. This completes the proof.

Note that (i) for $\nu=\pi$, we get Singular GD designs from Theorem 4.1, (ii) for $\nu=\mu+\pi-t$, Semi-regular GD designs and (iii) for $\nu\neq\pi$, $\mu+\pi-t$, Regular GD designs.

Acknowledgment. The author wishes to thank the referee and the Associate Editor for their valuable comments.

REFERENCES

- [1] Bose, R. C., Clatworthy, W. H. and Shrikhande, S. S. (1954). Tables of partially balanced designs with two associate classes. *North Carolina Agricultural Experiment Station Technical Bull.* No. 107.
- [2] Bose, R. C. and Connor, W. S. (1952). Combinatorial properties of group divisible incomplete block designs. Ann. Math. Statist. 23 367-383.
- [3] Bose, R. C. and NAIR, K. R. (1939). Partially balanced incomplete block designs. Sankhyā 4 337-372.
- [4] Bose, R. C. and Shimamoto, T. (1952). Classification and analysis of partially balanced incomplete block designs with two associate classes. J. Amer. Statist. Assoc. 47 151– 184.
- [5] Bose, R. C., Shrikhande, S. S. and Bhattacharya, K. N. (1953). On the construction of group divisible incomplete block designs. Ann. Math. Statist. 24 167-195.
- [6] CLATWORTHY, W. H. (1955). Partially balanced incomplete block designs with two associate classes and two treatments per block. J. Res. Nat. Bur. Standards 54 177-190.
- [7] CLATWORTHY, W. H. (1956). Contributions on partially balanced incomplete block designs with two associate classes. National Bureau of Standard Applied Mathematics Series 47.
- [8] Dembowski, P. (1968). Finite Geometries. Springer-Verlag, Berlin.
- [9] Freeman, G. H. (1957). Some further methods of constructing regular group divisible incomplete block designs. *Ann. Math. Statist.* 28 479-487.
- [10] HAMADA, N. (1973). On the p-rank of the incidence matrix of a balanced or partially balanced incomplete block design and its applications to error correcting codes. Hiroshima Math. J. 3 153-226.

- [11] KAPADIA, C. H. (1966). On the block structure of singular group divisible designs. Ann. Math. Statist. 37 1398-1400.
- [12] Liu, W. R. and Chang, L. C. (1964). Group divisible incomplete block designs with parameters $v \le 10$ and $r \le 10$. Sci. Sinica 13 839-840.
- [13] NAIR, K. R. and RAO, C. R. (1942). A note on partially balanced incomplete block designs. Science and Culture 7 568-569.
- [14] RAGHAVARAO, D. (1971). Constructions and Combinatorial Problems in Design of Experiments. Wiley, New York.
- [15] Sprott, D. A. (1959). A series of symmetric group divisible designs. Ann. Math. Statist. 30 249-251.

MATHEMATICAL INSTITUTE HIROSHIMA UNIVERSITY SHINONOME, HIROSHIMA JAPAN