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SUFFICIENT STATISTICS AND EXPONENTIAL FAMILIES

By CHRISTIAN Hirp
University of Cologne

Using a locally Lipschitz function T of n > 1 variables one can reduce
data consisting of a sample of size n to one real number. If we are given
a family of probability measures on the real line which are equivalent to
Lebesgue measure then T'yields a sufficient data reduction only if the given
family is exponential. This result is compared with the results of Brown
(1964) and Denny (1970).

0. Introduction and summary. It is well known (see e.g. Koopman [9],
Barankin and Maitra [1], Brown [3], [4], and Denny [7]) that, under suitable
regularity conditions, a family of probability measures admits a real-valued
sufficient statistic for some sample size greater than one if and only if the family
is one-dimensional exponential. It is the purpose of this paper to give regularity
conditions for the sufficient statistic under which the “only if”” part of the above
theorem is true for any family of probability measures on the real line, if each
probability measure is equivalent to the Lebesgue measure (in the sense that it
has the same null sets). This was done before by Brown [3], [4] and Denny [7],
but their regularity conditions fail to be handy or natural. Our proofs are
strongly influenced by the techniques developed in Brown [3], [4] and Denny
(61, [71-

1. The main theorem. Let <Z be the Borel field of R and 4| <% the Lebesgue
measure on <%. Forne N, n = 2, let|| || be the norm of R” and let <& be the
Borel field of R™. For a family p|.<Z of probability measures let p* | <& be the
set of all independent products of identical componentsinp|<Z. AmapT: R* —
R is called locally Lipschitz if for every z € R there exists M € R and open U C
R" containing z such that for all z,, z, e U, |T(z,) — T(z,)| £ M||z, — z,|-

The word “sufficient” is used in the sense of Lehmann ([10], pages 47-48).

1.1 THEOREM. If p|Z is a family of probability measures each of which is
equivalent to 2| %, and if for some n > 2 there exists a map T: R™ — R which is
locally Lipschitz and sufficient for p™|<Z™", then p|<Z is a one-dimensional expo-
nential family. '

This theorem improves Corollary 3.12 in [8] for the particular case k = 1
where the sufficient statistic is assumed to have continuous partial derivatives,
since the existence of continuous partial derivatives for T implies that T is locally
Lipschitz. We remark that our assumption “T is locally Lipschitz” cannot be
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easily compared with Denny’s assumption “T does not isolate sets with a com-
mon density point;” if, however, there exist mand M > 0 such that forall xe R
and a < b, m(b — a) < |T(b, x) — T(a, x)| £ M(b — a), then by our Lemma 3.1
and Lemma 4.2 of Brown [4] T does not isolate sets with a common density
point. We give an example where our Theorem 1.1 applies but Denny’s
Theorem 4.1 of [7] does not:

1.2 ExaMpLE. Let p|<Z be given by the densities
h(x, 9): = I (%) + (2 — Nge)(X) » xeR, 9€]0,2],

with respect to the unit normal distribution N0, 1) |£Z. Then p*|<Z* admits a
real-valued sufficient statistic 7 which is locally Lipschitz (as it has continuous

partial derivatives):

T(x,y)=exp[—i—i] if x>0 and y>0,

X y
— _exp[_*_L_’_iil if X<0 and y<01
X y
=0 elsewhere.

Here Denny’s Theorem 4.1 in [7] does not apply, as the densities A(., ) are not
A-continuous for 9 = 1.

2. Proof of the theorem. W.l.g. we may assume that n = 2. For T: R* —
R let <£(T) be the set of all <Z-measurable functions ¢: R — R for which
there exist a A*-null set Ne &Z* and a <% n T(R?)-measurable function ¢:
T(R?) — R such that for (x, y) € N° §o(x) + ¢(y) = ¢(T(x, y)). Assume that T is
sufficient for p*| <Z*. Let P,| F'c p|F and let (-, P) be a positive finite density
of P| <% with respect to 1|.<%. Then we obtain from the factorization theorem
that

log 4(+, P) — log k(+, Py)) € £(T) forall P|Fep|F.

Hence, if L(T) is the set of all 2-equivalence classes of functions in ~(T) and
if dim L(T) < 2, then p| <7 is a one-dimensional exponential family. To prove
the theorem it therefore suffices to show that T locally Lipschitz implies
dim I(T) £ 2.

2.1 DerINITION. T: R? — R fulfills Lusin’s condition iff for all B ¢ <& with
A(B) = 0 and all xe R #{T(x, y), T(y, x): y € B} is a 2-null set.

2.2 DErINITION. A function 2: R — R is

(a) A-constant (1-continuous) on D C R iff there exists a function f: D — R
which is constant (continuous) on D such that {x e D: f(x) = h(x)} is a 2-null
set.

(b) locally A-constant (locally A-continuous) on D c R iff for all x € D there
exists open U 5 x such that % is 2-constant (2-continuous) on U.
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(c) locally A-constant 2-a.e. (locally i-continuous Z-a.e.) iff 4 is locally A-
constant (locally 2-continuous) on a set D with 2(D°) = 0.

2.3 PRrOPOSITION. If continuous T: R* — R fulfills Lusin’s condition and if any
¢ € L(T) is locally A-continuous 2-a.e. then dim L(T) < 2.

PRrOOF OF PrROPOSITION 2.3.
2.3.1. If every ¢ € &£(T) is 2-constant on R then dim L(T) = 1.
2.3.2. Assume now that there exists ¢, € °(T) which is not 1-constant on R.

2.3.2a. Assume, furthermore, that every ¢ e .(T) which is locally 2-
constant 1-a.e. is A-constant on R. Let ¢, € <(T). Then there exists x,€ R
and an open interval U 5 x, such that ¢, and ¢, are 2-continuous on U and ¢, is
not A-constant on U. Let ¢/, ¢, be the continuous versions of ¢,, ¢, on U.
Then, by Lemma 4 of Denny ([6], page 1231) we have for (x, y) e U? ¢,(x) +
¢;(y) = ¢,(T(x, y)) with continuous ¢;: T(U*) - R for j = 0, 1. According to
Barndorff-Nielsen and Pedersen’s result (i) ([2], page 198) there exist a, b R
such that ¢," = ap, + b on U or, equivalently, ¢, — agp, is A-constant on U.
As ¢, is not 2-constant on U we have A{xe R: #{T(x,u): uc U} =1} = 0.
Hence Lemma 3.2 together with assumption 2.3.2a implies ¢, = agp, + b A-a.e.

2.3.2b. Assume now that there exists ¢, € &(T) which is locally i-constant
A-a.e. but not A-constant on R. In this case we construct open sets H, H,C R
such that 2(H, U H,)* = 0 and L(T) is spanned by the i-equivalence classes of
1y and 1,:

(A) Let M be the complement of a 2-null set such that for x € M there exists
¢(x) € R and an open set U3 x such that A{y e U: ¢,(y) # ¢(x)} = 0. As A(U) >
0 for all open nonvoid U, the number c¢(x) is uniquely determined for x e M.
Let V(x) be the largest open interval I for which xe7 and A{yeI: ¢(y) +
¢(x)} = 0, xe M. Then the union of all ¥(x) with xe M, say K, is open, and
A(K°) = 0.

(B) Letx,x,e M,U;, = V(x,),i = 1,2, U = U, x U,, and U be the boundary
of U. Then T is constant on dU. To prove (B) it suffices to show that for x, € U,
T is constant on {x,} x U,, and for x, € dU,, T is constant on U, x {x,}. We prove
the assertion with x, € 9U,. The case x, ¢ oU, runs similarly. Letu ¢ U, be such
that (x,, u) is no local extremum of T on {x,} x U,. Let }’ be an open interval
containing x,, and V" C U, an open interval containing u. Then for every
m ¢ N there exists y,, € M with |y, — x,| < 1/mand ¢(y,) # ¢(x,). Let V'(y,) =
V' 0 V(y,). If for all sufficiently large m e N #{T(x, y): x € V'(y,.), y € V"} = 1,
then #{T(x,, y):y € ¥} = 1, which contradicts the choice of u. Hence there
exists mye N with {T(x, y): x€ V'(yn), ye V"'} # 1. If {T(x,y): xe V'(Ymg)s
yev"yc (T(U))’, we have (T(V'(yn,) x V") n T(U))" + @. As T preserves
ample sets (see our Lemma 3.4), this implies the existence of z, e ¥( Vmg)s
7,e V", z,e Uy, 2, € Uy with ¢y(2,) = €(ymy)s @ol22) = @ul20) = €(x5), ¢o(25) = €(x;)
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and ¢i(z;) + ¢4(23) = ¢o(2;) + @o(2,), which contradicts ¢(y,,) # ¢(x,). Hence
TV x V") n (T(U))y D T(V'(Ymy) x V") N T(Uy # @. As V', V" can be chosen
arbitrarily small, and T is continuous, we have T(x,, ) € dT(U). As {T(x,, 4):
ue U} C {T(xy, u): ue U, (x,, u) local extremum of T on {x,} x U} U aT(U) is
an interval which is countable, it contains exactly one point.

(C) Now we show that the single point T(dU) does not depend on the special
Xy, X, € M chosen. To this aim it suffices to prove that for x ¢ M and x, € 9V (x),
Tisconstant on {x,} x R U R x {x,}. Now T({x,} x R) = U,ex T({x} x V(x)) U
T({x,} x M°). A(M°) = 0, and Lusin’s condition imply that T({x,} x M¢) is con-
tained in a A-null set. As (J,., T({x,} x V(x)) is at most countable by (B), and
the fact that there is an at most countable set M, ¢ M with {J,. u, V(%) =
U.ex V(x), this implies that T({x,} x R) is a single point. The proof for R x {x,}
is completely analogous.

(D) The set D = |,y {c(x)} has exactly two elements. As 2(M°) = 0 and
¢, is not A-constant on R, we have $D > 2. Assume now that there are x,, x,,
X, € M with ¢(x,) < ¢(x,) < ¢(x;). Let U, = V(x,), ¢; = ¢(x;) fori = 1,2, 3, and
Z,=U, x U, forv=(v,v)eY, Y={(,1),(1,2), (1, 3), (2, 3)}. Let N, be
a A-null set such that for allveY and (x,y)e Ny N Z, ¢fx) + @o(y) =
$(T(x,y)) = ¢, + ¢,, for some & n T(R?)-measurable ¢,: T(R*) — R. Then

(D1) v,v"eY, v+ v implies T(Z, n Ny) n T(Z,, n NyY) = @. As T pre-
serves ample sets we obtain from (D1): Forv,v' e Y, v = v’ (T(Z,) n T(Z,))’ =
@. As T(0Z,) is a single point, say ¢, not depending on v € Y, there are at most
two v’s such that T(Z,) is a nondegenerate interval, one at the left and one at
the right side of 7,. This implies that there are at least two v’s in Y such that
T(Z,) is a degenerate interval. But this contradicts (D1).

(E) From the above we obtain that there exist ¢, ¢c,e R, ¢, < ¢,, and open
sets H,, H, C R such that H, U H, = K and 2{x € H,: ¢y(x) # ¢;} = 0 fori = 1,
2. To prove the proposition it has to be shown that any ¢ € (T) is 2-constant
on H,fori =1, 2. To thisaim we choose V', C H, such that V', = ¥(x,) for some
x;eM,i=1,2. Let{t,} = T(0(V, x V})),i,j =1,2. From 2¢, < ¢, + ¢, < 2c,
we know that T(V;?), T(V, x V,) and T(V,?) are three intervals such that any two
of them have an empty common interior. And at most one of them is degener-
ate. Hence exactly one of them is degenerate. We discuss the two cases:

(E1) T(V, x V) = {t)

(E2) T(V) = {t} or T(V) = {t,}.

We remark that we can interchange the indices 1 and 2 without any trouble if
we simultaneously replace ¢, by — ¢, (to preserve the inequality ¢, < c,).

(E1l) In this case we know that T(V;’) is nondegenerate for i = 1,2. If x,
YEM, V(x)C H,, V(y) C H,, then T(V(x) x V(y)) = {t,}, because otherwise
T(V(x) x V(y)) has a nonempty common interior with T(¥?) or T(V,?) which
is impossible. Hence from H, x H, = {J {V(x) x V(y): ¢(x) = ¢, and ¢(y) =
¢, x,ye M} we get T(H, x H,) = {t,}. Then there exists ce R such that
o(x) + ¢(y) = c for 2-a.a. (x, y) € H, x H, which implies the assertion.
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(E2) W.Lg. we may assume that T(V?) = {t,}, that T(V, x V,)and T(V,’) are
nondegenerate, and sup T(V, x V,) = inf T(V,’) = ¢,. Asin (El)weget T(H,’) =
{t,}. Hence ¢ is 2-constant on H,. Let c € R be such that A{x e H,: ¢(x) # ¢} =
0. Let Nbea A%-null set such that for suitable ¢, ¢(x) + ¢(y) = ¢(T(x, y)) for
all (x,y)eNe. Let N, ={yeR:(y,x)eN}and N, = {xeR: A(N,) > 0}. We
have A(,) = 0.

(E2a) If A{ye H,: T({y} x H,) # {t,}} = 0 fix x,e H, n N°. Then Ay e H,:
o(x) + o(y) # q(t)} < My e Hy: o(x:) + ¢(y) # u(T(x )} + My € Hy: T(xy,
y) # t} = 0, which proves that ¢ is 2-constant on H,.

(E2b) Letnow A{y e H,: T({y} x H,) = {t,}} > 0. If {y e H,: T({y} x H,) =
{t}} > O there exists x € H, with ¢y(x) = ¢;, y € H, with ¢(y) = ¢,, and ¢y(x) +
vo(y) = ¢i(t,). However, T(V?) = {t,} implies ¢,(¢,) = 2¢, which is contradictory.
Hence we must have 2{y e H,: T({y} x H,) = {t,}} = 0. There exists x,e H, n
Ny° such that T({x,} x H)) # {t,}. Lety,e H, n Ny° with T({y,} x H}) # {t,}, and
z€{x,, y,}. Then T({z} x H,) contains an interval of the form (¢, #,) with ¢ < ¢,:
As H, = |J {V(x): xe H,} there exists z’' € H, such that T({z} x V(z')) # {t,}.
Together with T({z} x aV(z")) c T(d(V(z) x V(z'))) = {t;} this implies that
T({z} x V(z')) is a nondegenerate interval having ¢, as an accumulation point.
It remains to be shown that T({z} x V(z')) N (—o0, t,) + @. It suffices to show
that T({z} x V(2')) N (ty, 0) = S = @. If § +# @, connectedness of T(V(z) x
V(z')) and assumption (E2) imply (T(V(z) x V(z')) n T(V}’))" + @. As T pre-
serves ample sets this implies ¢(z) 4 ¢(z’) = 2¢,. But ¢(z) + ¢(Z/) = ¢, + ¢, a
contradiction. As z e {x,, y,} was arbitrary we have (T({x,} x H,) n T({y,} x
H))Y = @. Let W={xeH:(x,x)eNV (y;, X) e NV ¢(x) # c}. Then from
{x;, y;} © N,° we get A(W) = 0. By Lusin’s condition T({x,} x W)and T({y,} x
W) are both contained in a 2-null set. As T({x,} x H;) n T({y,} x H,) has positive
A-measure we obtain T({x,} x (H, n W) n T({y,} x (H, n W°)) = @. Hence
there are z,, z,e H, n W* with T(x,, z,) = T(y,, 25), thus ¢(x,) + ¢ = o(x,) +
o(z) = u(T(xy5 21)) = Gi(T(y2s 23)) = (p2) + ©(22) = ¢(y2) + ¢ As yeN* N
{y e H,: T({y} x H,) + {t,}} was arbitrary we obtain A{y € H,: ¢(y) # ¢(x,)} = 0,
and hence ¢ is i-constant on H,.

2.4 LemMmA. Assume that T: R* — R is locally Lipschitz, and for some ¢ ¢
L(T), x,€ R we have

ess lim inf ¢(x,) < ess'lim sup ¢(x,) .
Then $T(R x {x,}) = 1.

Proor. (Al) Let I be an open bounded interval containing x,. Then there
exists M e R such that for all z,, z,¢ I*

IT(ZI) - T(Zz), = M”Zl - Zz” .
For x e I let v(x) | <& be the signed measure defined by
v(x)([a, b)) = T(b, x) — T(a, X) for a,bel,a<b, and v(x)(B)=0
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for Be <% with B — I°’. Then we have

2.4.1. |v(x)(B)| < MA(B n I)forall Be 2% and xe I,
2.4.2. x — v(x)(B) is continuous for all Be %
2.4.3. x> v(x){yeC: T(y, x) e B} is continuous for all Be &%, C e 7.

Proor oF 2.4.1. Fix an x el and let .~ be the set of all B e <% for which
[v(x)(B)] < MA(B n I). Then & = <% as # contains all intervals [a, b) with
a,beR, a < b, and is a monotone system which is closed under disjoint unions.

Proor oF 2.4.2. Letx,elforn=1,2,... with x, - z¢e I, and & be the set
of all B e <# for which we have lim, . v(x,)(B) = v(z)(B). Then .% contains
all intervals [a, b) with @, b€ R and a < b. Furthermore, . is closed under
disjoint unions. Hence for Be <% and ¢ > 0 there exists A ¢ & with MA(4 A
B) < ¢/2. So we obtain limsup, .y |v(x,)(B) — v(z)(B)| < limsup, . (|v(x,)(B —
A)| + [v(x)(4 = B)| + |v(x,)(4) — v(2)(4)] + [v(2)(B — A)| + [v(z)(4 — B)|) < .

ProoF oF 2.4.3. Let C e <% be fixed, let x, e [ for n e N with x, — z ¢ I, and
& be the set of all Be <% for which we have lim, . v(x,){yeC: T(y, x,) €
B} = v(2){y e C: T(y, z) € B}. We first show that .% contains all open Be <%
with 2{yeI: T(y, z) e 0B} = 0, where 0B is the boundary of B. As the measure
B — A{yel:T(y,z)e B} is regular for all ¢ > 0 there exist compact B, C B,
B, C (B) such that MA{yel:T(y,z)eB n B} <e and MA{yel:T(y,2)¢
(B)* n By} < e. Then

lv(x){yeC:T(y, x,) € B} —v(x,){yeC:T(y, z) e B}
= [v(x{y € C: T(y, x,) € B A T(y, 2) ¢ BY|
+ o)y € C: T(y, x,) € B A T(p, 2) € B)|
< MNyeC:T(y,x,)eBANT(y,2)¢B}
+ MAyel:T(y,x,)¢ BN T(y, z) € B}
< Miyel:T(y, x,) € BAT(y, 2) € By
+ Myel:T(y, x,)e B° A T(y,z) € B} + 2.
Let d = inf {|x — y|: xe B,ye B,or xe B°, ye B;}. Thend > 0 and

lv(x, {y e C: T(y, x,) € B} — v(x,){y e C: T(y, 2) € B}
< 2+ 2Miy e I: [T(y, x,) — T(y, 2)| = d} .
As T is uniformly continuous on /* this implies

2.4.4. limsup,.y|v(x){yeC:T(y, x,)e B} — v(x,){yeC:T(y,z)e B} = 0.
As for A e &# we have 3
[v(x){y € C: T(y, x,) € A} — v(z){y € C: T(y, z) € A}]
= )y e C Ty, x,) € A} — v(x,){y e C: T(y, z) € A}
+ v Ny eC:T(y,2) e A} — v(2){ye C: T(y, z) € A}| .
2.4.4 together with 2.4.2 implies Be .5 .
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To prove the assertion F = <7 it suffices to show that &% is a monotone
system.

As Re &, .7 is closed under complements. Hence it suffices to show that
F,e & forkeN, F, | F,implies F,e % . By Lemma 3.1 we have forall xe J,

Be #
lv(x)}{y e R: T(y, x) € B}Y| < A(B n T(P*)).
Hence

lim sup, .y |v(x,){y € C: T(y, x,) € Fo} — v(2){y € C: T(y, z) € Fi}|
< lim sup, . [v(x,){y € C: T(y, X,) € F}}
— v(2){y e C: T(y, 2) € Fi}| + 24((Fe — Fo) 0 T(F))

for all ke N. Then the assertion follows from F,e % for ke N and
lim, .y A((F, — Fy) n T(P)) = 0.
(A2) Let s, 5, € R be such that

ess lim inf ¢(x,) < 5, < 5, < ess lim sup ¢(x,) .
Then for all open U > x, we have
2.4.5. AxeU:¢p(x) < s} >0and A{xe U: ¢o(x) > s} > 0.

Let 0 < e < s, — s,and R = X+ U X~ a Hahn-Jordan decomposition of R with
respect to v(x,) | <&. Choose k € Z and let

Ct=X"n{xeR:ke < ¢(x) < (k + 1)},
C-=X"n{xeR:ke < ¢(x) < (k + 1)} .
Then we have

2.4.6. v(x,)(C*) = v(x,)(C-) = O.

PROOF OF 2.4.6. Let N, be a 2-null set such that for xe N A{y e R: o(x) +
“o(y) # ¢(T(x,y))} = 0 for an appropriate measurable ¢, and B = ¢~}(—co,
(k 4+ 1)e + s5,). Then Be <&, and for x e R with ¢(x) < s, we have

C2{yeCo(x) + ¢(y) €(—o0, (k + 1) + 5)}
2{yeCo(y)e(—oo, (k + 1))} = C°, for 6 = 4+, —.
Similarly, for x € R with ¢(x) > s, we have
{yeCiio(x) + o(y)e(—o0,(k + e+ )} =@  for 6=+, —.
By 2.4.5, for all open U 3 x, there exists xe U n Ny° such that ¢(x) < s, i.e.

v(x){y e C’: T(y, x) € B} = v(x){y € C°: ¢(x) + ¢(y) € (=00, (k + 1)e + 5))}
= v(x)(C°),

and for all open U 5 x, there exists xe U n N;° such that ¢(x) > s, i.e.

v(x){y e C*: T(y, x) € B} = v(x){y € C*: (x) + ¢(y) € (— 0, (k + 1)e + 5,)}
=vx)(@®)=0, for 6 = 4+, — .
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This together with 2.4.3 implies 0 =lim,_, v(x){y e C*: T(y, x) € B} =
lim,_, v(x)(C’°) for 6 = +, —. Now 2.4.2 implies v(x,)(C?) = 0ford = +, —,
which was asserted in 2.4.6.

As k € Z was arbitrary, we have v(x,)(X*) = v(x,)(X~) = 0, which implies that
T(+, x,) is constant on I. As I was an arbitrary open bounded interval contain-
ing x,, we obtain that T(+, x,) is constant on R which proves the assertion.

2.5 ProposITION. If T: R — R is locally Lipschitz, then every ¢ ¢ £ (T) is
locally 2-continuous 2-a.e.

Proor. If every ¢ e &(T) is A-constant on R the assertion is obvious.
Assume now that there exists ¢, € #°(T) which is not i-constant on R. Then
the closed set K = {xe R: $T(R x {x}) = 1} is of Lebesgue-measure zero. If
for some ¢ € £(T) and x,e R ess lim inf ¢(x,) < ess lim sup ¢(x,), then x,e K
by Lemma 2.4. By Denny’s Lemma 3.8 in [7], page 407 there exists a con-
tinuous function ¢’: K°— IR such that 2{xe K°: ¢(x) # ¢'(x)} = 0. As ¢ is
real-valued and {x € K°: [¢'(x)| = oo} is relatively closed, ¢ is A-continuous on
K°n{xeK:|p'(x)] < oo} As K and {xeK°:|¢'(x)| = oo} have Lebesgue-
measure zero, this proves the assertion.

3. Lemmas. Here we collect the technical lemmas for the sake of reference.
Lemma 3.1 seems to be obvious, and Lemma 3.2 is exactly Lemma 2.4 of [8].
Lemma 3.3 and Lemma 3.4 can also be found in [8].

3.1 LeMMA. If I = (a, B) is an open bounded interval and f: R — R is Lipschitz
on I (i.e. there exists M e R such that for all x,y eI |f(x) — f(y)| £ M|x — y|),
and if v| & N I is the signed measure with v([a, b)) = f(b) — f(a) for all a,be I
with a < b, then for all Be & n f(I) |v{y e R: f(y) € B}| < A(B).

Proor. Let f’ be a Radon-Nikodym derivative of f with respect to the
Lebesgue measure on /. Then |f’(x)] < M for A-a.a. xeI. For continuous
g:R—R let G be an indefinite integral with respect to 1|<Z. Then
§ 9(f())v(dx) = § 9(f(x))['(x)1,(x) dx = G(f(B)) — G(f(«)), as G o fhasgof - [’
as a Radon-Nikodym derivative with respect to the Lebesgue measure on 1.
Hence we have for all continuous g: R — R,:

1§ 9(f CNv(x)| = § 9(x)1 01 (x) dx .
Now we easily obtain the assertion by approximating for given Be <% n f(I)
the function 1, with continuous functions g such that |§ (1,(x) — g(x))v(dx)| +
|§ (15(x) — g(x)) dx| is arbitrarily small.
3.2 LeMMA. Assume that continuous T: R* — R fulfills Lusin’s condition. If
¢ € ZL(T) is 2-constant on some open interval U and J{xe R: $T({x} x U) = 1} =
0, then ¢ is locally A-constant i-a.e.

Proor. Let ¢: T(R*) » R be <& n T(R*?-measurable and N be a 2%-null set

such that for (x, y) e N° ¢(x) + ¢(y) = ¢(T(x, y)), and ce R such that H =
{xeU:p(x) #c} is a 2-null set. If for xe R N, = {yeR: (x,y)e N} and
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N'={xeRR: A(N,)>0}thenA(N*) =0. Fixx,e M=(N)n{xe R: #T({x} x U)+
1}. Then there exist a, b, a, B, 7 such that T({x,} x U) > (a, B) D [a, b] with
a<lyr<b,a=T(x,u),b="T(x,u), u,u,cU. LetV={xeR: T(x, w))e(a,7)
and T(x, u;) € (7, B). Now x, € ¥, and for all xe ¥ n M we have (T({x} x U) n
T({x} x U))’# @. AsF=N, UN,U Hisa 2-null set and T fulfills Lusin’s
condition we obtain that T({x} x (U n F)) and T({x,} x (U n F )) are both con-
tained in a Z-null set. As T({x} x U) n T({x;} x U) has positive Lebesgue
measure we obtain T({x} x (U n F%)) n T({x} x (U n F°) # . This implies
o(x) = ¢(x,). As M°is a 2-null set and xe ¥ n M was arbitrary, ¢ is locally
A-constant 2-a.e.

3.3 LEMMA. Assume that T: R* — R islocally Lipschitz. Then T fulfills Lusin’s
condition.

ProoF. We have toshow that for N e &2 with A(N) =0and xe R T({x} x N) U
T(N x {x}) is a 2-null set. We shall show A(T({x} x N)) = 0. The assertion
A(T(N x {x})) = 0 follows from A(T({x} x N)) = 0 for the map 7(x, y) = T(y, x).
Let U;, ie N, be open such that R = (J,.y U; and T is Lipschitz on {x} x U,.
To prove A(T({x} x N)) = 0 it suffices to show that 2(T({x} x (U, n N))) = 0 for
allie N. Let i, e N be arbitrary and M ¢ R such that for y,, y, Ui, |T(x, y,) —
T(x, y,)| < M|y, — y,|. Then for every ¢ > 0 we can find open disjoint intervals
(@,, b,), ne N, such that Nn U; C U,en (4, 0,)and 3, . b, —a, <. Now
A(T(a,, b,)) < M(b, — a,) implies

A(T({x} x (N0 Uy))) < 25(T({x} x Unex (an, b,)))
é ZneN M(bn - an) < Me .

(2* is the outer Lebesgue-measure on R.) This proves the assertion.

3.4. LEMMA. Assume that T: R* — R fulfills Lusin’s condition. Then T pre-
serves ample sets, i.e. for every A*-null set N e <%* and open U,, U, ¢ R* (T(U,) n
T(U,))° + @ implies T(U; n N°) n T(U, N N°) = @&.

Proor. Choose ¢, ¢ (T(U,) N T(U,))° such that ¢, is not the image of a local
extremum of 7. Let N, ={xeR:4yeR:(x,y)e N} > 0}, z;,e U, n T-{t,};
let, furthermore, z,€ V; C U,, ¥, open rectangles, and x}, x;, y, y.>€ R such
that (x;}, y*), (x? y) e V; and x/}, > e Ny fulfilling T(x}, y!) < t, < T(x2, y5
for i = 1,2. Then if I, is the interval having y,, y,* as endpoints and if J, is the
interval baving x/, x? as endpoints we obtain H, = {x}xLuJ, x{y}cV,
for i = 1,2. As T fulfills Lusin’s condition we have A(T(H, n N)) =0, i = 1,
2. However, A(T(H,) n T(H,)) > 0, and therefore T(H, n N°) n T(H, n N°) #
@. This implies the assertion.
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