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MATRIX DERIVATIVES WITH AN APPLICATION TO
AN ADAPTIVE LINEAR DECISION PROBLEM

By EL1ZzABETH CHASE MACRAE
University of Maryland

A theory of matrix differentiation is presented which uses the concept
of a matrix of derivative operators. This theory allows matrix techniques
to be used in both the derivation and the description of results. Several
new operations and identities are presented which facilitate the process of
matrix differentiation. The derivative theorems and new operationsare then
applied to the problem of determining optimal policies in a linear decision
model with unknown coefficients, a problem which would be cumbersome
if not impossible to solve without these theorems and operations.

1. Introduction. The problem of differentiating the elements of one matrix
with respect to the elements of another matrix is an important one in multivariate
analysis. Ideally, matrix dlﬂerentlatlon should retain the advantages of matrix
notation by producing an array of derivatives which can be expressed in terms
of the original matrices. In addition, there should be some basic underlying
concept which permits the systematic derivation of derivatives for general matrix
expressions without recourse to ad hoc rules.

Previous work on matrix derivatives has produced several formulas which
describe an array of matrix derivatives in terms of original arrays. The derivation
of these formulas has generally followed one of two procedures: either a typical
element of the matrix array is examined in hopes of inferring a matrix expression
for the entire array [1]; or matrices of total differentials are calculated and the
resulting expressions then transformed into arrays of derivatives, using special
theorems [4].

Both these approaches are somewhat unsatisfactory because there is no explicit
underlying concept which suggests what to do if existing rules and theorems are
inapplicable to a particular expression. Furthermore, because of inadequate
notation for dealing with special arrangements of matrix elements, arrays of
matrix derivatives are often described not in terms of the matrices involved, but
in terms of rows or columns or even single elements.

The purpose of this paper is to present a consistent general approach to the
problem of matrix differentiation, and to introduce several new matrix operations
and identities to handle the particular notational problems that matrix differen-
tiation creates. The basic notation for matrix derivatives is described in Section
2 in terms of a matrix of partial derivative operators. In addition, several special
matrix operations are presented along with identities, some of which are new,
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describing their properties. Section 3 lists the most useful of the theorems
regarding matrix differentiation and sketches proofs which follow from the basic
notation discussed in Section 2. In Section 4, the theorems and notation developed
in earlier sections are applied to an adaptive decision problem which has not been
solved prior to the introduction of the theorems and identities presented in this

paper.
2. Basic notation.

2.1. Marrix differentiation. Let X be an m by n matrix, and let Y be a p by ¢
matrix whose elements are functions of the elements of X. Let d/dX be a matrix
of derivative operators, [6/dx,;]. Then the derivative of matrix Y with respect to
X is defined to be an mp by ng matrix of partial derivatives, dY/dX, given by

(2.1) dY|dX = Y @ dJdX

where ® indicates a Kronecker product. Multiplication of a matrix element by
a derivative operator corresponds to the operation of differentiation. Although
Vetter [7] and Neudecker [4] arrange matrix derivatives in a pattern which cor-
responds to the reversed Kronecker product, d/dX ® Y, they do not employ the
concept of derivative operator, and consequently must obtain their results through
ad hoc examination of individual elements.

2.2. Pack operator. The pack of an m by n matrix X, ./(X), is defined to be
an mn-dimensional column vector formed by packing the columns of X below
one another, i.e., the ijth element of X becomes the (i 4- (j — 1)m)th element
of ./(X). The usefulness of the pack operator is enhanced by the following
identities. Let X, Y and Z be conformable to the indicated multiplication. Then
as shown by Nissen [5],

(2.2) AXYZ) = (2R X). /(Y).
In addition, when Wis rby s, Zissby ¢, X is mby n, and Y is n by p, then
(2.3)  WZRXY =[1,@. /(YR X} NZ) D LW @1,

where the subscripts on 7 indicate the dimension of the identity matrix. The
most useful special cases of (2.3) occur when one or more of the matrices W, Z,
X, Y are identity matrices, or when either W.Z or XY is a scalar.

2.3. Permuted identity matrix. Define I, , to be a square mn-dimensional
matrix partitioned into m by n submatrices such that the ijth submatrix has a 1
in its jith position and zeroes elsewhere. E.g.,

00 O

0 0

(2:4) e D
0 1

SO O =
oS o =

This matrix is identical to the matrix /,, defined by Tracy and Dwyer [6]. The
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new notation, however, has the advantage of indicating the total dimension of the
matrix. The following identities can be verified by direct examination.

(2'5) ](‘m,l) = I(],m) = Im s
(2'6) ](m,nl = I:n,m) >
(2'7) I(m,n)l(n,mi = Imn .

In addition, the permuted identity matrix may be used to reverse the order of a
Kronecker product:

(2.8) BoA=1, (AKX B, ,

where 4 is m by nand Bis p by ¢q. These identities are particularly useful in the
calculation of matrix derivatives. One further identity, analogous to (2.3) is:

(2.9)  (WZ® XY)I )

(p,t)

=[1,, @ (U, (XX I, (1,0 Y)R L[ /(W)X 1],
where the dimensions of W, X, Y and Z are the same as for identity (2.3).

2.4. Star product. Many problems involving matrices call for special opera-
tions which cannot be readily described in terms of standard matrix operations.
The star product is a new operation introduced here to fill the gap at least
partially.

Let 4 be an m by n matrix, and let B be a mp by ng matrix. Then the star
product of 4 and B is a p by ¢ matrix C defined by

(2.10) C=A«B=73,a,B,,

where a,; is the ijth element of 4, and B,; is the ijth submatrix of B when B is
partitioned into submatrices of dimension p by ¢. If 4 and B have the same
dimension, the star product is equivalent to the trace of 4'B:

(2.11) Ax B =tr{A'B}, (A, B same dimension) .

The following identities can be established by direct computation, assuming
the matrices are conformable to the indicated operations:

(2.12) X+ YVRZ=Xx(YRZ),
(2.13) ABC = B« ./(A)./"(C"),
(2.14) ABC = B+ (CR I ), (AR ),
and

(2.15) AxD =Dx(AR.AL). (1)),

where 4, B, Cand D are m by p, p by ¢, ¢ by nand sm by rp matrices respectively.
Two additional identities deal with the star product in the context of quadratic
expressions. If 4 and B are m by nand mp by nq matrices, and x and y are p and
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g dimensional vectors, then
(2.16) Ax (I, ® xB(I,® y) = x'(A = B)y
= (Im ® x)A(I'n ®,V,) * B .

Furthermore, if the vectors x and y and each submatrix of B are partitioned as
follows,

(2.17) x=|"1, y=1"|. B,= Biy B
v Z B;’]?" Bl?’]?

then
(2.18) x'(A % By = w'(Ax B*")w + u'(A * B**)z
+ V(A x B*)w + V(A « BY)z,
where B*», etc. are matrices formed of all the noncontiguous submatrices B}

for all i, j.

3. General derivative theorems. In this section, theorems are derived for
matrix differentiation of simple expressions involving the usual matrix operations
and the new operations presented in Section 2. By repeated application of these
rules, some of which are new, derivatives may be calculated for compound
expressions.

THEOREM 1. Let X be an m by n matrix. Then

3.1) . . dXjdX = A1,)7(1,)
and
(3.2) dx'ldX =1, ., -

These two results may be verified by direct application of the definition of a
matrix derivative. Analternative statement of Theorem 1 with different notation
is given by Vetter [7].

The following theorem shows how a compound matrix expression can be
differentiated piece by piece.

THEOREM 2. (Decomposition Rule.) Ler W = F(Y, Z) be a matrix function of
matrices Y and Z which are in turn functions of a matrix X. Then

(33) dW/dX = dF/dX!ZconscanL + dF/Xm)’constam .

This is simply a multidimensional analog of the scalar chain rule, where w =
f(y, z) and,
(3.4) dw _of dy of dz _df

f + U
dx 0y dx 0z dx dx

z constant dx

yconstant

Note, however, that unlike the scalar case, the derivative dF/dX with, for example,
Z constant, cannot in general be written as the product of dF/dY and dY/dX.

THEOREM 3. (Sum Rule.) Ler Y and Z be matrix functions of X, and let their



MATRIX DERIVATIVES 341

sum be defined. Then
(3.5) d(Y + Z)/dX = dY|dX + dZ|dX .

THEOREM 4. (Product Rule.) Let Y and Z be matrix functions of an m by n
matrix X, and let the product YZ be defined. Then

(3.6) d(YZ)|dX = (dY]dXNZ® I,) + (Y ® I,)(dZ|dX) .

By the Decomposition Rule, each term on the right-hand side of (3.6) is the
derivative of the product YZ when Z or Y is treated as a matrix of constants.
Using the definition of matrix derivative, the first term is

(3.7 d(YZ)[dX|z conseane = (YZ @ d[dX)|; constant »
and using the rules of Kronecker products, (3.7) becomes
(3-8) (YZ® (d[dX)])|zconsiane = (Y @ dJdX(Z X 1)

= (@Y[dX\(Z®1,).
The second term of (3.6) is derived similarly.

THEOREM 5. (Inverse Rule). Let Y be a nonsingular matrix function of an m by
n matrix X. Then

(3.9) d(YY)dX = — (Y- ® L)dY/dX) (Y R I,) .
The proof follows from the Product Rule after writing Y=*as Y-'YY-.

THEOREM 6. (Kronecker Product Rule). Let the s by t matrix Y and the p by
g matrix Z be functions of an m by n matrix X. Then

(3.10)  d(Y® Z)/dX = (Y ® dZJdX) + (I, ® [,NZ R dY[dX)(I,., ®I,) .

Under the Decomposition Rule, the first term on the right-hand side of (3.10) is
the derivative with Y held constant. Using the definition of derivative and the
associativity of the Kronecker product, the first term is

(3.11) d(Y @ Z)Jdx|y sonsians = (Y ® Z) ® dJdX
= Y®(ZQ djdX)
= Y®dz/dX .

The second term of (3.10), the derivative when Z is constant, is derived by first
using (2.8) to reverse the order of the Kronecker product, obtaining

(3.12) YR®Z =1, ,(ZRY),,,

then using the Product Rule. Vetter [7] and Neudecker [4] give results similar
to Theorem 6, but they must define ad hoc matrices for the second term on the
right-hand side of (3.10) since they do not have the permuted identity matrix
and identity (2.8).

In many cases it is convenient to take derivatives of the pack of a matrix or
with respect to the pack of a matrix. Pack derivatives are especially useful in
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calculating the Hessian which involves differentiating first with respect to . /(X))
and then with respect to./”(X). In general, derivatives involving packs may be
expressed in terms of ordinary matrix derivatives through the use of identities
(2.2), (2.3), and (2.9). As an example, consider the differentiation of the p by
g matrix Y by the pack of an m by n matrix X. Since the vector of derivative
operators d/d. ~(X) is equivalent to ./ (d/dX), the derivative may be written,
using (2.2) as

(3.13) dYld /(X)) = Y®./(dldX) =YX ddX ®1,)./(1,),
which may be factored to give
(3.14) dYld./(X) = dY[dX' ® 1)1, & .~ (1,)) .

It is possible to calculate many other derivatives which involve packs in various

ways, but since they are not of general interest they will not be given here.
Derivatives of star products may be calculated from the definition of matrix de-

rivatives using identities (2.12)and (2.15)along with the Decomposition Theorem.

THEOREM 7. (Star Product Rule.) Ler Y and Z be p by q and ps by qi matrix
functions of an m by n matrix X.

(3.15)  d(Y x Z)/dX
= YsdZ|dX + Z « (I, . /(1) ® 1)dY[dX)(1, & ~"(1)® I,) .
COROLLARY. If X and Z are the same dimension, then
(3.16) d(Y « Z)jdX = Y «dZ]dX + Z «dY]dX .

The Star Product Rule may also be used to find derivatives of Y’ in terms of
derivatives of Y, since from the star product identity (2.14) the transpose of a p
by ¢ matrix ¥ may be writtenas Y’ = Y/ .

The final derivative theorem involves a scalar function of a matrix. While it
is possible to derive a general rule for differentiating a matrix function of a matrix
(see Vetter [7]), the expressions in general are of a form which can be handled
by repeated application of the foregoing theorems, and a special theorem is not
necessary.

TueoreM 8. (Chain Rule.) Lerw = f(Y) be a scalar-valued function of a matrix
Y which is in turn a function of a matrix X. Then the derivative of w with respect to
X may be written

(3.17) dwldX = dw]dY «dY|dX .
The elements of dw/dX may be evaluated using the ordinary chain rule;
(3.18) dwldX = i aw/ayij-dyij/d/\/.

But dy,;/dX is simply the ijth submatrix of dY/dX, so that (3.18) is the star pro-
duct given in (3.17).
Thus far, relations among the elements of the matrix X, if any, have been
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ignored; derivatives with respect to each element have been calculated with all
other elements held constant. If matrix elements are functionally related to one
another, however, it may be desirable to calculate ‘“total partial derivatives”
where not all of the other matrix elements are held constant while differentiating
with respect to one element. In the two most common instances, where the
matrix X is either symmetric or diagonal, it is intuitively clear how the appro-
priate constrained matrix derivatives should be constructed. Unfortunately,
when the relationships among the elements of X are more general, the nature of
the constrained matrix derivative is ambiguous inasmuch as it may be unclear
which matrix elements are to be held constant or not during differentiation.

When matrix constraints appear in the context of an optimization problem,
they are most easily handled with Lagrangean multipliers, rather than by cal-
culation of constrained matrix derivatives for the first order conditions. For
example, suppose the problem is to maximize a scalar function f(X) of an m by
n matrix X subject to a system of linear constraints,

(3.19) X+B=C,

where B is mp by ng and C is p by ¢g. Introduce a p by ¢ matrix of Lagrangean
multipliers, A, and form the augmented objective function, g(X, A),

(3.20) g(X, Ay = f(X) + A« (X«B—C).

The first-order conditions, obtained by differentiating with respect to X and A
while holding the other matrix constant, and setting the results equal to zero, are:

(3.21) dg/0X = df]ldX + A« B+ =0
and

(3.22) 0g/oA = X+«B —-C =0,
where B* is a permuted version of B:

(3.23) Bt =1,,.BIl,, -

4. Application. The theorems, identities and operations developed in this
paper can be applied in many areas of multivariate analysis. This section deals
with one such application, the determination of an optimal strategy in a dynamic
model characterized by a system of linear stochastic equations with unknown
coefficients and a quadratic objective function. An approximate solution for
the scalar or single-equation case has been developed by MacRae [3], but without
appropriate notation for matrix differentiation and special operations the exten-
sion to the multi-equation case is almost impossibly cumbersome.

In the multi-equation decision problem, the vectors of policy variables,
u, u,, ---, u,_, and the vectors of state variables, x,, x,, --., x, are related
through a system of linear stochastic equations with unknown coefficients. The
changing level of information about the coefficients (gained from observations
on the state and policy variables in each period) is captured by modeling the
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unknown coefficients as random variables, deterministically related between
periods to reflect the changes in the level of uncertainty. Mathematically, the
system of equations is

4.1 X = Byu, +Cz, + ¢, , k=0,---,N—1.
The vectors z,, z;, - -+, zy_, are known exogenous variables, and ¢, is a normally

distributed random vector with mean zero, with covariance matrix Q (same for
all k), and independent of ¢; if j = k. For conciseness, (4.1) may be written
4.2) Xer = Dyw, + ¢, k=0,...,N—1,
where D, = [B,, C,]and w,’ = [u,/, z,’]. The n by p matrices D,, k =0, -,
N — 1, are random with mean D (same for all k) and covariance matrix I",
(covariances among the elements of D, arranged by rows), and are statistically
independent of one another and ¢’s. The np by np-matrix T', is defined by a
dynamic equation:

(4.3) L=, 4+ E{(1, @ w,)Q (1, @ w,”) | o} k=0,.-.,N—1
where the expec.tation is with respect to the D’sand ¢’s, and ', and x, are given.
The problem of the decision maker is to choose vectors of policy variables,

Uy, Uy, -+ ++, Uy_y, SUbject to constraints (4.2) and (4.3) so as to minimize the ex-
pected value of a quadratic objective function,

(4.4) J=E{(Fia 33/ QX + S Ry + x/5 + w1 X},
where the expectation is with respect to the D’s and ¢’s.
To solve the problem, matrices of Lagrangean multipliers are introduced to

deal with the covariance constraint (4.3), yielding an augmented objective
function:

4.5) V=J+ XM« (T, =T = E{(1,® w Q7 (], ©w,) | X} -

The algorithm, then, for deriving optimal strategies is recursive. First of all, the
Lagrangean matrices, M,, ---, M,, are assumed to be arbitrarily chosen. Then
in each period k it is assumed that policy variables for all previous periods
(through u, _,) are given and that all future variables (from u,*, xj,, on) have
been optimally chosen as functions of earlier variables. Next, expressions are
determined for the current variables, u,_,, x,, I',_; to minimize ¥ subject to the
state constraint (4.2). Finally, the matrices M, are chosen to satisfy the variance
constraint (4.3) (which depends on M through the optimal expressions for I, u,
and x) so that V and J are equal.

Let V, be the value of V' in period k when the optimal expressions for future
policy and state variables are substituted. The form of ¥/, will be the same for

all k, namely:
Ve = E(3x/K,x,, + S Rty + X9, + U1t
(4.6) — IM X1, @ w, )AL, @ wiy) | X} + 3(M, s — M)« T
+ (terms not involving «,_,, I',_,, or x,).
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This form is clearly valid for k = N with g, = s,. By induction it will be shown
valid forall kK, k =1, ..., N.
Substitute the state constraint into (4.5), rewrite the second line as a quadratic
form using the star product identity (2.16), and combine terms to obtain:
Ve = E{$w,_ (D0, D,y — Q7' x Myw,_, + Jui_, R, u,
(4.7) + Wi Dl g+ ua | X} + H(M — M) < T
+ (terms not involving u,_,, T',_,, x,) .
Next, evaluate the expectation of the D expressions, using the star product
identity (2.13) to separate out the nonrandom Q, in the first expression, and
recalling that D,_, is independent of w,_,, yielding:
Ve =E{3w,(D'O.D + Q, + Ty — Q7' Myw,_, + Jup  Rouy
(4.8) + Wi D'y 4wt X} + 3(M o — M)« T
-+ (terms not involving u,_,, I',_, x,).
The expression ¥, will be minimized with respect to «, _, if the expression within
the expectation is minimized. Use (2.17) to expand the first quadratic term of
(4.8)intermsof x,_,, u,_,, z,_, and submatrices of I',_, and M,, then differentiate
with respect to u,_,, using the Product Rule and the pack identity (2.2):
(4.9) AV, Jou,_, = [B'Q,B + Q, » T1% — Q' « M,"" + R]u,_,

+ [B'0,C + O, * | MkB(w]zk—l + B9, + 4,
where the superscripts on I and M refer to particular submatrices. The optimal
expression for u,_, is therefore given by setting 6V, /ou, _, equal to zero, yielding:
(4.10) u,_, = —H f_
where H,_, is the expression in the first pair of brackets in (4.9) and f,_, is the
expression on the last line. Minimization with respect to T',_, is done by
differentiating with respect to I';!;, using the identity (2.16) again, the Inverse
Rule, the Star Product Rule, and the fact that I',_, is nonrandom, yielding a
~ first order condition:

(4.11) M, =M, + T, _[E{,® wk—l)Qk(”n ® w;c-—l)xo}]]'_‘k—l .
To show that V,_, has the same form as V/,, substitute the optimal expression
for u,_, into V,:
Vi = Vil -+ -5 0y, Xop - -+, X,%)
= E{3x,_1 Qi Xy S o Ry + Xi Gy U oty

(4.12) — IM o (1, QO w, ) Q7] Q0 wis) | X}

+ M, —M_ )T,

+ (terms not involving u, ,, x,, or I',_;),
and

(4.13) 1 = S — Fio HGL iy
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Since ¥, has the same form for all k, the optimal strategies for this problem are
defined for all k£ by equations (4.10), the state constraints (4.2), the first-order
conditions for variance (4.11), and the variance constraints (4.3) which implicitly
determine the Lagrangean matrices, M. The equation (4.13) is definitional. For
a more extensive discussion and interpretation of this problem and its solution,
see MacRae [2].

5. Conclusion. This paper has presented a number of identities and developed
a number of theorems for matrix calculus which facilitate operations on multi-
variate problems. The derivative theorems, which are based on the concept of
derivative operators, give general rules for dealing with the more common
matrix expressions, while the new special operations and identities provide a
means of rewriting cumbersome matrix expressions in more concise and useful
forms. The utility of these identities and theorems in demonstrated by applying
them to an adaptive decision problem, the solution to which would have been
tedious if not impossible without them.
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