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ESTIMATION OF MODELS OF AUTOREGRESSIVE
SIGNAL PLUS WHITE NOISE!

By MARCELLO PAGANO
State University of New York at Buffalo

If x(+) is a time series which may be written as x(f) = s(¢) + n(f) where
t is an integer, s(+) an autoregressive signal of order g and n(+) white noise,
then the model has g + 2 parameters. These are (i) the g autoregressive
parameters (ii) the residual variance of the autoregressive scheme and (iii)
the variance of the white noise. A method is proposed to estimate the ¢ + 2
parameters. This method is based on analogies with regression theory and
in the case of a normal series yields strongly consistent efficient estimators.

1. Introduction. The model in which we are interested is, for integer ¢,

1) Xy =)+ (D), Ziw B =) = e(0) g=1
where the
) (i) {s(+)} and {n(+)} are independent,

(i) {n(+)} are independent identically distributed
N@©,0,*) and f{e(-)} i.i.d. N(Q,a?),
(iiiy BO)=1, B(q) +#0 and {s(-)} stationary.

This scheme has g + 2 parameters, viz. (1), ---, f(g), ¢}, 2. We have
available a sample x(1), - - -, x(N) from which we wish to draw inference about
the parameters of the scheme.

For some instances where this model is of importance, see Parzen (1967).
Anderson, Kleindorfer, Kleindorfer and Woodroofe (1969) consider the vector
analogue of the model (1) with ¢ = 1, obtain strongly consistent estimators of
the parameters of the system and study the effect of using these estimators in
the Kalman prediction formulas. Since the estimators we obtain are strongly
consistent, the effect of using our estimators in the Kalman filtering formulas
can be obtained from Anderson et al. (1969).

Our method of solving the problem is to first introduce (g + 1) new parameters
and obtain initial estimates of these new parameters and the original (¢ + 2)
parameters. The reason for doing this is that by introducing the new parameters
the model is then transformed into a mixed autoregressive-moving average model
(see Whittle (1963) page 35), for which the solution to the estimation problem
isknown. Having obtained these initial estimates, we obtain “better” estimates
by expressing these new parameters in terms of the original parameters.
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Define the series {y(+)} by
©) W) = Z5-0 BUX(t — J) -

LEMMA 1. There exists a sequence of i.i.d. .47(0, o,%) random variables {7(+)},
defined on the same sample space as {x(+)} and constants a(l), - - -, a(q), satisfying

4) Y@ = () + Ziaa(n —J) .

Proor. From (1) and (3), y(f) = «(t) + X1, B(J)n(t — j). Clearly {y(+)} is
stationary. Define
Ry (v) = Ey(t)y(t + v) Vve Z,

which, from (3), is zero for |v| > ¢q. Therefore {y(+)} is a moving average scheme
of order less than or equal to g. Thus the existence of the {(.)} sequence.
The normality of the 5’s follows from the fact that the {y(.)} process is nor-
mal; thus the 5’s may be chosen to be independent and if independent they must
be normal, from a theorem of Cramér (Loéve page 272). []
Define the complex polynomials

h(z) = X1, B(k)z* and 9(z) = i, a(j)z, a(0)=1.

LEMMA 2. The {y(+)} sequence defined by (3) is a moving average scheme of order
q (i.e. a(q) + 0). Moreover, {x(+)} isa proper mixed autoregressive-moving average
scheme of order (q, q).

Proor. From Lemma 1, Ry(9) = ¢,’a(q) = 0,’8(g9) which by hypothesis is not
zero. Since from Lemma 1 the {y(+)} is a moving average of order less than or
equal to g, a(q) # O implies that the order is g.

From (3) and (4) f,(w) = ¢,%|9(¢**)|*/2x|h(e**)|*, and from Lemma 1
(5) 0,209z = 0} + 0, h(2)h(z™) .

Therefore, if z, is a root of 4(.) then neither z, nor z,7! is a root of g(-). Thus,
fz(+) is the modulus squared of the ratio of two gth degree polynomials with

no common roots and so {x(+)} is a proper mixed autoregressive-moving average
scheme of order (¢, ¢). [

LEMMA 3. The a(l), .- -, a(q) may be chosen such that the roots of g(+) all lie
outside the unit circle.

Proor. Define the complex function p(z) = };I__, Ry(j)z’. Then from (4) the
a’s must be such that p(z) = ¢,’9(2)9(z™"). Now from (5), 0,%|g(e’*)]* = 02 +
o,}|h(e™)* for w € [0, 27). Therefore, no root of g(-) has unit modulus; thus the
same holds true for p(.). Using the symmetry of p(.), it seems clear which
“square root,” g(+), to choose to satisfy the lemma (see Wilson (1969)). []

Thus our sample x(1), -- -, x(N) may be viewed as a sample from a mixed
autoregréssive-moving average scheme

() =0 BO)X(t — J) = Zi=ea(i)n(t — ) »
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which has 2¢ + 1 parameters, g(1), ---, B(9), a(1), - - -, a(q) and ¢,*. Equiva-
lently, the parameter set B(1), -- -, 8(q), Ry(0), ---, Ry(q) defines the model.
Furthermore, these parameters are such that the roots of g(-) and the roots of
h(-) lie outside the unit circle (see Pagano (1971)) and g(.) and #(.) have no
common roots. These conditions being satisfied the problem of estimating
B(1), - -+, B(g) and R,(0), - - -, Ry(g) has been solved (see Hannan (1970) Chapter
VI or Parzen (1971)).

2. The information matrix. We have available an efficient set of estimates
for the set of parameters B(1), - - -, B(g), Ry(0), - - -, Ry(g) of our enlarged model
(6). That these estimates are not efficient for the parameters 3(1), - - -, 8(¢), 0.’
and ¢,? of our original model (1) seems clear, especially when one considers the
fact that the R’s are functions of the §’s and the information matrix of the
B(), - -+, B(g), Ry(0), - - -, Ry(q) is not block diagonal.

In this section we obtain the information matrix of the parameters (1), - - -,
B(9), ¢,? and ¢, in the original model (1).

Since the {x(+)} are normally distributed we can use a formula from Clevenson
(1970, Theorem 1.13) to obtain the required information matrix. If we denote
the parameters of the scheme by ¢,, - - -, #,,, and the information matrix by %,
then

T = e ({ﬂ—j 1og /(@) )( 5 108 £.(«) ) do

Opty
forj,k=1,...,¢9 4+ 2. Soin our case, if we let
0 0 0 0
0T = <—‘ s "ty D ) ) lo z
B0 G o o) B

then .~ = (= 6067 do/4r. To obtain 6, we have from (3) and (4) that

() fi(@) = (0 + a,}|h(e))[2|h(e™)]" .

Forj =1, ..., g define ¥ (w) = e'“h(e~**) + e '/*h(e'”), then the derivative of

log f.(w) with respect to: ¢,?is (2nf,(»))™?, 0.2 is 27f,(w)|h(e*)|*)~* and B(j) is
0 W () 2z f (@) h(e™)]* = ¥ j(0)(0,'2nf (@)™ — 1)/|A(e)]" .

We now have 8 and thus 7, the required information matrix.

3. The efficient estimators. Our aim is to obtain efficient estimators of
B, ---, B(g), 0,}, ¢2. By this we mean that the asymptotic covariance matrix
of the estimators is the same as that for the maximum likelihood estimators,
namely, N-1_7"1,

We recognize the fact that the R,’s are functions of the g(1), - - -, 8(q), o,2
and ¢2. Indeed from Lemma 1
(®) Ry(k) = 0200, + 0, LI B(DBU + k),  k=0,1,.--,9.

If we define R, = (R,(0), - - -, Ry(¢9))" and 8 = (8(0), - - -, B(q))” then we may
denote the relationships in (8) by R, = Ry(B, ¢,% ¢.?).
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Our method of solving the problem is to regress the estimators of 8 and R,
on B3, 0,2and ¢,* using (8). To then solve the regression problem by finding the
least squares estimators of 8, ¢,> and ¢. And then show that the estimators
found in this fashion are indeed efficient and strongly consistent.

This is a non-linear regression and the theory required is developed in Section
6. To enable us to use this theory, we must first lay some groundwork.

Denote the efficient estimators of R, and B in the enlarged model obtained
at the end of Section 1 by R, and B. Then we have from Parzen (1971) that
(/§T, R,”) — (87, R,7) in mean square as N — co and

©) & {N& << B ) - ( B ))} — A(0; EY)
Ry, Ry
where (see Parzen (1971)) the information matrix
(10) E= <E“ E’”), EPR — (ER#)T
Efe ERR
and
T (0)¥ (0)
EB8)., — (= *i K®) 4
=8 ey
forj,k =1, ..., g and ¥ defined in Section 2,
¥ ()W, (@)
EﬂR o= A\ Fi k
s e 20 '|h(e)|9(e™)"
with Wy(w) = 1/2z and W (0) = (cos ko)/z, k = 1,2, ... forj=1, ..., g and

k=0,..-,9and
(ERR)jk . S’:x Wj(w)Wk(w) do
a,19(e*)/"
for j,k =0, ---, g. Parzen (1971) also gives an estimator EN of E.

To enable us to use the results obtained in Section 5, we require strongly
convergent estimators of 8, R, and E. Hannan (1970, page 392 and pages 409
et seq.) does give strongly convergent estimators of the parameters of the mixed
scheme, but he uses a different parametrization of the scheme, namely, in terms
of the 8’s and a’s in equation (6). We can use Hannan’s results, make the ap-
propriate transformations from his parametrization to ours and verify that we
have strongly convergent estimators. The asymptotic normality in (9) is obtained
by a straightforward application of the delta method (Rao, 1965, page 322).
Alternatively, one can verify that Parzen’s (1971) estimators are indeed strongly
convergent. To this end we notice that, since {x(+)} is mixing and thus ergodic,
the sample covariances converge almost surely (see Hannan, 1970, Chapter IV).
Thus the only source of difficulty might be the spectral averages involved. To
see that these do not in fact present any difficulty we have Theorem 2.

Thus we have random variables 8, R, which converge almost surely to 8 and
Ry(B, 0.}, 0.%), respectively. Furthermore, we also have E, which is a strongly
convergent estimator of E.
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Define the (2¢ + 1) X (¢ + 2) matrix
1) A= <1« 0 °>

A4, a, a,
where I, is the g-dimensional identity matrix,
a =(,0,---,0)7,
a, = (a,0), - -+, a.(9)"
a,(J) = 2= Bk)B(k + )
and 4, = 9Ry/3B, i.e. (A); = o {[B(J + )] + [8( — K)]}, with
(BOI=B0G) =09,

=0 otherwise

where

for j=1,...,9gand k=0, ..., 4. Note that 4 is in fact the derivative of
(B7, R,)T with respect to (87, ¢,% ¢,%)7. Furthermore, from (14), (22) and the
chain rule for vector derivatives

(12) F = ATEA,

and since 8(q) # O this implies that A4 is of full rank.
Now if we solve the non-linear regression (using the theory of Section 6)

(ﬁg,,) - <Ry(ﬁ, f,f, af)) t 2w

z,—0 a.s. as N— oo

with

and
F(Nizy) — A47(0; E)

and denote the least squares estimators by ,§, é,2 a2 we see from Section 6,
that as N — oo

(ET’ &nz’ &sz) - (ﬂT’ 0."2, 052) a.s. ’

%))
N|a2] —|az }_»/1/(0, D))

AT(B, 6. D)E, AB, 6,) —> F aus.
These results hold provided that (87, ¢,%, ¢,%) is an interior point of the parameter
space. That this is always true follows from the following:

&~

Q

Q

by (12) and

LeEMMA 4. Under assumption (iii) (Section 1) the parameter space of (87, 0,?, 0.%)
is an open subset of R'**.

Proor. The parameter space may be written B x (0, c0) x (0, c0). To show
that B is an open subset of R? write

h2) = T3 (1 = 1,2)
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where the r;! are the roots of 4(z) = 0. From the stationarity assumption (iii)
we obtain that the permissible parameter space for the r; is (see Pagano (1971))
C={r:lrl<Lj=1,.--,q}.

Thus C is an open set in R? and since the mapping from C to B is continuous, B

is open in R?. []
We thus have our efficient estimators of 8, ¢,? and ¢,2. To initialize the Gauss—

Newton iterations we use 8 and the consistent estimators of ¢,? and ¢,2 which are
obtained in the next section.

4. Initial consistent estimators for ¢,2 and ¢.2. From Lemma 2 we have that
07)2|g(eim)|2 — 052 _+_ J"ZIh(eiw)F ,
fr(@) =0l + a,lh(e)},

for all @ € [0, 27) and in particular for w; = z#jjq, j =0, .-+, q.
Forj=20,-.-,qlet

;= Ry(0) + 2 3¢, Ry(k) cos ko,
v; = | S0 BUE“)I -
Consider as estimators of ¢,* and ¢, the solution to the normal equations:
(@FD Diav)y 2 _ ( Ziat, ).
2iav; Xl

é, 23=0vi;
These are strongly consistent estimators of ¢ and ¢,* (see Parzen (1961) and
Theorem 2).

or equivalently

and

5. Convergence of spectral averages. In this section we prove two theorems
which show that under certain conditions spectral averages converge strongly.

Given a sample x(1), - - -, x(N) from a stationary time series {x(+)} with spectral
density f{(-), define the periodogram

So®) = o | D X()e

THEOREM 1. Suppose h(+), is a continuous function. Define
Iulh) = S5 5w [y (2)H(A))

where A; = njIN,j=1—N, ..., N — 1, and

J(k) = §=. fD)R(R) d2 .
If, as N - oo,

(13) Jy(e*) — J(e™**) a.s.
for all integer k, then J,(h) — J(h) a.s.

Before proving the theorem, we note that condition (13) is equivalent to



AUTOREGRESSIVE SIGNAL PLUS WHITE NOISE 105

asserting that the sample covariances strongly converge to the autocovariances
of the scheme. Hannan and Robinson (1973) have a similar but slightly different
theorem.

ProoF. Since k(+) is a continuous function, from the Weierstrass theorem we
can find a trigonometric polynomial 4,(+) such that

MaX; er,q [A(4) — A(2)] <€
for arbitrary ¢ > 0. Now
Va(h — h)| < Jy(lh — hi]) < ely(l).
So from (14)
lim sup,_.., |[Jy(h) — Jy(h,)| < elimsup, . Jy(l) =&J(1) a.s.,
and by hypothesis lim_, Jy(h,) = J(k,) a.s. and |J(h,) — J(h)| < &J(1). Now
lim Sup,,_.., [y(h) — J(A)| < 1im Supy_. [Ju(A) — Ju(hy)
+ lim SUPy o |JN(h1) - J(hl)l + |J(h1) - J(h)l
< 2eJ(1) as.

and since ¢ was arbitrary, the theorem follows. []

THEOREM 2. If h(.) is a continuous function and {hy(+)} is a sequence of random
functions with
SUP;cr—r.a1 [AN(A) — A(A)| — 0 a.s., N— oo

and the condition (13) holds, then J(hy) — J(h) a.s.

Proor. From Theorem 1, J,(h) — J(h) a.s. The theorem follows from the
inequality
Va(hy) — In(B)] < SUPser—r,m Hx(2) — A(Ax(1) . 0

6. Non-linear, weighted least squares. To show how to obtain efficient esti-
mators of B, 0,2 and o we require the following non-linear, weighted least squares
theory. The theory is closely related to that developed by Jennrich (1969),
simpler in that we deal with fixed length vectors, but different in that our errors
are not independent identically normally distributed.

Suppose {y,} is a random sequence of m X 1 vectors, § a p X 1 vector (p < m)
and f: R* — R™, f being twice differentiable. Suppose furthermore that

(a) y, — f(6,) a.s. as n — oo,
(b) Y. = f(ao) + z,
where

g(n*zn)-—n/‘(ﬂ; v, " n— o
and

(c) {V.,}is a sequence of random matrices with ¥, — V a.s. as n — co.

Our aim is to show that we can use the theory and tools developed by Jennrich
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to prove that a strongly convergent least squares estimator of 6, can be found
by the Gauss-Newton iteration technique.

Define O to be a compact subset of R?, and assume that @, is an interior point
of ©. Introducing the notation

X =¥, =(x —y)"D7(x —y)
and
(X,y), =x"Dy,

for positive definite D, define
(0) = ||f(6,)) — f(O)]ly, and  Q,(6) = ||y, — f(O)l],, -

LemMMmA (Jennrich). Let Q be a real-valued function on © x Y where © isa com-
pact subset of a Euclidean space and Y is a measurable space. For each 0§ in © let
Q(0, y) be a measurable function of y and for each y in Y a continuous function of 6.
Then there exists a measurable function @ from Y into © such that forallyin,

Q(8(»), y) = inf, Q(@, y) .
In our case, the conditions of the lemma are satisfied. This ensures the exist-
ence of a least squares sequence {5,,}, i.e.

0,(8.) = infyeo 04(6) -
LeEMMA 5. Under the assumptions (a), (b) and (c)
8,6, as. n— oo .
ProoOF. We first note that from the positive definiteness of V,
(15) 00)=0=6=2,.
Secondly
lim, ., 0,(6) = lim, .. ||y, — f(8)|l,, = Q(6) a.s.
from (a) and (c). Now on a set of probability measure one,
lim, ., 0,(9,) = lim,_., inf,cq [ly, — £(O)lly,
< lim, . |ly, — f(6)|l,, . VocO
= Q).

Therefore lim,_, Qn(ﬁn) < inf,., Q(6) = 0.
Therefore from (15), {3”} converges almost surely to 8, and the lemma is

proved. []
Before proving further asymptotic properties of our estimators, we require
the following lemma (see Jennrich, Theorem 4):

LEMMA 6. If1: R® — R™ is continuous and if conditions (a) and (c) hold, then
with {z,} defined in (b), <1(0), z,), almost certainly converges to zero, uniformly
for all 6 €©.

Proor. Since 1 is continuous and ¥, — V a.s., there is for every ¢ > 0 and
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0* € © a neighborhood M of @* such that
(@) — 1(@*)],, <e as.
for all @ in M, and n sufficiently large. Now z, — 0 a.s. and [{1(8), Zyy | <
I1(8) — 1(6%)[]},l|z.lI}, + [KU(@*), 2,)y,|. Thus for almost all (z,, V,), © is cov-
ered by neighborhoods M such that
IKIO), z,)y,| < ¢ forall & in M,

for n sufficiently large. Since © is compact it is covered by a finite number of
such neighborhoods and the lemma follows. []

(d) Define the matrix
A6) = 9%0)
00

and assume A(@,) is nonsingular.

THEOREM 3. Under the assumptions (a) through (d) the sequence of least squares
estimators {5,,} are such that

A8, — 6,) — A(0; (ATV-14)7)
and, furthermore,
AT(8,)V, 7 A(8,) — AT(B)V1A4(6,) a.s.

Proor. This is our analogue to Jennrich’s Theorem 7. The proof is exactly
the same as Jennrich’s if we make use of Lemmas 5 and 6 and if we identify his
inner products (-, +),, (+, «) with our (., «}, and (., .},, respectively. []

To obtain the least squares estimators we use the Gauss-Newton iterative
method, and to show that under certain conditions the method does converge,
we call on Jennrich’s Theorem 8.

THEOREM 4. Let {01} be a sequence of least squares estimators of 6, and let assump-
tions (a) through (d) hold. Then there exists a neighborhood M of @, such that for
almost every couplet (y,, V,) there is an m(y,, V,), such that the Gauss-Newton
iteration will converge to 8, from any starting value in M whenever n = m.

Proor. With the modifications noted in Theorem 3 the proof is as in Jennrich
(1969). [0

7. Conclusions. We may generalize our model (1) by assuming that the signal

is a mixed scheme, i.e.,
x(t) = s(f) + n(?)
L= B(Ns(t — J) = Lk=o7(R)e(r — k)

with 7(0) = 1 and 7(p) # 0, p = 1. Our method of estimation may be generalized
to this model on condition that p < ¢. The reason for this in the trivial case
when p = ¢ = 0 is that the {x(+)} is now a white noise sequence and ¢ and ¢,’
are confounded. A similar thing happens assuming general p and ¢q. We find
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that Lemmas 1, 2, and 3 hold and that {x(.)} is a proper mixed autoregressive-
moving average scheme of order (g, v) with v = max (p, g). But in our repa-
rametrization, we have gone from the original p + ¢ + 2 parametersto g 4 v + 1
parameters. Thusif p > ¢ we have reparametrized to a lower dimensional space
producing confounding. This is evidenced in the regression when we would have
more parameters than observations. If p < g the theory may be generalized in
a straightforward manner.

This method of estimation can be easily used in other contexts when we have
to perform constrained maxima. A simple example, which serves for illustration,
is if we have a random sample from a normal (g, ¢*) family. Form the sample
mean and variance and regress these on ¢ and /%, having estimated the covariance
matrix of the estimators.
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