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MULTIPLE HYPOTHESIS TESTING BY FINITE
MEMORY ALGORITHMS

By S. Yakowirz
University of Arizona and Naval Postgraduate School

In recent years, a theory has been emerging concerning the statistical
power of small computers. In the present paper it is proven that in the
sense peculiar to this literature, small computers (mathematically equiva-
lent to finite automata) can in general be designed to solve multiple simple '
hypothesis testing problems. In many cases, only one state for each hy-
pothesis is needed. Ina more conventional sense, we reveal the construction
of finite automata which implement sequential decision procedures having
the capacity to distinguish between any given finite set of probabilities
with any desired accuracy. Finally, some results on the ability of finite
automata to track time—changing hypotheses are outlined.

1. Introduction and preliminaries. In the tradition of studies by H. Robbins
[8], Isbell [7], Samuels [10], and Hellman and Cover [6], this work is devoted
to the investigation of some of the statistical powers of finite automata (FA’s).
Specifically, let (77, .%/) be a measurable space on which is defined a finite
family .©7= {P;: 1 < j < M} of probability functions and suppose (S, . 7, f) to
be a finite automaton (FA) with (finite) state set S, the input set being the sample
space 7 of the measurable space ( 7,. /"), and f an . .-~measurable function
mapping S x '/ into S. An initial state s(0)e S and an / -valued sequence
{X(i)} having been specified, a FA determines a sequence of states {s(n)} (called
a trajectory) by the following recursive rule: s(n + 1) = f(s(n), X(n)). Our de-
finition of FA differs from that in Arbib [1], for example, only in the inessential
aspects that we do not define an “output” and do not restrict the input set to
be finite. It is to be understood that an algorithm has finite memory (by de-
finition) if it can be implemented by some FA.

In the aforementioned studies as well as this, a FA is employed for hypothesis
testing as follows: Let {X,} be an independent random sequence of '/ -values,
each member of which has the common probability distribution Pe../. The
random sequence {X(n)} serves as input to the FA whose initial state is some
arbitrarily chosen state in S. The reader will recognize that the random trajec-
tory {s(i/)} so induced is a stationary Markov chain—a fact which will be used
without comment in our analysis. The state set S having been partitioned into
subsets S, S,, - - -, S, indexed by the same set as ./ the quality of performance
of a FA is measured by the asymptotic relative frequency that the s(n) € S,, k
being the index of the common distribution P, €. 'of the X,’s. Let us precisely
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324 S. YAKOWITZ

define a quality number of a FA for the hypothesis testing task just described.

DEeFINITION. Let (77, .27, &, (S, 72 f), Si, S, -+, S, be as above and
assume that each P; ¢ ~”induces a unique invariant probability measure v (.)
on S, S,, ---,S,. The probability of error of the FA is

max {1 —v(S,): 1 <7< M}.

The probability of error is taken to be the “worst case” relative frequency that
the FA is not in the set S, C § having the same index as P,, the probability in .2~
governing the distribution of the X;’s. Let ussay that the FA hypothesis testing
problem is solvable if for every positive number e there is some FA having prob-
ability of error less than e.

In the course of our analysis, we will see, for example, that if randomization
is used, for any .27} the hypothesis testing problem is solvable. Further, if for
every e > 0 and any two members P, and P, €., there is an event A, such that
min {P[A4,]/P;[4,], P;[A4,]/P[A]} < e, then the hypothesis testing problem is
solvable within the family of M state machines, M being the cardinal number
of A

In Section 4, statistical hypothesis testing by FA’s is put into a more con-
ventional framework, namely that of Wald’s [12] statistical decision functions.
Specifically, (77, .%/), ../} and a positive number e having been given we show
the construction of a FA with a state g, for each P; such that with input
sequence {X,} of i.i.d. variables, eventually the FA enters some state ¢, never
to leave (i.e., the ¢,’s are absorbing). This signifies the estimate that {X,} has
the distribution P,. We have that for any e > 0, ./} and the FA we construct,

P [absorbing state is ¢;] > 1 — e, 1< M.

The paper closes with some preliminary studies of the capability of FA’s to
keep track of the underlying law P; for the sequence {X,} for which, from time
to time, the underlying law changes to other distributions in .2

For historical perspective, let us review results and techniques of some of the
fundamental publications on statistical FA’s. H. Robbins proposed [8] a two-
armed bandit problem of selecting, on the basis of the past r tosses (r a fixed
number), which of two coins (whose Bernoulli parameters are initially unknown)
should be tossed at time n (n = 1,2, -..). The object is to achieve the maxi-
mum proportion of heads, or equivalently to choose the coin having the higher
probability of heads the greatest proportion of time. He proposed the strategy,
“Start tossing with coin 1. Stop if the first toss is tails, otherwise continue toss-
ing until the first run of r successive tails occurs and then stop. This defines the
first block of tosses with coin 1. Now start tossing with coin 2 and apply the
same rule, obtaining the first block of tosses with coin 2. Then start again with
coin 1, and so on indefinitely, thus generating an infinite sequence of tosses
consisting of alternative blocks of tosses with coins 1 and 2.” In order to put
this strategy into our framework, it is necessary to make some artifices; let us
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assume that actually both coins are tossed at each epoch, but for each se S
f(s, X) depends only on either the first or second coordinate of X. Then .7 is
taken to be the set of 2-tuples whose coordinates are either H or T—the first
coordinate corresponding to an outcome on coin 1 and the second to the outcome
of coin 2. The FA illustrated in Figure 1 implements Robbins’ strategy. Robbins
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Fic. I. FA implementation of Robbins’ finite memory TAB strategy.

proved that the probability of error converges to 0 as » becomes arbitrarily large.

Isbell [7], Smith and Pyke [10], Samuels [11], Cover [3] and Cover and
Hellman [4], improved on Robbins’ strategy in the sense that their strategies
give lower error for fixed memory length, where “memory length” is the upper
bound to the number of successive past outcomes determined by the current
state. Cover and Hellman provided a lower bound to the achievable probability
of error by FA’s with a given number of states, and gave the construction of a
class of FA’s having members whose performance comes arbitrarily close to
the unachievable lower bound.

Cover [3] and Hellman and Cover [6] extended the finite memory hypothesis
testing problem to a general class of two hypothesis problems. In particular,
the latter paper is definitive in that it develops a lower bound to the probability
of error of an n-state FA (n fixed) for a given problem and gives the construction
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of n state FA’s which perform within any given tolerance of this (unachievable)
bound.

Sagalowicz extended the FA theory to multi-hypothesis problems. In his Ph.
D. thesis [9] under the direction of Professor Cover, he conjectured our Theorem
1, proving it in certain cases (such as the three-hypothesis problem) and outlin-
ing its wide domain of applicability.

Our appraisal is that an automata theory viewpoint on statistics is important
because ultimately statistical schemes must be implemented by computers and
automata theory is the theory of what can be accomplished through digital
computation. There may be some delicacy required in going from an arbitrary
statistical rule to a computable procedure. For example, Cover [3] shows that
in a certain problem if the decimal expansions of the observations are truncated
the usual test is no longer consistent, but a new one may be devised which is.
FA’s are the accepted mathematical model in computer science for small, special
purpose digital computers. On the other hand, Turing machines, or equivalently
recursive functions, are thought to represent large digital computers.

2. FA hypothesis testing solvability.

LEMMA. Let an irreducible, aperiodic Markov chain with states 1,2, - .-, M — 1
be augmented to allow passage between state M — 1 and a new state, state M. That
is, if A = |a,;] and B = [b,;] are respectively the original and augmented Markov tran-
sition matrices, a;; = b,; if i, j< Mandior j< M —1. b, |, =a,_,,_; —
by 1y by, =0 for k <M — 1. Under these circumstances, if v(+) is the unique
invariant distribution for A, B has a unique invariant distribution u(+) determined by
the conditions,

u(j) = (1 — u(My(j). j< M,
u(M)/u(M - 1) - b,1/—1,)//b41,;1—1 .

The proof is computational and follows directly by substitution of the asserted
solution for u(.) into B.

AssumPTION 1. For every positive number e, 1 < i, j < M, there are sets
A;;(e) €. ~ which have the properties

(i) P(A,;(e)) >0, Pe.
(if) for j =+ kand all ¢ > 0, 4,,(e) N A,,(¢') is empty, and
(i) P (A;5(e))[Pi(A;(€)) < e.

THEOREM 1. Assumption 1 is a sufficient condition that the FA hypothesis testing
problem be solvable by a class of FA’s having one state for each hypothesis.

Proor. The proof proceeds by induction on M, the number of hypotheses.
It would be sufficient to start with the trivial case (M = 1), but it is mildly in-
structive to consider the case M = 2. Assume e is a positive number, i, je S =
{1, 2}, and f(i, x) = j if and only if x e 4,,(¢) when i # j. The Markov chain
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induced by the FA has the transition matrix (as in Feller’s [5] definition).

[1 — Pi(A,y(e)) Pj(Azl(e))T
P;(A(e)) I = Pi(4u(e))

where superscript 7" denotes ““transpose”. As all the coordinates are positive, it
is known that the matrix is aperiodic and has a unique invariant probability,
u(+), on S. Slight algebraic manipulation yields

u(l)y = [P(An(e)/P;(Aw(e)]u(2) j=12.

Assume P, is the active hypothesis; recalling Assumption 1, we write

u(l) > (1/e)u(2) .
The side condition that u(1) + u(2) = 1 gives us

u(1) > (1/e)(1 — u(1))
or

u(ly > 1/(1 + e) .
Consequently, u(1) > 1 — e. The situation is symmetric so that under P,
u(2) > 1 —e also.

Now let us discuss the inductive step. Suppose that for any M — 1 hypothe-
sis problem satisfying Assumption 1 and for any positive number d, there is
some M — 1 state FA having probability of error less than d. Let us suppose
further, as part of the inductive hypothesis (note it holds for the M = 2 case)
that if transition from state / to state k, i = k, has positive probability, then

(s £, x) = k)

is of the form A, (h), for some k > 0, as described in Assumption 1. These
conditions are sufficient to ensure that under each Pe../’the resulting Markov
chain has a unique invariant probability, v(-). Now let us suppose that an extra
probability function, P,, is augmented to the set {P,, - .-, P, _,} and that Assump-
tion 1 still prevails. Let ¢ be some hypothesis number such that for any ¢ > 0,
there is some FA (of the above type) having probability of error less than d and
having invariant probability under P, which satisfies

(1) = v()) » l<j=M—1.

There must be some such 7 inasmuch as there are only finitely many hypotheses.
For the rest of this proof, we will restrict our attention to the class of M — 1
state machines satisfying the above inequality. To construct a FA for the M
hypothesis problem we are going to augment a state, call it M, to the chain with
states {1, 2, --+, M — 1}, as in the lemma; that is, we allow passage to state M
only through state 7. Such transition takes place whenever the system is in state
t and event A,,(c) occurs (the constant ¢ will be determined presently) or when
the system is in state M and event A,,(c) occurs. Denoting the invariant
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probability of the augmented chain by «(.), under P,
u(M) = [Py (A, (€))] Py(Ay.(€))]u() -

Recalling Assumption 1 and the lemma, we write
u(M) > (1feyo()(1 — u(M)) .
We defined ¢ so that under P,, v(f) = (M — 1)7'; so the above inequality
implies
u(M) > (e(M — 1)) (1 — u(M))
and solving explicitly for u(M) we have u(M) > 1/(1 + (M — 1)c) whence
(1 uM)y>1— (M — I)c, under P, .

Under P, (recalling the inductive hypothesis that the original FA has prob-
ability of error < d), u(r) = (1 — u(M))v(t) > (I — u(M))(1 — d). But from
the lemma, u(M) = P,(A,,(c))/P(Ay.(c)) u(t) < cu(t), which allows us to substi-
tute for u(M) as follows: u(r) > (1 — cu(t))(1 — d), which, when solved explicitly
for u(f) can be reduced to

(2) uit)y >1—d—c, under P,.

Finally, under P, k # tor M, define r, = P (A,,(c))/P,(Ay,.(c)). Then, u(M) =
rou(r) = r(1 — u(M))v(r), and solving for u(M), we find u(M) = r(0)/(1 +
r(r)) < ro(r), and w(k)y = (1 — u(M))v, > (1 — r,v(r))v,, which, by the in-
ductive hypothesis that the M — [ state machine has error less than d, assures
us that

3) u(ky > (1 — rd)(1 — d), under P, .

The proof is completed by showing that given ¢ > 0, positive numbers ¢ and
d can be selected so that from (1), (2), and (3), u(j) > 1 — e under P, j =
1,2, ---, M. First select ¢ so that (M — 1)c < e (and thus u(M) > 1 — e under
P,) and also so that ¢ < e/2. Note that if d < e/2, u(t) > 1 — e, under P,. c
having been selected, the r,’s are determined and, letting r = max {r,: k =
1, .--,M— 1,k + t}choosed’so that (1 —rd")(1 —d') =1 —-d(r+1) >1—e¢
and observe that if d < min {e/2, d'} then by (2) and (3) under P, u(j) > 1 — e,
for j < M.

PropPOSITION 2. If, for each triple of hypotheszs numbers i, j, k, i + j, there are
sets A,; (disjoint in j) such that

(4) PlA)P[A:) <1 and  P[A;]> 0,
then the FA hypothesis testing problem is solvable.

OUTLINE OF PROOF. We only sketch the proof inasmuch as it follows the ideas
of the preceding proof. Again, the argument depends on finite induction. For
M = 2, consider the machine in Figure 2. Observe that if T,; is the expected

time for passage from il to jl, then T,; is the expected waiting time for N
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successive occurrences of A4,;, whose formula is found in Feller ([5], page 321).

If u(+) is the invariant probability, one readily confirms that

(3) u(S)u(Sy) = Tiof T s

and as N increases, this ratio converges to infinity or zero according to whether
the underlying probability is P, or P,, and consequently we have solvability.

Now assume that for every positive number 4, and for any M — 1 hypothesis
problemssatisfying the conditions of the proposition, there is a FA (whose generic
set S; is illustrated in Figure 3) which has probability of error less than d. We
take N;, = N,; and observe that the FA of Figure 2 is a special case of this
machine. Asinthe proof of Theorem 1, givena hypothesisset. /"= {P,, ---, P,},
we begin by restricting attention to a subclass of the above FA’s which solve
the testing problem for {P,, - --, P,_,} and additionally, for some fixed hypothe-
sis number ¢ and under P, have invariant probabilities v which satisfy

(6) v(S,) = u(S,), l<j<sM—1.

To modify this class of FA’s to solve the M hypothesis problem, first append
a string of N states to 1 in the manner illustrated in Figure 4. For now, leave
out state set S, and branches between S, and S,. Verify that this modification
has been done so that the transition probabilities between those states Q of the
FA not shown in Figure 4 are unchanged by the modification. Further, if
geQ and je Q, the probability of transition from j to ¢ in the partially

STATE SET Sy | STATE SET S
. A
| ™_+T70 Sy,
T0'S
| Aty v
] Mt | A Sim |
| L B (U ApS
Bmt = Bmi | I Ton ! jev

AMtC I WHERE V=ALL S; IMMEDIATELY
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|
Amt
| A1 Stw
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Bwmt Ami —“ ~Aym
[ Atm “\_FroM OTHER
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| Bim Bitw
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} ______ tw
‘ ’ Ayy T0 Syv
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FiG. 4. Augmenting FA for M hypothesis problem.
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augmented FA is the same as that from 1 to j in the original. From these and
related developments, one may conclude that under any member of ./, the
invariant probabilities v(S;), 1 << M — 1, are unchanged by the partial
modification.

Now to complete the modification attach set S, as shown in Figure 4 and
denote invariant probabilities of this final machine by u(.). By studying the
expected waiting time in S, (not counting excursions to S;, j #+ M) until passage
from ¢1 to M1 occurs, one may verify that under P, c. /|

(7) QuN) = u(Sy)[u(S,) = (PLA]/PLAy])" i—:—%"{ﬁ:”'};ﬁ :

Also, from generalization of the lemma, u(S;) = (I — u(S,))v(S;), 1 £ j < M.
Recalling that »(S,) = 1/M — 1 under P,, verify that (under P,),

(8) U(Sy) = (M — D/Qy(N)] + D).

Let d denote the probability of error of the original FA for the M — 1 hypothe-
sis problem. Then under P, it is quickly seen that

) u(S) > (1 — QN)(1 —d).
Similarly,
(10) h u(S,) = (1 — QuN))(1 —d).

The argument is completed by showing that given e > 0, N and then 4 may
be selected so that the resulting FA has probability of error less than e. Notice
that as N grows, Q,(N) — co and Q,(N) — 0. Therefore, N may be selected so
that by (8), under P,, u(S,) > 1 — e and also Q,(N) < e/2. For N so chosen,
d < e/2 (and so by (9), under P, u(S,) > 1 — e) in such a manner that the right-
hand side of (10) is greater than 1 — e for each k = ¢, M. From this we conclude
that the probability of error of the FA is less thane, i.e., under P;, 1 < j < M,

(11) uS)>1—e.

3. Randomization and the domain of FA solvability. While arbitrary finite
subsets of some important probability families satisfy Assumption 1 (for instance
a multivariate normal family with fixed covariance matrix), subsets of others
(notably a multivariate normal family with fixed mean vector) do not. We can,
nevertheless, satisfy Assumption 1 for this and many other families by adhering
to the tradition of Hellman and Cover [6] and Samuels [10] in allowing randomi-
zation. To achieve this, we assume that the events in the product field . .7 =
./ x .#, where . /"is the o-field of the hypothesis testing problem and . ~’is the
Borel set for the unit interval. For P; €., the associated probability P/e. "’
on . ./ is the product probability of P; and P, where P, is the uniform proba-
bility distribution. If . 'is some given set of probabilities on . ., . /” denotes
the associated set on . .~/ obtained from . /'as just described.
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PROPOSITION 3. If P is a finite set of probabilities such that for each distinct
pair of indices,

(12) inf, P[4]/P,[4]  or  inf, P,[A]/P[4] =0,
then & satisfies Assumption 1.

Proor. Let P,, P; be any two probabilities in .~”. Suppose inf, P,[A]/P,[A] =
0, and e is any positive number. Let 4 be some event such that

0 < P[A]/P;[A4] < €'/2.
We leave it to the reader to see how randomization can be used so that the

following method goes through even if P[4] = 0. Let B be any event in .“#'such
that P,[B] = (e/2)P,[A]. Then

A, = Ax [0, 1] and Ay =.72"xB.

So
"oqr moAr ol — _ (e/z)PJ[A]
PI[A5]/P/[A5:] = Pu[B]/P[A] = W RS
and

P/LAYP/AL] = PLAYP(B] < %f’[%] —e.

Thus we have found 4;; such that for each i, j
PYTAG P[] < e
and such that 4}; is either of the form 4 x [0, 1], (4e.°7),or.7 " x B, (B .”2).
It remains to establish sets 4; retaining the inequality properties of 4;; and such
that A4, is disjoint in j for each i. Toward this end, let B,, - - -, B, be M disjoint
events in ~#'such that
P,B;] = 1/M, I<js M.
If A4}, is of the form A4 x [0, 1], we set Af = A4 x B; and otherwise 4% =
“¢”x B', where B’ C B, is some event such that P,[B'] = M~'P [B]. Itisevident
that P,/[4}] = P,[A!;]/M and so the inequalities of Assumption 1 still hold, and
the 4% are disjoint in j.
At this point we have seen that for every positive number e, and distinct in-
dices 7, j, we can choose A,,(e) = A} from .%/” in such a way that

P/[A4;()][P[4;(e)] < e
and the A,,(e)’s are disjoint in j. In the development above, let us specifically
denote the dependence of 4 on e by writing A(e). It is possible to select the

A(e)’s so that if ¢’ > e, A(e) C A(¢’). By further making obvious constraints on
the selection of B’ = B(e), things can be arranged so that for all positive e, ¢

A (e)” and A, (e)!

are disjoint if k # i or j. This completes the realization of the properties of
Assumption [.
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Let us call condition (12) Assumption 1’, by virtue of its equivalence (via
randomization) to Assumption 1. While we have not attempted a comprehensive
cataloguing of different probability families with respect to Assumption 1’, we
have done some study in this direction. For example, it is possible to quickly
demonstrate that many families of the Koopman exponential form do obey
Assumption 1’. A family .-~ = {f(x, #)} of probability densities with respect
to either counting measure or Lebesgue measure and indexed by a real vector
0 is of the Koopman type if there exist real-valued functions A(x), B(f), and
real vector-valued functions, R(x) and Q(6) such that

f(x, ) = B(0)h(x) exp (Q(6)"R(x)) -
PROPOSITION 4. Let =/ be a finite subset of a family of the Koopman type, and

take R = {R(x): h(x) > 0} and Q = {Q(0) — Q(0'): all 8, 8'}. Then .7 satisfies
Assumption 1" if and only if the projection of R on q is unbounded for each q € Q.

We omit the easy proof, but mention that the proposition implies that the
following families satisfy Assumption 1':

(i) Multivariate normal (ii) Gamma (iii) Geometric
(iv) Poisson (v) Rayleigh (vi) Lognormal

Sagalowicz [9] shows that the Cauchy family fails to satisfy Assumption 1’.
Finally let us note that for any two distinct probability distributions P, and
P,, for some A,;, A;
Pi(A;)[Pi(Ai5) » Pi(A;)[P(A;:) < 1.
Using randomization, we can readily construct events A4;; which also satisfy the
above equation and are furthermore disjoint in the second subscript and con-

sequently (using randomization) the conditions of Proposition 2 hold for any
finite set .>’of probability functions.

4. Sequential analysis by FA’s. The object of this section is to show how
FA’s can be designed to implement sequential decision functions (in the tradition
of A. Wald [12]). Specifically, for each hypothesis in ., we associate one
absorbing state in a FA. Now the FA operates by eventually entering one of
these absorbing states, and when this happens, the “terminal decision” is taken
to be the hypothesis labeled by the subscript of the particular absorbing state
entered.

In this section, therefore, a hypothesis testing problem and a FA having been
specified, we define the probability of error (for the sequential analysis problem)
to be the maximum (over P; € ., probability, under P;, that the terminal state
entered is not labeled ;.

THEOREM 2. Given any sequential analysis testing problem and any positive number
e, there exists a randomized FA having probability of error less than e; if Assumption
" is satisfied, the maximum number of states required is twice the number of prob-
abilities in .
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Proor. Let A, denote the transition matrix under P, of a FA having prob-
ability of error (in the sense of Section 3) less than e/4 for the testing problem.
If u, is the vector of invariant probabilities for 4,, then u, is the square matrix
whose rows are the vectors u,. We will use the matrix norm ||4 — B|| =
Yi;la; — b,]. From the foregoing definitions and elementary properties of
Markov chains, there is some N such that ||U, — A4,"|| < e/4 for every n > N
and 1 < k < M, where as usual, M is the number of hypotheses. Let /4 be the
parameter of some geometric variable 7" such that P[7" < N] < ¢/2. The FA
above is now augmented so that each state in S; has a branch leading to a state
labeled ¢;, I < j < M, which is followed whenever some event B, in the random-
ization experiment, occurs, where P.[B,] = k. We leave it to the reader to
develop the details of how the B,’s are embedded in the product field . ., and
how they are chosen to preserve the disjointness of the events A, ;.

With this construction, we have, letting 7" be the variable (with the geometric
distribution) of the time immediately preceding entry into {¢,: 1 < k < M},

P [terminal state = ¢,] < P[T" < N] + P[T" = N and s(7") ¢S]
— P[T" < N] + P[T' = N|P[s(T") ¢ S,|T" = N].
From the definition of N, for every initial state 6, every t > N, and set Q of
states,
Pils() e Q] — u,(Q) = IU; — A/f|| <ef4.
In particular, u;(S;) < e/4 and thus P[s(r) ¢ S;] < e/2.
In summary, recalling that P[7" < N] < e/2,
P[terminal state + ¢,;] < e/2 + P[T" > N]P[s(T") ¢ S;/T" > N]
<el2t+el2=ce.

5. FA adaptive control. Let {7} be a strictly increasing (perhaps random)
sequence of integers with 7, = 1, and take {P(i)} to denote a sequence with range
in the set./" of probabilities. In thissection we will suppose the random sequence
{X/} to be generated so that for T, < n < T,,,, X, is i.i.d., with probability law
P(j)e. . Using methods of Section 4 for every positive e we will be able to
give conditions on T, such that one can design a FA of the type in Figure 3
with average probability of error less than e. That is, the proportion of time
the FA is in the set S, having the same index as P(n) ¢ . /" converges asymptotically
to a number greater than 1 — e, even for time changing hypotheses.

An engineering application of a FA with such capabilities might be in an
assembly line setting where one portion of the process has a number of different
possible modes of operation, each of which is acceptable provided the operation
at a later section of the line takes into account which of these modes is indeed
in effect (and uses the procedure appropriate for the mode at the earlier section).
Specifically, for example, waste treatment plants have several characteristic types
of influx, each of which induces a particular type of decay flora and each of
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which requires, therefore, addition of different sorts of reagents. One might
seek as cheap a computer as possible which would examine signals from sensors
to determine which mode of influx is currently active, and send the result of
this decision to stations “downstream” in the process. If the sensors are not
totally effective for distinguishing between the processes (i.e., the probabilities
of the various modes are not orthogonal), a statistical point of view would be
appropriate. If further, the mode described above is time-changing, the theory
of this section seems indicated.

One problem (and the one apparently suggested by the assembly line descrip-
tion) of the genre we have been discussing arises when we assume 7., — T; is
i.i.d., as some fixed integer-valued random variable 7,. Formally,

ProrosiTION 5. Ler ( ¢ ,../) and ../" be the parameters of an FA hypothesis
testing problem whose hypotheses are time-changing. Suppose the times of change,
T;, have the property that T, ., — T, are i.i.d., as a random variable T,. In the
notation of Section 4, let A; be the transition matrix, under P, of some FA having
probability of error less than e|2 for the fixed hypothesis problem, and let N be a

number such that forall t > N, ||U; — A}'|| < ef2, 1 < j< M. Then for this FA,
(13) the asymptotic relative frequency of error < NE[T,"'](1 — e) 4 e.

Proor. The trajectory s(k) of the FA above is conveniently partitioned into
blocks, the kth such block consisting of the segment {s(i): T, < i < T,,,}. We
proceed by proving that no matter what P(j) is, the expected average error of
the jth block is bounded by (13).

Let k&, 1 < k < M, be the index of P(j). Define 6(i) = 1 if s(i)¢ S, and 0
otherwise. Then

SO06): T, <i<n<N+X00):T,+N<i<n.

But, if u,(+) is the invariant probability of the transition matrix 4,, fori > T, + N
E[0(1)] = u(S,) + (e/2) <ee,
and consequently for n any positive number
E[X0(): T, <i<n <N+ (n— N,

from whence the expected average error in the block is bounded by

SLl(N 4 e(n — N))nlPy(n) = E(TYN(L — €) + e,
which, by the law of large numbers, must therefore also be bound to the
asymptotic relative frequency of error for the entire {s(i)} sequence.

There are many ways in which these developments may be extended. Under

slightly further restrictions on T, one may find bcunds as above for the prob-
ability of error at some fixed sample time n. Another avenue for extension

concerns the cases in which actions are chosen at each time n on the basis of a
history {X,},, of observations where {X} is as earlier in this section. At each
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time n and selection a, the loss L(a, j) is realized eventually (but not in time to
use it for the statistical problem), j being the index of the “true” underlying
distribution at time n. Then, letting £L*(;) denote the min, L(a, j) and x, be the
relative frequency of P; in {P(n)}, the best possible performance would result in
the average loss 31, =;L*(j) = L*. With respect to the time-changing model,
it is possible to compute bounds on the average error of a FA controller for
such a control problem. The FA controller is supposed to choose the best action
a;* for j when s(n) is in S;.
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