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REGRESSION DESIGNS IN AUTOREGRESSIVE
STOCHASTIC PROCESSES!

By JarosLAV HAJEK AND GEORGE KIMELDORF
Charles University and Florida State University

This paper extends some recent results on asymptotically optimal
sequences of experimental designs for regression problems in stochastic
processes. In the regression model Y(#) = Sf(t) + X(t), 0 < ¢t < I, the con-
stant B is to be estimated based on observations of Y(#) and its first m — 1
derivatives at each of a set T, of n distinct points. The function f is as-
sumed known as is the covariance kernel of X(¢), a zero-mean mth order
autoregressive process. Under certain conditions, we derive a sequence {75}
of experimental designs which are asymptotically optimal for estimating ;3.

1. Introduction and summary. Let{Y(r): 0 < ¢ < 1} bea stochastic process of
the form

(1.1) V(1) = Bf(1) + X(1)
where f$ is an unknown constant, {X(7)} is a zero-mean, real stochastic process
with known covariance kernel k(s, 1) = EX(s)X(¢), and f is a known function of
the form

(1.2) () = §Lk(s, () ds
Given a subset 7 of [0, 1], we observe Y(¢) and its first m — 1 derivatives at each
point € T. The parameter § is to be estimated by an unbiased estimator f,
which is linear in the observation set {Y(r): j = 0,1, ..., m — 1;te T} and
which has minimum variance among all such estimators. Given any n, let </,
be the class of all subsets 7', of [0, 1] containing exactly n points. Then the
problem of optimal design is to find a set 7, € <, for which Var 5; < Var f,
forall 7, e &,. Because optimal designs when they exist are generally very
difficult to compute, Sacks and Ylvisaker (1966) introduced the concept of an
asymptotically optimal sequence of designs.

DEFINITION. A sequence {7} of designs is said to be asymptotically optimal
(in the sense of Sacks and Ylvisaker) if
3 — 3,
(1.3) lim, . verfi, = Varg,
inf Var 5, — Var f5,

where T = [0, 1] and the infimum is taken over all T, ¢ ..
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Sacks and Ylvisaker (1969) considered processes { X(¢)} of the form
X(t) = Sé Sé'm‘l e 862 V([l) dtl e dt

m—1

where
lim,_,_ 2 E[V(s)V(1)] — lim,_,» L E[V(s)V(1)] =,
as as
where ¢ is a positive constant. Under certain assumptions, they showed that the
designs T, = {t,,: i = 1,2, - -, n} defined by

i [T di = G ()] di

form an asymptotically optimal sequence. Wahba (1971) recently considered
processes { X(#)} satisfying the stochastic differential equation

(1.4) LX(1) = dW(i)/dt

where W(t) is Brownian motion and L is an mth order linear differential operator
of the special form

(1.5) L=p- ' p ' ...p 1l
(1) @p(1) @y(1)
where ;(1) > 0 and w,(t) € C™~7. (The symbol D denotes differentiation.) A
differential operator L of the form (1.5) has the property that its null space is
spanned by an extended complete Tchebycheff system.
The present paper considers a much broader class of processes {X(f)}, namely
those processes which satisfy a linear stochastic differential equation (1.4) where
L is any mth order linear differential operator of the form

(1.6) L=y a(t)Di, a(tye Ci, a,(1)  0;

thus, {X(#)} is an mth order autoregressive process. The goal of this paper is to
prove, under certain mild conditions, that an asymptotically optimal sequence
of designs for estimating 8 in (1.1) is given by

Vor [@(D)]a, ()]0 dt = 7’; (L [@(0)]a,(H]/emn dr

This result, with a form of error estimate, is stated precisely at the beginning
of Section 3.

There are many examples of processes for which the results of Sacks and
Ylvisaker (1966), (1968), (1969) and of Wahba (1971) are not applicable, but
for which the present results are. One such process {X(¢)} is given by

1 sin 2z(t — )
X[ g t————,————dW N
(0 = 3§ S m=2aws)
which satisfies (1.4) when L = (1 + 6)D* + 4#*1 + 1).

2. Some lemmas. We restrict our attention to an interval [0,u], 0 <u <1
where u is fixed. For any ¢, 0 < ¢ < u, let ¢(+, ) be the unique solution on the
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interval [z, u] of the differential equation L¢(«, r) = 0 subject to the initial
conditions
¢j0(t+’ t) = 5j,mA1/am(t) ) _] = 07 1» e, M — 1

where 0 is the Kronecker delta and the notation ¢, (a, b) means
ogrta

—— (s, ¢ .

0s? ot? ¢)(S ) s=a,t=b
Let g(s, t) = ¢(s, t) if s = t, and g(s, 1) = 0 otherwise. Then g is the Green’s
function for the differential equation Lf = & subject to the initial conditions
f90)=0,;=0,1,.-.-,m — 1. Thus, for fixed ¢, g(-, t) € C™on (0, 7) and on
(t, uy while g,,_; o(1*, 1) — gy o(t™5 1) = 1/a,(t). Similarly, if L* is the operator
L*f = ™ (—1) Di[a,; f], which is adjoint to L, then the Green’s function for
the differential equation L*f = & subject to the initial conditions f‘¥(u) = 0,

j=0,1,.-.,m — lis g*(s, 1) = g(¢, 5).
Let { X(7)} be the process defined by
(2.1) X(1) = §& g(1, 5) dW(s) .

We state some well-known results about the process {X(r): 0 < ¢t < u}: The
process { X(1)} satisfies (1.4) and the initial conditions

(2.2) X9(0) =0, j=0,1,-.m—1.

Moreover, {X(#)} is an mth order autoregressive process so that for 0 < s, <
t < s, < u, X(s,) and X(s,) are conditionally uncorrelated given the set M =
{X(): j=0,1, ---, m — 1}, and hence

(2.3) E{X(s)) — E[X(s;) | MI{X(s0) — E[X(s)) [ M]} = 0.

We associate with the process {X(#)} two Hilbert spaces. The first is the space
7 which is the closure of the vector space spanned by {X(r): 0 < ¢ < u} with
inner product determined by (X(s), X(#)y = EX(s)X(t) = k(s, t). The second is
the space 77" of all real functions % on [0, u] such that (i): For j=0,1, .-,
m — 1, k9 is absolutely continuous and #'?(0) = 0, and (ii): L# is square inte-
grable. The inner product in 777 is given by (A,, h,> = § (Lh,)(Lh,) and 77 is a
reproducing kernel Hilbert space (RKHS) with kernel k. There is an isomor-
phism between 7/~ and ~#” which preserves inner products. The image under
this isomorphism of any random variable Z ¢ .27 is the function A(t) = E[ZX(t)].
For details on the above facts, the reader is referred to Hajek (1962), Parzen
(1961) and Dolph and Woodbury (1952).

Using the foregoing theory with # = 1 it can be shown that for any design T,
Var 3, = ||P, f||* where the norm is taken in 7" and P, is the projection onto
the subspace spanned by {k(+, t): t € T}. Hence the definition (1.3) of asymptotic
optimality is equivalent to
(2.4) lim, . - Ilf— anf”z _

inf ||f — P, fI

where the infimum is taken over all T, ¢ &, .
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For fixed u, 0 S u < 1 let Z7 = {X(u): j=10,1, ..., m — 1} and P, be the
projection operator in 22~ onto the subspace spanned by Z/. Consider the sto-
chastic process {X(r): 0 < ¢t < u} where X(t) = X(t) — P, X(t). The RKHS 57
associated with the process {X(#)} can easily be shown to consist of the subspace
of all functions # € 2# for which 2?(u) = 0 forall j=0,1, ..., m — 1.

LemMA 1. Let ¢ be a continuous function and let
(2.5) w(r) = E[§} §()X(s) ds]X(1)
= E[§; ¢(5)X(s) ds — P, \§ $(5)X(s) ds]X(7) -
Then w(t) is the unique solution to the 2mth order linear differential equation:
(2.6) L*Lw(t) = g(1)
subject to the boundary conditions
(2.7) w(0) = w?(u) =0, j=0,1,...,m—1.

Proor. To show that the solution to (2.6) and (2.7) is unique, we note that
if L*Lo(r) = 0, then 0 = § (L*Lv)v = § (Lv)’ and hence Lv = 0 so that by (2.7)
we have v = 0. Now w(t) defined by (2.5) clearly satisfies (2.7). To show it
satisfies (2.6) let 4, be the function in 2%~ corresponding to X(¢). For m suitable
functions a(7),

X(1) = X(1) — £33 (X9 ()
= §¢[9(t, 5) — 35 a(D)g;4(u, )] dW(s).
Hence Lh(s) = g(t, ) — 3 a,(t)g;,(u, s) and
Lw(s) = §¢ p(O[9(2, 8) — 2 a;(1)g;0(u, 5)] dt .
Now L*g;(u, s) = 0 and L* §¥ ¢(1)g(t, s) dt = ¢(s); hence L*Lw(s) = ¢(s) and
the lemma is proved.
LEMMA 2. Var §¢ ¢(0)X(1) dt = §¢ ¢(t)w(1) dt where w is defined by (2.5).
Proor.
Var §§ ¢(0)X(1) dt = E[§3 ¢(1) §i $(5)X(5)X(1) ds di]
= 5 J(E[§3 ¢(5)X(5)X(r) ds] dt = §3 g(1)w(t) dt .
In the preceding discussion # has been fixed. We now allow u to vary and
indicate the dependence on u by a subscript.

LeEmMMmA 3. Forj=0,1, ..., m,

- sy a0y — (= DI + )
(2.8) lim,_ g+ u N (0) = (2m)! a.%0) #(0) .

Proor. By (2.6) we have
(29) w () = (=1)"a, X(N[$() — T3 b(Hw. (0],

where the functions 6,(¢), which are expressible in terms of the coefficients a (1),
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are of no present interest. Because of the boundary conditions at 0, the Taylor
expansions for w,(¢) and its first m — 1 derivatives take the form

(210) w “)(1) = Z] =0 fj::f!‘,v (m+Jl))('O) -+ 0([27" z)
which, by (2.9), equals

-1 &(mﬂ)(O) I ( )m[zm_L %ﬁ)) ZZm 1y (0) ”’(0)
om0 a,(0)(2m — i)!

Hence the boundary conditions imply

0 = yimog MWL) gy H0) = 50,0, (0)

(m+j = a,%(0)(2m — i)!
+ 0(u2m L) .
Multiplying by u'~*" and denoting «’~"w,™*7(0) by x (), we derive

@11y (EDTUIH0) = i by X (0] sy X(4)

+ o(r™Y.

(2m — i) a,(0) Cm i)
a system of m identities in u. The system (2.11) implies that for j = 0, I,
m — 1, x, = lim, . x,(#) exist and satisfy

+o(1),

(2.12) (DO gy 5 i=0,1, ..
(2m — i)! a,}(0) - o

But equation (8) of Riordan (1968, page 10) shows that the solution to the system
(2.12) is
(2.13) x, = (ZDCm + ) HO)
(2m)! a,*(0)
The proof of the lemma is complete because (2.9) shows that (2.8) also holds for
j = m.
LEMMA 4.

. tmoa YN < $*(0)(m!)*
llmu—»0+ u Var SO ¢(I)X(t) dt = vz(bj(zm) (2m + 1)! '

Proor. From (2.10) with i = 0, we get
lim, 0 w0 g g d
—lim, e S, W OR) here 0 < u; =
(m+j+ 1)!
_ O s (1)
2m)! @, 0) =" m 4 j+ 1
_ 9(0)B(m + 1, m + 1)

(2m)! a,*0)

where B is the (complete) Beta function.
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In the next section we shall need the following lemma, whose proof follows
from Lemma 4 by letting Z(1) = X(r — 1,).

LEMMA 5. Suppose 0 < t, < t,< 1. Let A =1t,— t, and P be the projection
operator in ¢ onto the subspace spanned by {X'9(t,), X'(t,): j=0,1,---, m — 1}.
Then

! 2A2m+1¢2(z )
Var s g(0[X(1) — PX(1)]dt = (™) !
S5 HOLX(O) — PXO e = o T

3. The principal result. We shall prove the following theorem.

+ oAy

THEOREM. Let {X(1): 0 < 1 < 1} be a real stochastic process satisfying the
stochastic differential equation LX(t) = dW(t)/dt where W is the Wiener process and
L is any mth order linear differential operator,

(3.1) L= 5r,a0D7, aeCi,
whose leading coefficient a,(t) is never zero. Let f(t) = § k(s, t)¢(s) ds where ¢ is
non-vanishing and continuous on [0, 1] and where k(s, 1) = E[X(s)X(1)]. If, in the
regression model Y(t) = Bf(t) + X(1), B is to be estimated based on observations

{(Yo(r,):j=0,1,...,m —1;1t,¢eT,}, then an asymptotically optimal sequence
of designs is {T,} = {{{,,: i = 1,2, ---, n}} where
(3.2) Vion [(0)fan(OF 2 de = L Gy [g(0fan (] dr .
n
Moreover,

(3.3) lim,_, n*"||f — Pf

= Gt G 1y OO e,

where P is the projection in # onto the space spanned by {(k'9'({,,, +)}.

Proor. Without loss of generality we can assume { X(1)}satisfies (2.2). (Other-
wise we append the point 7, = 0 to the design without affecting its asymptotic
optimality.) Similarly, we can assume ¢,, = 1 for every design. Also, we note
that any candidate {T,} for an asymptotically optimal sequence must have

(3'4) limn maXL (tz+1,7L - tl'IL) = O *

Now, let{T,} = {{¢,,: i = 1, 2,- .-, n}} be any sequence of designs satisfying (3.4)
and ¢,, = 1. For notational convenience we suppress the second subscript of
t,, we denote the function [¢(f)/a,(?)]* by A(r), and we denote the constants
2m + 1, (2m + 1)/(2m) and (m!)’[(2m)! (2m + 1)!]"' by p, ¢, and ¢, respectively.
By (2.3)
/= PfIF = Var §i ¢()[X(1) — PX(1)] dt

= Var 2105\ g(O)[X (1) — PX(0)] dt

= 25 Var §peng(0[X(n) — PX(n)] dt
where 1, = 0 and P is the projection in . # onto the subspace spanned by
{k'(t,, +)}. Since (3.4) holds, Lemma 5 implies

(3-5) Wf = PfIP = ¢ T At — 1) 4 0(fy — 1)"]
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Having established (3.5) we complete the proof in a manner similar to that of
Sacks and Ylvisaker (1966). Holder’s inequality implies

(3-6) IIf = PAIF = en™/ [ 20050 RV (1)1 — 1)) + o(n™™™)
= e[ {LhYP(1) di]? + o(n~*m) .

To evaluate ||f — Pf|* we apply a mean value theorem to (3.2), which yields
(Foy — L)RVP(1) = n= G RV2(0) di 4 o(n7Y),
and apply (3.5) which yields

37 If = BfIP = ¢ Zizd n=?[§5 (1) di + o(n™m)
= cn ™[} AV2(1) dt]? + o(n™*™) .

This proves (3.3), and the asymptotic optimality of {7,} follows from (3.6) and
(3.7).

4. Remarks.

ReMARK 1. The conditions of the theorem can be weakened somewhat. First,
the condition that ¢ never vanish can be replaced by a condition which restricts
the behavior of ¢ in the neighborhood of any zero. (For example, see Sacks and
Ylvisaker (1969).) Second, although we assume that { X(r)} satisfies the stochastic
differential equation (1.4), we use only properties of the first two moments of
{X(7)}, namely EX(r) = 0 and E[X(s)X(1)] = k(s, 1) = §3 g(t, +)9(s, +) where g is
the Green’s function corresponding to L. Hence the results of this paper are
applicable to all processes of the form X(r) = {jg(¢, s) dU(s) where {U(z)} is a
random orthogonal process with structural measure equal to Lebesgue measure.

REMARK 2. There is a close relation between the statistical design problem
discussed here and certain integral approximation problems. The interested
reader is referred to Sacks and Ylvisaker (1970). (Also, see Karlin (1972).)

REMARK 3. Many of the results of this paper can be extended to the more
general regression model
Y(0) = 2 B:/:(1) + X(1)
where Var f is replaced by a suitable norm on the matrix Var B. (See Sacks and
Ylvisaker (1968).)

Acknowledgments. We thank Professors T. Hallam and J. Sethuraman for
helpful conversations with one of the authors, and Professor J. Sacks for cor-
recting an error in an earlier version.

REFERENCES

[1] Dorph, C. L. and WooDBURY, M. A. (1952). On the relation between Green’s functions
and covariances of certain stochastic processes and its application to unbiased linear
prediction. Trans. Amer. Math. Soc. 72 519-550.

[2] HAJEx, J. (1962). On linear statistical problems in stochastic processes. Czechoslovak Math.
J. 12 404-444.



(3]
(4]
[5]
(6]
[7]
(8]

9]

[10]

DESIGNS IN AUTOREGRESSIVE PROCESSES 527

KARLIN 8. (1972). Ona class of best nonlinear approximation problems. Bull. Amer. Math.
Soc. 78 43-49.

PARZEN, E. (1961). An approach to time series analysis. Ann. Math. Statist. 32 951-989.

RIORDAN, J. (1968). Combinatorial Identities. Wiley, New York.

Sacks, J. and YLVISAKER, D. (1966). Designs for regression with correlated errors. Ann.
Math. Statist. 37 66-89.

Sacks, J. and YLVISAKER, D. (1968). Designs for regression with correlated errors; many
parameters. Ann. Math. Statist. 39 49-69.

Sacks, J. and YLVISAKER, D. (1969). Designs for regression problems with correlated
errors, III. Ann. Math. Statist. 41 2057-2074.

Sacks, J. and YLVISAKER, D. (1970). Statistical designs and integral approximation, in
Pyke, R. (ed.). Seminar of the Canadian Mathematical Congress on Time Series and
Stochastic Processes.

WaHBA, G. (1971). On the regression design problem of Sacks and Ylvisaker. Ann. Math.
Statist. 42 1035-1053.

DEPARTMENT OF STATISTICS DEPARTMENT OF STATISTICS
FLORIDA STATE UNIVERSITY CHARLES UNIVERSITY
TALLAHASSEE, FLORIDA 32306 SoKOLOVSKA 83

PrRAHA 8, CZECHOSLOVAKIA



