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THE INVARIANCE PRINCIPLE FOR ONE-SAMPLE
RANK-ORDER STATISTICS!

By PrRaANAB KUMAR SEN
University of North Carolina, Chapel Hill

Analogous to the Donsker theorem on partial cumulative sums of in-
dependent random variables, for a broad class of one-sample rank order
statistics, weak convergence to Brownian motion processes is studied here.
A simple proof of the asymptotic normality of these statistics for random
sample sizes is also presented. Some asymptotic results on renewal theory
for one-sample rank order statistics are derived.

1. Introduction and the main theorem. Let {X,, X,, ---} be a sequence of
independent and identically distributed random variables (i.i.d. rv) having a
continuous distribution function F(x), x € R, the real line (—oo, o). Let c(u)
be equal to 1 or 0 according as u is > or <0, and for every n > 1, let

(1.1) Ry = Zic(Xi] — [X3)) l<ign.
Consider then the usual one-sample rank order statistic
(1-2) Tn = ?:l C(Xl)‘]n(Rm,/(n + 1)) ’ n

where the rank-scores J (i/(n + 1)) are defined in either of the following two
ways:

v

1,

1.3 a J,,( i >:EJUM. or
(1.3) @ () = Bl
) g () =I(1) = HEU, 1<i<n,
n+1 n+1
U, < --- < U,, are the ordered random variables of a sample of size n from

the rectangular (0, 1) distribution, and the score-function J(u) is specified by

(1.4) J(u) = Jy(#) — J o (#) where J,(¥) is Tin u;
o<u<kl,i=12,
J(u) is absolutely continuous inside (0, 1), and

(1.5) § (V@) + Vo @)[Hu(l — u)}du < co.
The condition (1.5), due to Hoeffding (1973), is slightly more restrictive than
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the square integrability condition of Hajek (1968), and it implies that
(1.6) A2 = §3 (W) du < oo, i=1,2.

Two well-known cases are (i) the Wilcoxon signed rank statistic for which
J(u) =u: 0 < u < 1, and (ii) the normal scores statistics, for which J(u) is the
inverse of the chi distribution with one degree of freedom.

Let us define H(x) = F(x) — F(—x), x = 0, and let

(1.7) #o(F) = §5 JHX) dF(x),  py = §3J(w)du,  and
ANJ) = §3J¥(u) du .

Note that |[u,(F)| =< §3|J(u)|du < A(J) < co.  Asymptotic normality of
n~¥T, — np,(F)) was studied by Govindarajulu (1960), Pyke and Shorack
(1968), Puri and Sen (1969), Sen (1970), and Huskova (1970), among others.
In the present paper, we are primarily interested in the classical invariance
principle or weak convergence to Brownian motion processes for {T,}.

For every n > 1, let

(1.8) Y0 =0, Y, (%) = [T, — kpy(F))J(ont), k=1, .--,n,

where ¢* is defined by (3.10), and it is assumed that 0 < ¢® < co. Consider
then a stochastic process Y, = (Y, (f): tel}, I={t:0 <t < 1}, where for
telk/n, (k 4 1)/n], we let

(1.9) Yi(t) = Yo (k/n) + (nt — K)[Y,((k + 1)/m) — Yo(k/m)],
k=0,---,n—1.

Then Y, belongs to the space C[0, 1] of all continuous functions, on I, with

which we associate the uniform topology defined by the metric

(1.10) (Y., Y,*) =sup,., {|{Y.(1) — Y, *(1)|: Y,, Y, *eC}.

Finally, let W = {W,: t € I} be a standard Brownian motion, so that

(1.11) EW,=0 and E(W,W,) = min (s, t); s,tel.

Then, the main theorem of the paper is the following.

THEOREM 1. If ¢°, defined by (3.10) is positive and finite, and (1.3)-(1.5) hold,
then Y, converges (as n — oo) in distribution in the uniform topology on C[0, 1] to
a standard Brownian motion W.

We may remark that, in particular, the Wilcoxon signed rank statistic can be
expressed as a von Mises’ (1947) functional, and hence, the result follows from
Miller and Sen (1972) who considered a similar theorem for Hoeffding’s (1948)
U-Statistics and von Mises’ functionals. But, in general, this characterization
is not possible for T,, and hence, a different proof is needed. Our method of
approach is based on a powerful polynomial approximation of J(u) by Hajek
(1968), a subsequent follow up by Hoeffding (1973), a martingale theorem on
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{T.}, and a recent functional central limit theorem for martingales by Brown
(1971). The martingale theorem is considered in Section 2. The theorem for
J(#) having a bounded second derivative is proved in Section 3, while the general
case is treated in the next section. The concluding section is devoted to a few
applications having importance in the developing area of rank based sequential
inference procedures.

2. A martingale theorem. For every n > 1, define the vectors

(2.1) c, = (e(Xy), -+ -, ¢(X,))  and R, =(R,, ---, R,,)
of signs and ranks defined by (1.1). Note that for every F, the distribution of
T, is solely determined by the joint distribution of (c,, R,). Let .5, be the

o-field generated by (c,, R,), n =1, so that %, is 1 in n. Also, let a, =
E(T,) = J,(3)P{X, > 0}, and for n > 2, let

(2.2) ay = Ttudy (L) EFOGLL,) — PG o)

where X, , =0, X, =ooand X} ,, < .. < X¥,,_, are the ordered values
of | X|, -+, |X, 1|n>2 Since P{X, e [X}_,,_,, X}, .} = h,, = E(F(X*_,,) —
F(X;‘_l_,_l)} we have

(2.3) = (=) S IHEI [ — HOP " dF(x),  r=1,--.n,
So that

(2.4) a, = i Ju(rl(n + D)k, nzl.
For later use, we note that

(2.5) by, = nE([dF(XE,) dH(XE,)]); 0<h,, <nt,
forall r =1, ..., n. Finally, we define

(2.6) T.*=T, — a,* a*=73y"_,a,.

Then, we have the following theorem which extends Theorem 4.5 of Sen and
Ghosh (1971) to underlying df’s {F}, not necessarily symmetric about zero.

THEOREM 2.1. If §§|J(u)| du < oo and the scores are defined by (a) in (1.3),
then {T *, 5 ; n = 1} is a martingale.
Proor. By (1.2) and (2.6), for every n > 2,
2.7 E{T.*| 7,1} = i «(X)E{J, (R, [(n + 1)) | F,_1} —
+ E{c(Xo)o(Rya/(n + 1)) [ F nd—a
as ¢, , is held fixed under 5, . Also, given R,_, R,, can assume the
two values R,_,; and (R,_,, + 1) with respective conditional probabilities,

(1 —n7R,_;)and n'R,_,;,, 1 i< n— 1. Hence,
E{J ((n + 1)7R,) |51}
- R, ..+ _ (
2.8 . = (n'R,_ ), (m-u T ! 1 — n'R,_ ),
2.8) (R (B D) 4 (1= R, ()

= Jos(n7'R,_y) 1<i<n-—1,
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where the last equation follows from a well-known recursion relation among
the expected order statistics (cf. [15] page 198). Thus, by (2.7) and (2.8),

(29) E{Tn* l "71:—1} = T:—l + {E[C(Xn)‘]n((n + 1)_1Rnn)|y‘n—l] - an} *

Now ¢(X,)/,.((n + 1)7'R,,) is either 0 (when X, < 0), or equal to J,(r/(n + 1)),
when X, e [X},,_,, X} ,,], r=1, ---,n. Thus, by (2.2) and (2.4),

(210) B ((n + 7R | 7o) = Biad, () P = 0

Hence, from (2.9) and (2.10),
(2.11) ET*|F,_)=Tr,, nx=2.
Also, E(T*) = 0. Hence the theorem follows,

CoROLLARY 2.1. E(T,) = a,* foralln = 1.

Proor. The result follows directly by noting that E(7T,*) =0, Vn > 1, and
that a,, n = 1, are all non-stochastic constants.

ReMARK. If, in particular, F(x) + F(—x) =1, Yx = 0, dF(x) = } dH(x),
then h, , = (2n)7%, and hence, a, = {37, J,(i/(n + 1))}/2n = § §§J(u) du = §p,.
Thus, {T, — (n/2)p,, ¥ ,; n = 1} forms a martingale; this was already observed
by Sen and Ghosh (1971).

3. Proof of the theorem when J” is bounded inside /. We define {7, *} as in
(2.6) with the scores defined by (a) in (1.3), and let T,* = 0. Let us then define
two processes &, = {£,(f): tel} and §,* = {§,*(t): tel} by

@) &) = v T+ (Th — T — w0 — wd), (tel),
forv < n2<vi,k=0,...,n where

(3.2) v?=E(T,*}, k=0, sothat v?=0;

(3) &0 = (Tf + (0 — (TE, — TAYlomh for re(X KX D),

k=0,1,...,n — 1, where ¢* is defined by (3.10). We shall approximate Y,
by £,* and subsequently by &,, and the theorem will be proved for §,. For this
purpose, we let V, = T\,* — T{_,, k > 1, and define

3.9 g9 = EV?, g9 = E[V}2| ) k>2;
(3'5) Q, = 2k ‘]kz s n 1.

Since {T*, .5 ,; k = 1} has been shown in Theorem 3.1 to be a martingale, by
Theorem 3 of Brown (1971), we obtain that

(3.6) 4 as n— oo,

[\%

v

provided that

(3.7) an/v: —pl as n— oo,
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and for every ¢ > 0,
(3.8) v, L E[VA(| VY > ev,)]} — 0 as n— oo,

where /(4) stands for the indicator function of the set 4, and —_ for con-
vergence in distribution.
Now, by (2.6) and Corollary 2.1, for every n > 1,

(3.9) v,! = E(T,*)* = Var (T,) .
Let us also define
ot = {7 J(H(x)) dF(x) — (7 J(H(x)) dF(x))’
(3.10) +2[ 58 HOUI — H)V'(H))'(H(y)) dF(x) dF(y)
— 33 HOTHOW(H(Y) dF(x) dF(y)
+ S JHENT — Hy)V'(H(y)) dF(x) dF(y)] -
Then by Lemma 2 of Huskova (1970), it follows that
(3.11) [0 < ¢ < oo] =[Var (T,)/ne*] — 1 as n— oo,
and hence, from (3.9) through (3.11), we obtain that
(3.12) [0 <o < 0] =v,(no*) — 1 as n—oo.
Thus, in the proof of (3.8), we may replace v, by ont. Now, by (2.6)

o) =B e s

where by (2.4) and (2.5), |a,| < A(J) for all n > 1. Also, by (1.4),

n(le>| = 2 {maxlSiSn Jion <#i)“ )

@G13) =X

(3.14)

n+4+ 1

where J,,(i/(n + 1)) = EJ(U,,), 1 <i < n, s =1,2. Further, noting that for
1<isn—1,R,_,<R, <R, +1,and by (1.4), the J, are monotonic,
we obtain by using (2.8) that

() - e
ton () =)

) = o (e o ) = )

Now, (1.5) insures that [J,,(#)(1 — )] — 0 as u — 1, and hence,

Z :"=_ 1l J'n

t=1

(3.15) < 2z

(3.16) o (n : 1) = o(nt), for s=1,2.
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Also, noting that J” is bounded inside /, we have

Jiorn (n _’;_ 1)‘ = |EJ ((U..,)|

(3‘17) = |J(J)(EU1m) + E(U'Im - EUnn)":s)(Ean)
+ $E(U,, — EU, VK| (where [K| < oo)
=J(c)<n—:-1> +0(n—2), s=1,2,

as E(U,, — EU,.Y* = nj(n + 1}¥(n + 2) = O(n~?). Thus, by (3.16) and (3.17),

(3.18) IJ(,,n<n_’|'_1>|=o(n*), s=1,2,

and a similar case holds for |/,,,(1/(n + 1))|, s =1,2. Hence, from (3.13)
through (3.18), we conclude that

(3.19) Vil = o(n),

that is, for every ¢ > 0 and 0 < ¢ < oo, there exists an n,(¢, g), such that
(3.20) |V, < eont  forall n = nye, o).

On the other hand, for every k > 1,

(.21) v, DELE(VA(V] > )} < vt DL E(VY)

=y —>0 as n-— oo .

Hence, (3.8) readily follows from (3.12), (3.20) and (3.21).
We now proceed to the proof of (3.7). By (2.6), we have
s

2 = St 00 {[ 4 (Rog) = s (o) [
+ Bt (e {1 (o) = guns (Fe) |
(3.22) x [ () = B (B |7}
+ [ E{[ et (; R+ D7) -]
+ 2 5 e {[ e, (Ko |

<[ (——~R“' )= () |}
n 41 n

Proceeding as in the proof of Theorem 2.1, the first term on the right-hand side
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(rhs) of (3.22) can be written as

2L C(X){R,_i(n — R, _,)/n’} { ( e 1> J"( S >}2

(3.23) < X fin —")/"2}{ ( — 1) (
= {maxlszSn—l [4(n — i)}/n])J ( ) (

n— lz(n—t)* i+ J (
{Z n (n+1) "\n 41
Let us now denote by

(3.24) K, = supyc,<; [/'(0)| and K, = sup,.,, [V'(0)] .

~.
~——
[N
~———
.

By our assumption, both K, and K, are finite, positive constants (depending
only on J). Then foreveryi:l1 <i<n—1

L) Gl =P G — o)+ oo
(£ K(n + 1) + O(n™Y) .

Consequently, the first factor on the right-hand side of (3.23) is O(n~?), while
the second factor is bounded by CK, {}[x(1 — x)]!dx < co, where C < oo.
Thus, (3.23) converges to zero as n — co, with probability one.

Let us now define for every n > 1,

(3.26) F*(x) = n—i——l Siacx — X) (—oo < x< o),

(3.25)

H,*(x) = F,*(x) — F,*(—x—), x=0.
As n/(n 4+ 1) — 1 with n — oo, by the Glivenko-Cantelli theorem, as n — co
(3.27) SUP_ o crcw |[FL¥(X) — F(x)] >0, sup,., |H,*(x) — H(x)] -0,
almost surely (a.s.). For the second term on the rhs of (3.22), we note that
for R,_,; < R,_,;, given &, _,, (R,;, R,;) can assume the values (R, ., R,_,,),
(Ru—1i» Ry + 1) and (R,_,; + 1, R,_;; 4 1) with respective conditional prob-
abilities (n — R,_,;)/n, (R,_,; — R,_,;)/n and R,_,;/n. A similar case follows for

R,_.; > R,_,;. Hence, by some simple steps, the second term on the rhs of
(3.22) can be expressed in the integral form as

@rf(n 4 1) §§ HE = HE()]

nid

(3.28) X {(n + 1)[# (%) - J”( nf:(f) )J}
x {tr 4 D, (M E D)

() a0
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Now, by (3.24) and (3.25), the integrand in (3.28) is bounded (in absolute value),
for all 0 < x < y < o0, by }(K, + 3K,)’, and it converges a.s. (by (3.27)) to
H(x)[1 — H(y)]J'(H(x))J'(H(y)) as n — co. Consequently, we may write (3.28)
as
(3.29) 2 38 HXI — HO)'HEM H)) dF(x) dF7(y)

+o(1), a.s,

as n— oco. Since, by (3.24), the integrand in (3.29) is bounded (in absolute
value) by 1K;* for all 0 < x < y < oo, and (3.27) holds, (3.29) converges a.s. to

(3:30) 2 §§ HE[ — H)V(HE)(H)) dF() dF(),  as n— oo

Proceeding as in the proof of Theorem 2.1, the third term on the rhs of (3.22)
can be shown to be equal to

(3’31) :-‘=1 an(r/(n + 1))hn,r - an2 .

Now, by the same method of proof as in Lemma 2 of Huskova (1970), it follows
that under (3.24), as n — oo,

(3.32) |2, — #,(F)| =0,
n 2 r o J2
(D20 () e = 57 () ()| 0.
Consequently, (3.31) converges (as n — o) to
(3.33) §5 J(H(x) dF(x) — [§7 J(H(x)) dF(x)]* .

Finally, noting that under 5 ,_,, ¢(X,) = 0 with probability F(0), and ¢(X,) = 1
with (R, ., R,,) being either (r,R,_,, + 1), 1 £ r<R,_, or (r,R,_},), R,_; <
r < n, with respective conditional probability %, ,, | < r < n, the last term on
the rhs of (3.22) can be shown to be equal to

e e () (B ) (B
2 () ()
@34 =g (B, =2 e Do () A
(=) G ) -G

— 2 W5t e(X)) {[z;&_ﬁ,n_n J, (n J’r 1) h} _En___

[ G) - A GCel

by using (2;8). Again writing the above in the integral form [on using (3.24)-
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3.26)], it follows by using (3.27) that as n — oo, it converges a.s. to

(3.35) 2 53 JHE) — HO)V'(H()) dF(x) dF(7)

—2 35 HXJHE))IH)) dF(x) dF() .
Thus, from (3.10), (3.22), (3.23), (3.30), (3.33) and (3.35), it follows that
(3.36) [0<o < o0]=¢re*?—>1 as., as n—oo.
Consequently, by (3.5), (3.12) and (3.7),
(3.37) Q. /(no®) —p 1 as n— oo,

which proves (3.7), and hence, (3.6) holds.

Now, by the tightness property of £, (cf. Billingsley (1968), page 56), for
every ¢ > 0 and » > 0 there exist a 6 > 0 and an n, = ny(e, 7), such that
(3.38) P{sup,_, s |6a() — () > e} < 9 for n>n,.

Hence, by (3.1), (3.3), (3.12) and (3.38), we obtain that

(3.39) (&5 §,%) =50 as n—oo,

so that by (3.6) and (3.39),

(3.40) §.Xx—o, W as n—>oo.

Let us now define another process in C[0, 1] by

(3.41) Ex={xmitel}, LX) = (n/na)Ex (1), tel.
Then, by (3.12), (3.40) and a well-known theorem in Cramér (1946, page 254),
we obtain that

(3.42) Ex >, W as n—ooo.
Finally, by (1.9), (3.3), (3.41) and Corollary 2.1,
p(Y", én*) = SUP;es |Yn(t) - én*(t)l
(3.43) = {max,g, o, |a,* — kpy(F)|[ont}
= {max,g,, |ET, — kp,(F)|/on*}
< Mnt, where M(<oo) dependsonly on J,
and the last inequality follows from Lemma 2 of Huskova (1970). Hence the
proof is completed for scores defined by (a) in (1.3). If the scores are defined
by (b) in (1.3), we note that
nH{ D CXW(Ref(k + 1)) — Do e(X)EI(Upp, )Y
< n7t B V(K + 1) — EX(U,)|

(3.44) =nt 3k, J<k __II_ 1> — J(EU,,) — E(U,, — EU,,)J'(EU,,)

— 3E{(U,; — EU)J'(0U,; + (1 — 6)EUki)}l oo
< niKk(k + 1) forall k<n, by (3.24).
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Hence, the metric p(Y,, Y, *), defined by (1.10) for the two processes with the
T, defined by (a) and (b) in (1.3) is O(n~%), and thereby tends to zero as n — co.
The proof of the theorem for bounded J” is thus complete.

4. The proof for the general case. We now use the Hajek (1968) polynomial
approximation of J(u), as further studied by Hoeffding (1973). By Lemma 1 of
Hoeffding (1973), under (1.4) and (1.5), for every a > 0, there exists a decom-
position
(4.1) JU) = g(u) + 6% (1) — $%(w) , 0<u<ld,
such that ¢ is a polynomial, ¢ and ¢® are non-decreasing, and

(4.2) o lloP@)| + [P @) [Hu(l —w)}Hdu < aj;
the last inequality, in turn, implies that

(4.3) Llie® @) + {pP@Pldu < .

In (1.2), on replacing J by ¢, ¢ and ¢®, we define T, (¢), T,* and T,?,
respectively, so that

(4.4) T,=Ty$) + T." = T,7, nzl;
the corresponding processes, defined by (1.8) and (1.9), are denoted by Y,(¢),
Y,® and Y,*®, so that

(4’5) Yn = Yn(‘l)) + Y”(l) - Y"(Z) .

Note that in (4.5), all the processes have (on?), in the denominator, defined in
(1.8).

Now from Hajek (1968) and Huskova (1970), along with (3.12), it follows
that for every ¢ > 0, there exists an &« > 0, such that (4.2) holds, and

(4.6) |1 — {Var (T (¢)}}/(on?)| < ¢ for n = nye).
Since ¢ is a polynomial and (4.6) holds, by the results of Section 3,
4.7 Y, (¢) —, W, as n— oo .

Consequently, it suffices to show that for every ¢ > 0 and 7 > 0, there exists a
choice of @ > 0 in (4.2), such that with probability >1 — 7,

(4.8) sup.e {7 + [V} <e  for n = nye, 7).

For each i(=1, 2), we define a,,, as in (2.4) (for / = ¢*), and let

4.9) T, % =T, —a¥, ; aX, = i1 8 > n=1.
Then

(4.10) sup,., |Y, V(1) < (ont)~H{max,g,, [T,

+ max,g;., |af,, — je,(F)},
where

(4.11) 1 O(F) = §7 $9(H(x)) dF(x) , i=1,2.
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Let us first consider the case where the scores are defined by (a) in (1.3).
Then, by Theorem 2.1, {T,*, &, ; k = 1} is a martingale, and hence, by the
Kolmogorov inequality for martingales (viz., Feller (1965) page 235), for every
7 >0,
(4.12)  P(max,,, |T,*®| > yont} < Var (T,0%)/(mfo?)

= [Var (T,"))/(nre") , as ET,"* =0.

Also, by Theorem 4 of Huskova (1970), for each i(=1, 2)

(413)  Var(1,) £ 10 T[4, ()] = rom st gy au.

n+1
Consequently, by (4.3) and (4.13), (4.12) can be made arbitrarily small by pro-
per choice of a(>0).
Now, under (1.5), we obtain on using our Corollary 2.1 and proceeding as
in Proposition 2 of Hoeffding (1973) that

@14)  |af — ks O(F)| = [ETO% — kpO(F)|

< Ckla, k=21,C< oo,
where C does not depend on « or the $*. Consequently,
(4.15) Max,ys lato — ke, O(F)|/(ont) < (Clo)a , i=1,2,

and (4.15) can be made adequately small by proper choice of a(>0) in (4.2).
Thus (4.8) holds, and the proof is completed for scores defined by (a) in (1.3).

We complete the proof of the theorem by considering the scores defined by
(b) in (1.3). Since in (4.1), ¢ is the polynomial component on which the results
of Section 3 apply, all we need to show is that on defining

. . R_.
4.16 T, = S5 (X)) (_n>
(4.16) ()t (-
T,V = D, e(X)E$ (U, ) nzl

(i =1, 2), that for every ¢ > 0 and » > 0, there exists an @(>0) in (4.2), such
that

(4.17) P{max,g, g, [T, — T,|/(ont) > ¢} < 7, i=1,2,
for all n = ny(¢, 7). Now, by our (4.16) and Proposition 1 of Hoeffding (1973),
(4.18) T, = T,%| < Zii|67G/(k + 1)) — E(Uyy)|

< Gkt G o0 w){u(l — w)}tdu, i=1,2,C < oo,

where C, does not depend on ¢*“. Hence, (4.17) readily follows from (4.18)
and (4.2) by proper choice of @ > 0, and the proof is terminated.

ReMARK. If F is symmetric about 0, F(x) + F(—x) =1, ¥x = 0, so that
Ay = ;" (F) = § §5¢P(w) du, fori =1,2, k = 1. Thus, we do not require
(4.14) and (4.15), and hence, for scores defined by (a) in (1.3), the square
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integrability condition (1.6) and (1.4) suffice our purpose. However, in general,
for arbitrary F or for scores defined by (b) in (1.3), (1.5) may not be replaced
by (1.6). For certain stronger results for F symmetric about 0, we may refer
to Sen and Ghosh (1973).

5. Weak convergence for random sample sizes. For every ¢t > 0, consider
now a positive integer-valued random variable N,, and for N, = n(= 1) define
T,and Y, asin (1.2), (1.8) and (1.9). If N, satisfies the condition

5.1 lim,_, (N,/t) =6, in probability,
where 6§ is a positive random variable defined on the same probability space,
then analogous to Theorem 1, we have under (1.3)-(1.5)
(5.2) YNt—>gW, as t— oo.

The proof is quite similar to Theorem 17.2 of Billingsley (1968, page 146) and
follows as a corollary to our main theorem in Section 1. For brevity, the
details are omitted. In particular, we have from (5.2) that

(5.3) ANATy, — Nepry(F))|o) — 470, 1) as t—o0;
for a different proof of (5.3) under slightly different regularity conditions, we
may refer to Pyke and Shorack (1968).

We conclude this section with the following problems. As in Section 2, de-
fine T,* =T, —a,*, n > 1. For every r > 0, define a positive number K_,
such that

(5.4 lim,_, t71K, = K*: 0<K*< oo.
Let then

(5.5) T*=inf{n:T,* =K}, >0,
i.e., T * is the first time (n), T,* exceeds or reaches K.. We want to find an
expression for

(5.6) P{T* <t} for t.>0.

Note that on denoting by [s] the greatest integer contained in s,
(5.7 PT*<t}=PT*=K, foratleastonen: 1 <n <|[t]}
= P{maxlsné[t,] T'n*/o'[tr]é z Kr/a[tr]i} ’

where ¢? is defined by (3.10). Thus, if 1. = ¢’ 4 o(7), 0 < ¢ < oo, we obtain
from (5.4), (5.7) and Theorem 1 that

(5.8) lim,_ P{T.* <t} = P{sup,., W, = (K*/ca)}

when W = (W, : ue I} is standard Brownian motion on /. Hence, by a well-
known result on W, we have from (5.8) that

PT+<t)=2 {(_21717 peitdul;  p=Kifoo,

T—00

(5.9) lim
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Similarly, on defining T .* = inf {n: |T,*| = K.}, = > 0, we have
(5.10) lim,_, P{T* <t}

- 1
= Yo (—1)* §EE @y

et dy, B = K*/co .

Theorem 1 also provides a sequential analogue of the fixed sample size rank
order test for symmetry. Suppose we want to test the null hypothesis (H,) that
F is symmetric about 0 against the alternative (H,) that F is symmetric about
some positive §. Instead of basing our test on a fixed sample size (n), we may
consider the following sequential procedure which may lead to a termination
at an early stage. Continue sampling so long as T, — (m/2)y,, m = 1, lies
below C, ., C,, > 0. If N is the smallest positive integer (< n) for which
T, — (N/2)y, exceeds C, ,, we reject H, and accept H,. If N > n, the terminal
decision is based on T, where we reject or accept H, according as T, — (n/2)p,
is = or <C,,. By virtue of Theorem 1, under H,, 2n~#max,,, {(T, —
(k/2)¢;)}]/A(J) converges in law to M = sup,,, {W(?)}, where the distribution
of M is well known [viz., Billingsley (1968) page 79]. Thus, if M, be the upper
100a % point of the distribution of M, we may approximate 2n~tC, , by M,
for large n. The case of two-sided alternatives follows on parallel lines.

For some alternative sequential tests based on one-sample rank order statistics,
we may refer to Sen and Ghosh (1973, 1974).
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