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A LINEARIZED VERSION OF THE HODGES-LEHMANN
ESTIMATOR!

BY ANDRE ANTILLE

University of California at Berkeley

In the estimation of a location parameter the Hodges-Lehmann esti-

mator is known to have some ‘‘robust’ properties, but it is very ‘‘expen-

. sive” for large sample sizes. By using the linearity of a special rank

statistic we can find a linearized version which requires only O(rn log n)
operations.

0. Introduction. Let X, X,, - .- be i.i.d. real random variables with density
f(x — ) where f(x) is symmetrical about the origin. The Hodges-Lehmann esti-
mator T has some “robust” properties (Bickel (1965)) but it is very “expensive”
for large sample sizes: One needs at least O(n*) operations. The main purpose
of this paper is to show that under some assumptions on f, there exists an esti-
mator T, with the following properties:

(1) n(T — T,) = Op(1), i.e., n(T — T,) is bounded in probability,
(2) T, requires only O(n log n) operations.

A new consistent estimator ¢,' of the asymptotic variance g, of T is given.
Finally the speed of convergence of ¢,'(s,)~" to 1 is investigated.

I thank Professor Bickel for pointing out to me that the paper of Kraft and
van Eeden (1972) deals with similar topics. Their results are quite general, but
for the case investigated in this paper we obtain much more precise information
about the behavior of the linearized version.

1. Preliminaries. The whole work relies on the asymptotic linearity of a
special rank statistic (Antille (1972)):

Let X}, X,, - - - be i.i.d. real random variables with symmetrical density f(x).

Define: A(x) = n~% 3 [I(x; + x; < 0) — 27'], where the summation extends
overalli<jwith1 < i, j<n.

S,(%, 1) = h(x — tn~t) — h(%) .

I(A) means the indicator function of A and X the vector (x;, x,, -+ -, x,). We
should write 4,(X) or k(X,), but we drop the index n in order to simplify the
notation.
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Consider now the process
Y1) = n[Su(%, 1) — 1§ f3(x) dx],
for t e [— M, + M] where M is an arbitrary fixed number.

We have then the following theorem:
If we assume

(i) §/3(x) dx < oo,
(i) A2 W + 2 —fWFdzdy —,.,0,

then the process (Y,(7));ci_x, 1y COnverges weakly to a process of the form
(tZ);c(-u,+1y Where Z is a real random variable with normal distribution N(0, c?)

where
¢ = 4[§ f3(x) dx — (§./7(x) dx)’] .

ReEMARK. Note that condition (ii) is satisfied if, for example,

(@) f is such that |f(x + #) — f(¥)| < |t]°9(x), with « > 27! and g(x)e
Ly,(— o0, + o) or

(b) fis absolutely continuous and f’ € L,(—co, + o).

2. The estimator 7. Let X, X,, - - be i.i.d. random variables with density
f(x — ) where f(x) is symmetrical about the origin.

Then the Hodges-Lehmann estimator T is essentially the value of ¢ for which

Now let ¢ be fixed. One needs O(nlogn) operations to order the sample
| X, — tn~Y, ... | X, — tnTH.

Hence h(x — 1), for a fixed ¢, can be calculated in O(n log n) operations. This
follows from the relation:

LRT=21X+ X;>0),
where the summation on the left-hand side extendsoverall 1 < i < nsuch that
X; > 0, and the summation on the right-hand side over all i < j with 1 < i,
J < n. R;* means the rank of |X;| in the sample |X||, |X,], - - -, | X,|.

Now let T, be some invariant estimator for # with the property that n¥(T, — 6)
converges weakly to some distribution. (For example, take for T, the median
of X;, X,, .-+, X,,.) Then, if S,(x — T,, 1) == 0, define 7, as the solution of the
following equation:

h(x — Ty) + n¥(t — T)S,(x — T,, 1) = 0
otherwise set 7, = 7.
We have the following:

THEOREM 1. If we assume property (i) stated in Section 1 and

(i)’ lim sup, o A~ §22 3 [f(y + 2) — f(W)fdzdy < 0,
then n(T — T) = 0,(1).



1310 ANDRE ANTILLE

We first prove the following:

LemMA 1. If we assume properties (i) and (ii)’ stated in Theorem 1, then

SUPy < | Ya(7)] = Op(1) ,
for every fixed number M.

Proor. Let Z,(r) = Y,(f) — E[Y,(#)]. Then under assumption (i) we have
(Antille (1972)):

(A) The process (Z,(?)).er—u,+ux cOnverges weakly to the process (tZ),c;_y. 1>
(B) SUPy < |EY (1)
< nM § fY(x) dx -+ MPA, 7§52 §in [f(x + 2) — f()] dz dx,
with A, = 2n—iM.
Now by using assumption (ii)’ we get:
supysu |Ya(0)| < supy<x 1 Z,()| + MK,

for some finite positive constant K.
It is now easy to prove Theorem 1. We can assume that the true value of 6
is 0. We have:

h(x—T)=0

and this is the same as
(1) S, (%, ntT) + (%) =0,
or
) n=tY, (ntT) + niT . § fA(x)dx + h(X) = 0.

By definition T, satisfies asymptotically the following equation:
3) n(Ty — Tp)S,(x — Ty, 1) + n*h(x — T)) = 0.
By subtracting (2) from (3) we get:
(4) n(T — T)S,(x — Ty, 1)

= —Y,(WT) — nT[§ f1(x) dx — S,(% — Ty, 1)]
+ n[h(X) — (X — Ty)] + nT,- S,(x — Ty, 1),
which is the same as:
(5) (T —T)S,(x — Ty, 1)
= —Y,(BT) — Y, (T 4 [T, + mTRY,(L + mTy — Y (T .

The statistic S,(¥ — T,, 1) which appears in the left-hand side of (5) converges
to § f*(x) dx in probability. This follows from the relation

1Su(X = To, 1) — §f2(x) dx| = n}|Y,(1 + niTy) — Y, (n'T))| ,

using Lemma 1 and the fact that the family {n*T},_, , ... is tight.
It is therefore sufficient to show that the right-hand side of (5) is an 0,(1).
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But this is a direct consequence of Lemma 1, using once more the fact that the
families {n?T},_, , .. and {n!T},_, , . are tight.

3. The estimator ¢,'. Let ¢,° be the Lehmann estimator for ¢, (Lehmann
(1963)). Define

ot = (12)73[S,(x — T, 1)]* if S,(x—Ty,l1)=+=0,
ot =a,° otherwise.
We have the following:
THEOREM 2. Under the same assumptions as in Theorem 1 we have:
no o) — 1] = 0y(1).
Proor. Assume again that the true value of 6 is 0. We have:
P (07) — 1]+ S,(% — Top 1) = mi[§ f(x) dx — S,(% — Toy )] .
By definition of Y ,(f),
P§ () dx — S,(% — Ty, 1)] = Y,(n'Ty) — Y,(1 + niT}).
Since we already proved in Theorem 1 that S, (X — T,, 1) converges to { f*(x) dx

in probability, and that Y,(n*T;) — Y, (1 4 niT,) = Op(1), the proof is complete.
Finally we have the following:

THEOREM 3. If f has the properties (i) and (ii) stated in Section 1, then
n¥{o,(op)™t — 1]

has asympiotically a normal distribution N(0, €°), where e* = [ { f*(x) dx]™2.

ProoF. Assume again that the true value of ¢ is 0. Since assumption (ii)’ is
weaker wian (ii), S,(¥x — T,, 1) converges in probability to § f*(x) dx. Itis there-
fore sufficient to show that Y, (1 4 ntT;) — Y, (ntT,) has asymptotically a normal
distribution N(0, ¢?).

Let ¢ > 0 and x be arbitrary numbers. The family {ntTy},_;,... is supposed
to be tight. Hence there exists an M (M depends on ¢) such that

Pl + |niT| < M}z 1—¢.
We have then:

P{Y,(1 + n'T)) — Y, (n*T,) < x} ‘
< PY,(1 + niTy) — Y (mTy) < x, 1 + |mdT,| < M} + ¢
= Pminey, o [Ya(l + 1) = V()] < x} 4+ <.
If n goes to infinity, we get by using the weak convergence of Y, (7) to ¢tZ:
lim, sup P{Y, (1 + niT,) — Y,(nT) < x} < P{Z < x} + ¢.
By using the inequality
P{max, ey, [Ya(l + 1) = Yo()] < 4}
= P{Y,(1 + n'Ty) — Y, (niT,) < x} + ¢,
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we obtain in the same way as before:
P{Z < x} £ lim, inf P{Y (1 + niTy) — Y, (niT) < x} + ¢.
¢ is arbitrary. Hence

lim,_. P{Y,(1 + niT,) — Y,(niTy) < x} = P{Z < x},

n—co

for every x and the proof is complete.

4. Remarks.
(1) Assumption (i) does not imply (ii). For example, if we take

f(x)y=1 for |x] <271,
f(x)=0 for |x| > 271,

we get by easy calculation:
A2 52 o [f(x +y) — f(x)Pdydx =1 forall A>0.
(2) There exist densities which satisfy (i) but not (ii)’. For example, take:
fo) =dlxt for x| <1,
f(x)=0 for |x|>1.

(d is a constant such that § f(x) dx = 1.)
For A small enough we have then:

A 2§ [f(x + ) — [ dy dx = d®A7* (-1 §o [¥7F — (x + y)7#P dy dx
= d*A7 (-1 §o [677(3) WA dy dx
= a(A~%)
where a is a constant.
(3) Condition (ii)’ is satisfied if for example f has the following property:
There exists a finite set of points ¢(—oco, +c0), say t;, < 1, < --- < f;, such
that ]
1. Foreveryj, 1 <j <k, lim, ,f(t; + 9) and lim,,,f(t; — ) exist and are
finite.
2. Inevery interval (—oco, 1), (f;, 1,), - - - (£, 00) [ satisfies condition (a) (with
a = 27" or (b) given in the remark at the end of Section 1.

Proor. It is sufficient to prove for the case where k = 1. Assume for example
that condition (b) is satisfied in the intervals (—co, t,), (¢, 00).
Let g(x, y) = [f(x + y) — f(x)]? and t = t,. We have then:
A2 §t= §0 g(x, y)dy dx = A-2 522 00 g(x, y) dy dx + A= §1738 §8 9(x, y) dy dx
+ A7 §55, §6 9(x, y) dy dx
=A+ B+ C.

Now A = A% 22 (3 [§4 f'(z + x) dz]* dy dx.
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By using the Schwarz inequality and the theorem of Fubini we obtain:
AZ S fP(w)ydu-37A .

In the same way we get a similar result for C. By assumption 1 we obtain, for
A small enough:

B < kA~ {38 {8 dy dx = 4K

where K is some finite constant.
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