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RANK TESTS FOR ONE SAMPLE, TWO SAMPLES, AND
k SAMPLES WITHOUT THE ASSUMPTION OF
A CONTINUOUS DISTRIBUTION FUNCTION!

By W. J. CoNOVER

Texas Tech University

The theory of rank tests has been developed primarily for continuous
random variables. Recently the asymptotic theory of linear rank tests has
been extended to include purely discrete random variables under the null
hypothesis of randomness (including the two-sample and k-sample prob-
lems) and under contiguous alternatives, for the two methods of assigning
scores known as the average scores method and the randomized ranks
method.

In this paper the theory of rank tests is developed with no assumptions
concerning the continuous or discrete nature of the underlying distribution
function. Conditional rank tests, given the vector of ties, are shown to be
similar, and the locally most powerful conditional rank test is given. The
asymptotic distribution of linear rank statistics is given under the null
hypotheses of randomness and symmetry (which includes the one-sample
problem), and under contiguous alternatives. Three methods of assigning
scores, the average scores, midranks, and randomized ranks methods, are
discussed and briefly compared.

1. Introduction. Rank tests for randomness include such popular tests as the
Wilcoxon-Mann-Whitney test, the Kruskal-Wallis test, the Fisher-Yates—
Terry-Hoeffding (normal scores) test, and the van der Waerden (X) test. Rank
tests for symmetry include the sign test and the Wilcoxon matched pairs signed
ranks test, among others. Because of the difflculty in working with ranks in the
presence of tied observations, most of the theoretical research involving rank
tests begins with the assumption that all distribution functions are continuous.
In applied work, however, ties do occur, and experimental research workers are
sometimes hesitant to apply rank tests in the presence of many ties, for fear that
the rank tests are no longer valid. The behavior of some rank tests, especially
the Mann-Whitney test, in the presence of ties has been investigated by Chanda
(1963), Putter (1955), Bithler (1967) and others.

The appearance of papers by Chernoff and Savage (1958) and by Hajek (1961,
1962) were significant in the development of the theory of rank tests, although
the theory was restricted to continuous random variables, primarily under loca-
tion and scale alternatives. More general alternatives were subsequently con-
sidered by Beran (1970), as well as by Chanda (1963), Andrews and Truax (1964),
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and Adichie (1967), but still only for continuous random variables. In a recent
paper by Vorlickova (1970) the assumption of continuous random variables is
replaced by the assumption that the random variables are purely discrete, and
the asymptotic theory of linear rank statistics for testing randomness is developed
along the lines of Hajek and Sidak (1967).

In this paper the theory of rank tests for randomness and rank tests for sym-
metry is developed along the lines of Hajek and Sidak (1967), except that the
assumption of continuous distribution functions is never made. Several popular
methods of handling ties are examined, and some conditions are stated under
which large sample approximate normality holds for linear rank statistics.

In Section 2, the conditional distribution of the vector of ranks is given under
the null hypothesis H, that all observations are from independent and identically
distributed random variables, given the vector of ties. This conditional distri-
bution is shown to be independent of the population distribution function. A
similar development is given in Section 3 for the conditional distribution of ranks
under a different null hypothesis H, which states that the observations come
from independent and identically distributed random variables whose distribution
is symmetric about some point.

Then linear rank statistics are introduced. Conditions which are sufficient for
asymptotic normality of linear rank statistics are given in Sections 4 and 5 for
H, and H, respectively. These conditions are met when ties among the obser-
vations are handled using midranks, average scores, or randomized ranks under
some more easily verified conditions stated in Theorems 4.2, 4.3, and 4.4.

Alternative hypotheses are considered in subsequent sections. The alternative
to H, considered here is nonidentical distributions, such as in the usual two
sample and k sample problems. The alternative to H, is nonsymmetry. The
locally most powerful (LMP) rank tests for H, and H, are shown to be based on
linear rank statistics, in Sections 6 and 7.

In Sections 8 and 9 the asymptotic distributions are derived for the LMP test
statistics given in Sections 6 and 7, and for a large class of other linear rank
statistics. Asymptotic normality is shown under a set of assumptions which
assures that the sequence of alternatives is contiguous to the sequence of null
hypotheses. Asymptotic relative efficiency for linear rank tests is discussed
in Sections 10 and 11, with particular attention paid to the three methods of
handling ties discussed in Section 4. Some applications are briefly discussed in
Section 11.

2. The exact distribution of rank statistics under H,. The rank R, of a random
variable X, is the number of X’s less than or equal to X, in a realization x =
(x;, - -+, xy) of the vector random variable X = Xy -+, Xy). The ith order
statistic XV is the random variable which assumes the value x¥ in the ordered
realization x) = (x® < ... < x) of x. Then the rank of X is an integer
greater than or equal to i.
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We say x'/*V is in a tie of length 7, if x'9 < xU+D = xU+d — ... = xU+7) <
xtitety for ¢, > 1. Let #(x) = (ry, - - -, 7,) denote the sequence of lengths of
ties in x. The vector random variable R = (R,, - - -, R,) depends on the vector
7(x) in that for a given x the ranks assume only the values ¢, = DT, i=
1, ---, k. That is, for a given z(x), R is restricted to some permutation of the
vector (¢, - - -, t;,) where each element 7, appears r, times. Let {R|z(x)} be the
space of all distinct permutations of R given z(x).

By H, we denote the hypothesis that components of X are interchangeable:
Ho: P(X, < xp, -+, Xy S xy) = P(X; < x,, - -+, Xy < x;,) holds for each per-
mutation (i, - - -, iy) of (1, - - -, N). This is more general than the hypothesis of
randomness, which isdenoted by H;: P(X, < x;, - - -, X, < x) = [[X, P(X; £ x)).

The following theorem is analogous to II.1.2.a of [10}. The proof is combi-
natoric in nature and is omitted.

THEOREM 2.1. Let H, be true. Then the distribution function F(x'") of XV =
XV < - < X)) is absolutely continuous with respect to the distribution function
F(x) of X. The Radon-Nikodym derivative of F(x'"’) with respect to F(X) exists and
satisfies

dF(x" ¥ | o N!
(2.1 Efg{‘—’; =, where (¥) = P
Also
(2.2) PR=r|z(x) = 1)) if re{R|z(x)
=0 if re(R|z(x)

and for a given T(x), R is independent of X.

Theorem 2.1 states that all conditional rank tests, given the vector of ties, are
similar over H,, and hence are distribution free. The assumption of a continuous
distribution function has the effect of furnishing the vector of ties, namely
(t +++» 7)) = (1, - -+, 1) with probability 1. Rank tests without the vector of
ties given are in general not similar for H, or for H, a fact which is easy to show
by trivial examples.

3. The exact distribution of rank statistics under the null hypothesis of
symmetry H,. The rank R,* of the absolute value of a random variable X is the
number of |X,|’s less than or equal to |X,| in a realization |x| = (|x,|, - - -, |xy|)
of the vector random variable |X| = (|X,|, - - -, |[X|). The ith order statistic | X|®
is the random variable which assumes the value |x|V in the ordered realization
x| = (|x| =< .- Z X)) of |X]. Also, |x|“*V is in a tie of length ¢, if
[x] < X9 = | x| = .. = x|t L |x|UFTtD for 7, > 1. An exception
arises because we let 7, denote the number of observations equal to zero, so that
7, may equal zero. Let z(|x|) = (z,, - - -, 7,) denote the sequence of lengths of
ties in x|, The vector R* = (R;*, ---, R,*) depends on the vector z(|x|) in
that for a given |x| the ranks assume only the values 7, = Dot i= 1,4k,
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and ¢, = 7, if 7, > 0. That is, for a given z(|x|), R* is restricted to some permu-
tation of the vector (¢, - - -, t,) where each element ¢, appears z, times. A real-
ization of R* is denoted by r* = (r,*, - -+, ry*). Let {R*|z(|x|)} be the space of
all distinct permutations of R* given z(|x|).

Consider the function sign x = 1, 0 or — 1 depending on whether x is positive,
zero, or negative, and introduce the sign statistics

sign X = (sign X, - - -, sign X)) .

Then X; equals sign X, - | X%, Also, let V(r*, 7,) be the space of N dimensional
vectors v whose elements v, are 0 if r* = ¢,, and are either 41 or —1 if
r;t > 7,, where r* and r, are obtained from the same vector of ties. Note that
for every r* there is a space ¥ with 27~ distinct vectors.

By H, we denote the null hypothesis of symmetry. That is, H, states that
X,, -+, Xyarei.i.d. according to a distribution function F(x) which is symmetric
about zero in the sense that P(X, < x) = P(X, > —x) for all x. The assumption
of symmetry may be stated as the Radon-Nikodym derivative of F(—x) with
respect to F(x) exists and equals —1 almost everywhere with respect to F(x).
Further denote the distribution functions of |X,|, X, |X]|, and |X| by F*(x),
F(x), F*(x), and F*(x) respectively. The following theorem is analogous to
Theorem I1.1.3 of [10]. The proof is omitted.

THEOREM 3.1. Let H, be true. Then F*(|x|) is absolutely continuous with respect
to F(|x|) and the Radon-Nikodym derivative satisfies

AFH(1X]) _ ey vy M
3.1 L = 28Ry, h VW=
G-D dF(x|) (), where () =
and
(3-2) PR =%, sign X = v|z(]x])) = (2)" /(%)
if
rt e [RY|z(|x])} and ve vt ), = 0 elsewhere .

The principal conclusion that may be drawn from Theorem 3.1 is that all
conditional rank tests based on R* and sign X, given the vector of ties z(|x|),
are similar over H, and hence are distribution free. This follows immediately
from (3.2). The assumption of a continuous distribution function has the effect
of furnishing the vector of ties, namely 7, = 0 and 7, = 1for 1 <i < N, with
probability 1. If one prefers to choose a test based on the ranks R;* of only
those observations where sign X; = 1, then the following version of Theorem
IV.1.4.a. of [10] may be of interest.

THEOREM 3.2. Let H, be true, and let I be any subset of the set {t,, - - -, t,} where
each t; appears t, times. The probability that the set of ranks R;* of positive obser-
vations X, given t(|x|), will coincide with the set I (without regard to order) is equal
to (3=,
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Proor. Theset {#, ---, t,}is the set of ranks belonging to the nonzero |X;|’s.
Since the signs of the nonzero X;’s are independent of their absolute values, the
result follows easily.

4. The asymptotic distribution of linear rank statistics under H,. Our atten-
tion will be restricted to a useful class of statistics called linear rank statistics.
Linear rank statistics, where ties are possible, are defined by

(4.1) S, = 2 cay(R; Ty)

where a,(R;; T) are scores dependent only on N, R,, and the rank empirical
distribution function T ,(u) defined by

(4.2) T (4) = % {number of R,’s < uN}, uelo,1].

In the case of no ties, N - T (u) simply equals [uN], using the “greatest integer”
notation. The constants c; are called regression constants. It is easy to show
from (2.2) that under H, we have

1 -
(4.3) E{S,| Ty} = N 21 € Djaay(ry; Ty) = Nea,

and

4.4) Var {S,| Ty} = N Na(e, — &Y XV (ay(ry; Ty) — a)t.

—1
For all functions we will adopt the convention,
(4.5) () = inf {x] f(x) = 1} .

The theorems of this section present cenditions under which

S, — E{S.| Ty}

(4-6) [Var (S, [T}t

— N(0, 1)

holds, where — N(0, 1) means “has asymptotically the standard normal distri-
bution function.” Throughout, we let ¢(x) denote an arbitrary function defined
on the interval 0 < u < 1. Some of the conditions common to the theorems in
this section are as follows:

4.7) H, istrue;
(4.8) 0 < §3(p(u) — P)?du < oo, where ¢ = §} ¢(u) du ;
4.9) 2 (¢, — é)fmax oy (¢; — €)' — o0 .

The following theorem is a generalization of V.1.6.a. of [10].
THEOREM 4.1. If conditions (4.7), (4.8), (4.9), and
(4.10) Yo (an(N - Ty~ (u); Ty) — $(u))* du —p 0
hold, then (4.6) follows.
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ReMARK. Condition (4.10) is not easy to verify, but the major difficulty is
removed with the aid of Theorems 4.2, 4.3 and 4.4 which follow the proof of
this theorem.

Proor. Consider the random variables Y; = F(X;) which under (4.7) are i.i.d.
with some cdf G(u). Let W,, ..., W, bei.i.d. uniform random variables which
are also independent of the Y,. Let G({.}) be the measure induced by G(x) on
any set {.} of real numbers. Then G({y}) equals P(Y = y) at discontinuity points
of G(u), and equals zero elsewhere. Thus the random variables

U, =Y, — W,G{Y)

are mutually independent with the uniform distribution on (0, 1), according to
the following reasoning. Let

a(u) = G(G7'(u)) — G{G™(w)})
and
b(u) = G(G™(u)) .
Then ,
PU, < u) = P(Y, < b(u), W,G{G " (w)}) = b(u) — u) .

If G(u) = u, then b(u) = wand P(U; < u) = P(Y, < b(w)) = u. If G(u) < u, then
G(u) is constant on the interval [a(x), b(x)) and W,G({G~'(#)}) is uniformly dis-
tributed on (0, b(#) — a(u)). This leads to

(4.11) P(U; < u)y = P(U; < a(u)) + Pla(u) < U, < u)

= a(u) + P(Y, = b(u))P<Wl > Z(%%%) =u.

It is shown in [10], page 153, that under assumptions (4.8) and (4.9) the ran-
dom variable T /o,, where

(412) Tc = {V=1 (Cz - 5)¢(Uz) ’
and
(4.13) ol = Nki(e; — &) §i(p(u) — §) du

has asymptotically the standard normal distribution function. It is also shown
in [10] page 160 that S,?/s,, where

@.14)  S¢= Y (¢, — Oay'(R¥);  ayt(i) = E{¢p(Uy) | R* = i},

(4.15) R,* = the rank of U,

satisfies :

(4.16) E {_____(Sf - Tc)z} -0,
g 2

c

and hence S,/o, — N(0, 1) under (4.8) and (4.9).
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We have, by simple algebra and by (4.4),
E{[S. — E{S.|Tx} — ST T}
= (0% (e = )@n(R; Ty) — ay*(RX))F| T}

(4.17) = o D e — O B [an(ri T) — ay ()T
= o Tt (e — O ey (N Ty (Wi T)
— ay*(1 + [uN)] du .
Now
(4.18) E {[Sc — E{S.| Ty} — S°¢]2} —,0

c

holds if the integral in (4.17) converges to zero in probability. But due to an
algebraic inequality the integral in (4.17) is less than or equal to the sum

(4.19) 2§ [ay(N - Ty7(u); Ty) — p()f du + 2 §i[ay*(1 4 [uN]) — ¢(u)] du .

The first integral in (4.19) converges to zero in probability by assumption, and
the other is shown to converge to zero in [10] page 158. The rest of the proof
follows the same lines as in [10], page 161.

In the usual hypothesis test using ranks a set of scores a,(i),i =1, .-+, N, is
suggested, where the scores are “well behaved” in some sense. The scores are
then assigned to the observations X, on the basis of their ranks R,. The assign-
ment of scores to the observations is unique if there are no ties. But if ties are
present scores may be assigned to the observations in many different ways. Some
of the more popular methods are known as the average score method, the midrank
method, and the method of randomized ranks. The remainder of this section
examines the connection between these methods and Theorem 4.1.

Average score method. We can assign to each random variable in a tie the
average of the scores that belong to the random variables in the tie:

1 .
(4.20) ay(t; Ty) = = it ay(tioy + ) -

For such a method the null distribution of S, has been given in [14] for the case
of purely discrete distributions. The general case is given in Theorem 4.2.
Let ¢,(u) be ¢(u) averaged over the intervals in which G(u) is constant valued:

(4.21) $a(u) = g(u)  if G{G'(w)}) =0,

1 b .
=_ - (") dt otherwise,
S — ey 8 90 w

where a(u) = GY(u) — G({G~Y(u)}) and b(u) = G~'(u) are the left and right end-
points of the interval containing u.
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THEoREM 4.2. If conditions (4.7), and (4.9) hold, if the scores a,(i) satisfy
(4.22) Yo (ay(l + [uN]) — ¢())*du — 0

and if ¢,(u) is square integrable and non constant over (0, 1), then (4.6) holds for
average scores defined by (4.20).

Proor. Because of Theorem 4.1 it is only necessary to show that (4.22) implies
(4.10), which takes the following form

(4.23) $o (@x(N - Ty7(u); Ty) — () du —, 0

for scores defined by (4.20).
Let ¢,(u) be ¢(u) averaged over the intervals in which T, (x) is constant valued:

1

(4.24) Pr(u) = m

Sy $(n) d1

where ¢(u) = Ty~ (u) — Ty({Ty~*(#)}) and d(u) = T,~*(u) are the left and right
endpoints of the interval containing u. Then a(N - T,~'(u); Ty) — ¢,(u) is merely
a(l + [uN]) — ¢(u)) averaged over the intervals of constant 7'y(x). For each of
these intervals

(4.25) S (@(N- Ty (u); Ty) — ¢p(w))* du < § (a(1 + [uN]) — $(u))* du

holds, and hence (4.25) holds over the entire unit interval. Both integralsin (4.25)
converge to zero by assumption (4.22). Since the integral in (4.23) is < the sum

(4.26) 2 §5(a(N - Ty (u); Ty) — o(u)) du + 2 §5 (pa(u) — §7(u))* du

it remains to show that the latter integral converges to zero in probability.

The proof that the latter integral converges to zero in probability is long and
not very elegant. Basically, the integral over the intervals where ¢,(x) = ¢ (i)
converges to zero by Lemma V.1.6.b. of [10]. The integral over the remaining
intervals converges to zero in probability for the same reasons the integral B,
on page 280 of [14] converges to zero in probability. The reader is spared the
details.

Note that because of Lemma V.1.6.a. of [10] we may let a,(i) be defined by

4.27 ) = <_’,>

( ) ay(i) = ¢ N1l

if ¢(u) is expressible as a finite sum of square integrable and monotone functions,
and (4.22) then holds. '

Midrank method. 1f the scores a,(i) are defined for half integer i as well as
integer / then it may be more convenient to use the scores corresponding to the
average (mid) rank,

(4.28) a(1; T,) = a, {ﬂ_z_’il} .
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The following theorem gives some conditions under which S, approaches nor-
mality. Let {/,},, denote the denumerable set of discontinuity intervals (a(),
b(u)], where a(u) and b(u) are defined as in (4.21) for each discontinuity point
of G(u). Let ¢,(u) equal ¢(u) if u is in a continuity interval, and let ¢,,(«) =
¢(med 1)) if u is in a discontinuity interval /;, where med /; refers to the midpoint
of I, (a(u) 4 b(u))/2.

THEOREM 4.3. Let conditions (4.7), (4.9) and (4.22) hold. If ¢,(u) is square
integrable and non constant over (0, 1), if {med I,},., are continuity points of $(u),
and if

(4.29) a, (M) - ) for 0<u<l,

then (4.6) holds for the midrank scores (4.28).

Proor. In view of Theorem 4.1, it suffices to show that (4.10), which takes
the form

(4.30) $o (@y(N - Ty (u); Ty) — ()’ du —5 0,

holds for scores defined by (4.28).

Again, we present only an abbreviated form of the proof. The integralin (4.30),
over the intervals in which ¢,,(x) = ¢(u), converges to zero in probability primarily
because of (4.22). The remaining portions of the integral converge to zero in
probability because of (4.29) and because ¢(u) is continuous at # = (med /).

Note that Lemma V.1.6.a. of [10] is equally valid if the scores are defined by

kY _ kj2 .
(4.31) ””<7>_¢<N+1>’ 2<k<2N
where ¢(u) is expressible as a finite sum of square integrable and monotone
functions, and hence (4.22) holds. These conditions do not eliminate the need
for assuming that med /; are continuity points of ¢(«), and that ¢,(«) is non
constant, but the square integrability assumption for ¢,(x), and (4.29), may
now be inferred.

Randomized ranks. In case several Y’s have the same rank ¢,, a one to one cor-
respondence of the integers {7,_, 4 j}i¢, with the ¢, tied Y’s may be established
on the basis of some independent experiment which gives each possible assign-
ment of the integers, then called randomized ranks R*, equal probability. One
such method of assigning randomized ranks is discussed in the proof of Theorem
4.1. Asymptotic normality of the resulting S, is easily shown.

THEOREM 4.4. If (4.7), (4.8), (4.9) and (4.22) hold, then (4.6) follows for scores
given by '

(4.32) ay(R; Ty) = ay(R;*)

where R* are randomized ranks.
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ProoF. Since ay(N - T\~ u); Ty) = ay(l + [uN]), (4.22) implies (4.10), which
because of Theorem 4.1 proves the theorem.
While the above theorems are sufficient for testing most two-sample problems,

multi sample problems usually employ so-called Q statistics [10]. Let {s;, - - -, s;}
be a partition of (1, ---, N) and let n; = card s;. The Q statistic is defined as
(4.33) Quoon, = (N —1) 2151 (Sws — ”j_d)z/”f

2% (@x(R; Ty) — ay?
where
(4.34) Sy; = Dies; an(Ris Ty)

and 4 is the average score as in (4.3). The following theorem is the noncontinuous
analogue to Theorem V.2.2 of [10].

THEOREM 4.5. Conditions (4.7), (4.8), (4.10) and min (n,, - - -, n,) — oo imply
Q,,...n, has asymptotically the chi-square distribution with k — 1 degrees of freedom.

Proor. The proof is like that in [10], except Theorem 4.1 is invoked instead
of Theorem V.1.6.a. of [10]. ,

The previous theorems of this section may be used to obtain scores which
satisfy (4.10).

5. The asymptotic distribution of linear rank statistics under H,. With H,
we shall consider linear statistics of the following type,

(5.1) Syt = L ay(RF5TyY) Sign X,
where a,(R;*; Ty*) are scores dependent only on N, R;*, and the rank empirical

distribution function T, *(«) defined by

(5.2) T\ H(u) = % {number of R,*’s < uN)
in a manner similar to that used in Section 4. Obviously under H,
E(Sy*|Ty") =0, E(S,%) = 0, and
(5-3) Var (Sy* | Ty*) = L, E{lay(R*; Ty*) sign X[ Ty}

= Drtoeg @ (13 Th™)
The following theorem is the noncontinuous counterpart to Theorem V.1.7. of
[10].

THEOREM 5.1. Let ¢*(u) be a square integrable (on 0 < u < 1) function with

(5-4) rto [T (@) du >0
and assume H, is true. Then satisfaction of
(5.5) Siyw [an(N - Tyt u); Ty*) — ¢ (W) du —, 0

implies the sequence S, v, is asymptotically N(0, 1) where

(5-6) Ox' = Lrtoeg @' (5 T™) = N ivo [$7 (W) du = o* .
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ProofF. AsinTheorem4.1 put Y,* = F*(|X,|) where F* denotes the cdf of | X|.
Let Ut = Y,* — W,G({Y,"}), where G(u) is the cdf of Y, *, and W, ..., W are
independent random variables uniformly distributed on (0, 1).

Let

(3:7) ay*(i) = E[¢*(U") | R* = 1]
and consider
(5.8) St = XN ayT(R*)sign X,

where R* is the rank of U,*. Then S,*/s — N(0, 1) as N — oo, as stated in
Theorem 2 of [15].
Next we need to show E{S,* — S,%)*/¢’} —,0. We have

E{(Sy" — S, Ty"}

= Var (S," — S, [Ty")
(3.9) = Do an(rs Ty") — ay*(r*)]

= N §iyw (@y(N - Ty 7(u); Ty") — ay* (1 + [uN]))* du

S 2N §iyw (an(N - Ty 71 u)s Ty™) — @7 (u))* du

+ 2N §5yn (ay* (1 4 [uN]) — ¢7(w))* du .

The first integral in (5.9) converges in probability to zero by assumption (5.5) and
the second converges to zero by Theorem V.1.4.b. of [10], page 158. Therefore
E{(SN+ — S¢+)2

2

(5.10) }_>,,o.

g
It remains to show that ¢, converges stochastically to ¢*. But this is shown in
the same manner as on page 161 of [10].

As with the tests for randomness, rank tests for symmetry are usually defined
in terms of a set of scores a(i), i = 1, - .-, N. If ties exist in the absolute values
of the data, there are several different ways of assigning scores to the data. The
average scores method, the midrank method, or the randomized ranks method,
as described in the previous section, may be used to assign scores to tied obser-
vations. For each method equation (5.5) holds, and theorems analogous to
Theorems 4.2, 4.3, and 4.4 may be stated and proved as before. The details
are obvious and are omitted in the interest of brevity. Results along this line
for purely discrete parent distribution functions are given in [15].

6. The locally most powerful conditional rank test of H,. The principal result
of this section is an analogue to Theorem I1.4.8. of [10] for possibly noncon-
tinuous distributions. The result holds for all sample sizes. Asymptotic con-
siderations appear in a later section. -

The following version of the Neyman-— _Pearson lemma follows from the fact
that P(R = r| H,, (x)) is constant for all r in {R|z(x)} (Theorem 2.1).

Neyman—Pearson lemma for H,. The most powerful size a conditional rank test
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(given z(x)) for H, (or H,) against some simple alternative H, is given by
Or) =1 if PR=r|H, (X)) >k,
=0 if PR=r|H,z(x)) =k
where k is chosen so E{®(R)|z(x)} equals « under H, (or H,).
For the following theorem define a(z,;; F, v(x)) for ranks ¢, attainable in z(x),

and for those functions F(x; #) which are absolutely continuous with respect to
F(x; 0,), as

(6.1) alti Fo 2(0) = E {2 f(0X05 0)l, | 20, Hol
gy = dF(30)
fes 0 = Grcs oy

where X9 represents, as before, the jth order statistic in a random sample of size
N from a population with cdf Fy(x) = F(x; 0,).

THEOREM 6.1. Let J be an open interval containing 0,. If, for 6 € J

(6.2) flx; 0) = % exists

(6.3) % S5 O)ggy = lim,_, I "0) :{; i)‘; 9 exists
and

(6.4) f(x; 00) = lim,_, f(x; 0) exists,

almost everywhere with respect to F(x; 0,), and

(6.5) lim,_,, §Z. dF(x; 0,) < oo

0
2 J05 D),

a_‘; f(x; 0 l dF(x; 0)) = §*.,

then the locally (small A) most powerful conditional (given T(X)) rank test of H, against
(6.6) H,: F(x;, -+, xy) = [[X F(x;: 0, + Ac)

is given by the test with the critical region

6.7) Y Cwa(R,; Fo, T(X)) > k

where k is chosen so the test will have size a for a given T(X).

Proor. The proof resembles the proof in [10], page 71, except that the Radon-
Nikodym derivative f(x; 6) is used instead of the usual density function, and the
Stieltjes integral with element [, dF(x'"¢; 6,), over the region x“ < ... < Xk
is used instead of the usual Riemann integral. First the probabilities P(R = r| H,)
are found to impose the same ordering, for small (§ — 6,)°, on the points {r} as
that given by the statistic (6.7). This fact is then shown to hold when z(x) is
given. The details are omitted.

7. The locally most powerful conditional rank test of H,. A conditional rank
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test for H, is defined as a test based on R* and sign X, given z(|x|). The following
form of the Neyman-Pearson lemma follows immediately from the usual form
of the Neyman-Pearson lemma, and the fact that P(R* = r*,sign X = v|z(|x[))
is constant over all distributions in H, as given in (3.2).

Neyman—Pearson lemma for H,. The most powerful size @ conditional rank test
for H, against some simple alternative H, is given by

Ort,v) =1 if P(R* =r*,signX =v|H, z(x]) >k,
=0 if P(R* =r*,signX =v|H,7(x])) <k

where k is chosen so E{®(R™, sign X) | z(|x|)} equals « under H,.
The following theorem shows the locally most powerful conditional rank test to
be a linear rank test, under some regularity conditions:

THEOREM 7.1. Under conditions (6.2) through (6.5), and
0 0
(7.1) %f(—x; No=0, = _%f(X; Nlo=o,

the locally (small A) most powerful conditional rank test of H, against
H,: F(x;, -+, xy) = 2NN, F(x;; 0, + )

is given by the test with the critical region

(7.2) y_.sign X, - ayt(R,Y; Fo, o(|X])) > k

where k is chosen so the test will have size a for given T(|X|), and where
0
(7.3) ayt(t; Fos T(le)) =E {3_0 X 0)[0:00 | z(|x)), Hl} .

Note. Condition (7.1) ensures that the symmetry of H, is disturbed under H,.
The proof parallels that of Theorem 6.1, in conjunction with the proof on page
74 of [10].

8. The asymptotic distribution of S, under contiguous alternatives. The
theorems of this section parallel the results in Chapter 6 of [10] for continuous
random variables and in part Section 4 of [14] for discrete random variables.
The principal difference is that the treatment involves no assumptions regarding
the discrete or continuous nature of the random variables, although some regu-
larity assumptions are made with respect to the parameter so that contiguous
alternatives may be considered.

Consider a distribution function F(x; ¢) with a parameter §. As before let
f(x; 0) represent the Radon-Nikodym derivative of F(x; ) with respect to
F(x; 0,) and assume this derivative exists. Define the generalization of Fisher’s
information to be
8.1) I(F, 0) = {=.. [M’LQT dF(x; 0) .

f(x:.0)
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The distribution function of ¥ = F(X; #) is denoted by G(u; ), where F(x; 6)
is the distribution function of X. Later we will find the following notation
convenient:
-1 . .
(8.2) o, F, ) = UL 0% Olcay
SOEH(u; 0,); 0,)
Although by definition f(x; ¢,) = 1 we will often carry f(x; 6,) through a devel-
opment for clarity.
Denote the distribution function of the X’s under H, by F(x; 6,) and consider

the alternative

H,,: X, --,X, areindependent and X, is distributed

according to  F(x; 6,) .

That is, the distribution functions of the X’s differ in form through a single
parameter. The asymptotic distribution of S, is found under the local condition

(8.3) max, .,y (0, — 0,)> — 0

and under the “non-triviality” condition

(8.4) lim,_, I(F, 0,) 2%, (0, — 6,)* = b* for 0< b < o0
where Fisher’s information is assumed to satisfy

(8.5) 0 < lim,_, I(F, 0) = I(F, 0,) < oo .

Ir. addition, the regularity conditions (6.2), (6.3) and (6.4) are necessary. The
double subscripts implied by the conditions (8.3) and (8.4) in order to properly
approach a limit will be omitted for the sake of simplicity. Let

X;0)
8.6 L — v J(X5 09
( ) 0 Hz—l f(Xl; 00)
be the likelihood ratio and consider the statistics
. 3
(8.7) W, =237, {[L@il} - 1}
S(X;5 00)
and
(8-8) T, = o1 (0i - 00)¢(Yi’ F, 00) ’
THEOREM 8.1. Assume that for 0 in some open interval about 0,
dF(x; 0) .
8.9 0 0) = —2 1 exists,
(8.9) S 0) = g e
0 . 3 0) — f(x; 0 ,
(8.10) 055 Oo-ay = Ty, fx 0) = g(()x 0 exists,
and .
(8.11) f(x; 00) = lim,_, f(x;0) exists,

almost everywhere with respect to F(x; 6,). Then (8.3), (8.4) and (8.5) imply T, —
N0, b*) under H,.
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The proof involves a direct application of Theorem V.1.2 of [10] and is omitted.

THEOREM 8.2. The conditions of Theorem 8.1 imply

(8.12) logL, — T, + $0* —,0
and
(8.13) log L, — N(—%b%, b%)
under H,.
Proor. It is not difficult to show
(8.14) E[W,} — —1b®
and
(8.15) Var (W, — T,} -0
in a manner similar to the proofs of Lemmas VI.2.1.aand VI.2.1.bof [10]. Thus
(8.16) E((W, — T, + 10*Y} -0

and W, — N(—b%/4, b%) because of Theorem 8.1. LeCam’s second lemma ([10],
page 205) implies (8.12), and (8.13) immediately follows.

The following theorem is the main result of this section, as it presents the
distribution of S, under contiguous alternatives and is thus analogous to Theorem
VI.2.4 of [10]. For purposes of this section it is more convenient to use
(8.17) S' =S, — E[S,|Ty} = X, (c; — &)ay(R; Ty)
whose limiting distribution under H, (see Theorem 4.1) is N(0, ¢.*) where ¢, is
given by (4.13).

THEOREM 8.3. Let ¢(u) be a non-constant square integrable function, on 0 <
u < 1, and assume

(8.18) §3 (an(N - Ty~ (u); Ty) — $(0))° dit =, 0
holds under H,. Then if
(8.19) ¥, (c; — &)/max,gcy (¢; — €)' — 00,

holds, the conditions of Theorem 8.1 imply that S’ is asymptotically N(p,,, o,*) under
H,, where

(8.20) toe = Ly (¢, — E)(O; — 00) §s p(u)p(u, F, 0,) du
and
(8.21) ol = Ny (e, — & i (p(u) — @) du.

PrOOF. It was shown in the proof of Theorem 4.1, by (4.16) and (4.18), that
S’ is asymptotically equivalent under H, to T, defined by (4.12), and hence may
be replaced by T, in asymptotic considerations. This and (8.12) imply that the
bivariate random variables (S, log L,) and (T,, T, — b*/2) converge in probability
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to each other. Under H, we have T, — N(0, ¢,?) and T, — N(0, 5*). Note that
T, can also be written as

(8'22) To = Z%V=1 (‘91' - 00)¢(Ui’ F, ‘90)

where U,, defined by (4.11), is the same uniformly distributed random variable
which appears in T,. Thus the covariance of T, and T, is

(8.23)  Cov(T.,T,) = T, (c; — &)(0; — 00) §} p(w)d(u, F, 00) du

because E{T,} = 0. The remainder of the proof that (T,, T,) is asymptotically
bivariate normal is the same as on page 218 of [10]. But this implies (S,’, log L,)
is asymptotically bivariate normal under H,, and the parameters of the asymptotic
distribution satisfy the conditions of LeCam’s third lemma, page 208 of [10],
which states that under H,S,’ is asymptotically normal (y,,, ¢.%).

In the case of several samples and Q statistics we have the following analogue
to Theorem VI.3.1 of [10].

THEOREM 8.4. Under the conditions of Theorem 8.3, but with condition (8.19)
replaced by min (n,, - -+, n,) — oo, the statistic Q, .., defined by (4.33) has
asymptotically the noncentral chi-square distribution with k — 1 degrees of freedom
and noncentrality parameter

fo1 (Zico, (00 — 0))In)($3 p()$(u, F, 0,) duy*
§o (P(4) — ¢)* du
Proor. The proof is similar to the proof of Theorem VI.3.1 of [10], except
that Theorem 8.3 is used instead of VI.2.4 from [10].

(8.24) 5 =

9. The asymptotic distribution of S, * under contiguous alternatives. For the
following development it will be convenient to use the function
0 _
©.1) B, Fy 00 = — U + $10); Dy, -
It is interesting to note that
(-2) ¢*(u, F, 00) = ¢(3 + 3u, F, 0,)

where the latter function is defined by (8.2).
Let F(x; 6) be a symmetric function for § = 6, (when H, is true) and define

the likelihood function

9.3 Ly = [, K 00+ 8)

( ) A Hz—l f(Xl, 00)

Define I(F, 0) as in (8.1), and assume

9.4) A->0

(9.5) lim, . I(F,0) - NA* =6 for 0<b'< oo
and

(9.6) 0 < lim,_, I(F,0) = I(F, 0,) < oo .
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Then the counterpart to T, in (8.8) is

0
0.7 Ty = 2L A¢(F(X), F,0) = 2, A %f(Xi; ‘9)10:00
which can also be written as
. d
(9.8) Ty = 2% A sign X; %quz" '9)|0=00
9.9) = YV, Asign X, ¢*(U,*, F, 6,)

where U,* is defined in Section 5, if (7.1) is true.

THEOREM 9.1. Let F(x; 0) satisfy (6.2), (6.3), (6.4), (7.1) and (9.6). If (5.5)
holds under H, for some square integrable (on (0, 1)) function ¢*(u) that satisfies
(5.4), then (9.4) and (9.5) imply that the sequence S,*-is asymptotically N(u,, o%)
under H,,, where o* is given by (5.6) and p, by
(9.10) tty = NA §or $7(U)g*(u, F, 0,) du
and the sequence S,* /g, (see (5.6)) is asymptotically N(u,/c, 1).

Proor. The proof is analogous to the proof of Theorem 8.3 and is therefore
omitted.

10. Asymptotic relative efficiency. When testing H,, if there is convergence

?:1 (ci - E)(ﬁi - 00) N
(Z?’:l (ci - 6)2 Z?:l (01' - 00)2)k
then the asymptotic efficiency of the test using S, is defined in [10] as

2

(10.1)

(10.2) e = o’p)}
where p, is given by
(10.3) o, = $o p(u)p(u, F, 0,) du

(55 ($(u) — @) du §; §*(u, F, 0;) du)?
This notation enables the asymptotic distribution of S,’ under the conditions of
Theorem 8.3 to be stated simply as N(p, p,bs,, ¢,%), and the asymptotic distribution
of (S, — E{S,|Ty})/(Var {S,| T,})* under the same conditions to be N(p, 0,6, 1).
The ratio of the two asymptotic efficiencies of two comparable tests is called
their asymptotic relative efficiency (ARE). In the usual case of interest the con-
stants ¢, are the same for both tests but the ¢(u) functions differ. Then the ARE

of the test using ¢,(u), say, relative to the test using ¢,(u) is

(10.4) ARE — (55 $o()p(u, F, 0,) du)® §; ($a(u) — ¢:2)2 du .
(S(l) ¢2(u)¢(”’ F, 00) d”)2 S(l) (¢1(u) - ¢1)2 du
Thus the asymptotic efficiency is the ARE relative to the most powerful test,
under the given conditions, and the most powerful test is one which uses ¢, = 6,
and ¢(u) = ¢(u, F, 8,), or some linear functions thereof.
We may now draw some immediate conclusions regarding the asymptotic effi-
ciency of S, for the various methods of scoring ties discussed in Section 4,
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Average score method. If the conditions of Theorem 4.2 are met for the average
scores defined by (4.20), then under the conditions of Theorem 8.3 the distri-
bution of (S, — E{S,|T,})/(Var {S,| Ty})! is asymptotically normal with mean
0,0,b and variance 1, where p, is given by

(10.5) 0, = §o ¢a(”)¢(f" F, 0,) du

(50 ($u(u) — @) du I(F, 0,))*
for ¢,(u) defined by (4.21). In this case our result is a generalization of Theorem
4.2 of [14].

Midrank method. When the midrank scores of (4.28) satisfy the conditions of
Theorem 4.3, then the asymptotic distribution of (S, — E{S,| Ty)})/(Var {S,| Ty})}
under the conditions of Theorem 8.3 is N(p,p,b, 1) where

(10.6) 01 = $o ¢m(”)¢(_”’ F, 0,) du
(36 (Pu(¥) — ) du I(F, 0y))*
for ¢,,(u) defined in the text preceding Theorem 4.3.

Randomized ranks. In the case of randomized ranks the asymptotic distribution
of (S, — E[S,|Ty})/(Var {S,| T,})* under the conditions of Theorems 4.4 and 8.3
is N(p,p,b, 1) where
(10.7) o SEWI(, F, O du

(§5 (¢(u) — ¢)* du I(F, 0,))*
Note that the numerators of both p,’s defined by (10.5) and (10.7) are identical,
since ¢(u, F, 0,) is constant over the same intervals in which ¢(u) is averaged to
give ¢,(u). Therefore the ARE of an average scores test relative to a randomized
ranks test is
(10.8) ARE = Ji(000) =9 du 4

$o (Pu(u) — 9) du

with equality only if ¢(u) is constant over the same intervals in which G(u) is
constant, so that ¢(u) = ¢,(#). Note also that if ¢(u) is constant over the same
intervals in which G() is constant, such as when ¢(x) = ¢(u, F, 6,) in the most
powerful test, then the average scores method, the midrank method, and the
method of randomized ranks have identical asymptotic efficiencies, because then
$u(1) = $,(1) = $(1).

In the usual multi-sample case of interest, the alternative hypothesis specifies
that 6, is constant within the partitions s;; that is, we have k populations;

(10.9) Hy: F(xy, -+, xy) = [T [Ties; F(x50,) -
Then the asymptotic efficiency of the Q test, as defined on page 271 of [10], is
(10.10) e=p?= (52 p(u)g(u, F, 0,) du)*

I(F, 05) §4 ($(u) — @) du
which equals 1.0 if ¢(u) = ¢(u, F, 6,). Note that ¢(x) in (8.24) and (10.10) is
replaced by ¢,(u) or ¢, (u) in case average scores or midrank scores are used.,
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For tests of symmetry involving S,* the asymptotic efficiency becomes

(10.11) e — [Vr+w ()" (u, F, 0o) du]®

SIF'+(0) [SZSJr(”)]2 du S;'+(0) [¢+(u, F, 00)]2 du
which corrects the equation on page 277 of [10]. Thus the most efficient test is
one whose scores converge, in the sense of equation (5.5), to ¢*(u, F, 6,), defined
by (9.1). Comparisons among the various methods for breaking ties may be
made here also, with the same results as before.

11. Applications of the tests for randomness. The function ¢(Y;, F, 6,) is
important in the discussion of most powerful tests for randomness. Theorem 6.1
showed that the locally most powerful test of H, is based on the statistic

(11.1) St = NN ¢, E{¢(YF, F,0,)| Ty, Hy}

while Theorem 8.3 implies that the asymptotically most powerful test is based
on the same statistic if the correlation between ¢, and 6, is unity. Actually
Theorem 8.3 implies that any linear rank statistic S, = »%, ¢,a(R;; Tyy) which
uses scores that converge to ¢(u, F, 6,) in the sense of Theorem 8.3 is asympto-
tically equivalent to (11.1). One such statistic is

R,
N+1

(11.2) S, = Sl e (s Fo o] Ty)

which uses the average of the scores ¢(i/(N + 1), F, ;) in the sense of (4.20).
In many cases ¢(u, F, 6,) is a linear function of F~*(u; 6,). In particular

F=X(u; 6,) — (X))

(11.3) o(u, F,0) = Var (X]

holds for the following cases.

(a) F(x; 0) is Poisson, with § = E(X) = 4;

(b) F(x; 0) is binomial, with § = E(X) = np, constant n;

(c) F(x;0,) is uniform on (0, 1) while F(x; 6) considers the alternative where
the density equals 1 4 (2x — 1)d for xin (0, 1) and zero elsewhere, for a param-
eter , and @ = E(X) = § + 0/6, (6, = 1);

(d) F(x; 0) is geometric with probabilities (1 — p)p* fork =0, 1,2, .., and
with 0 = E(X) = p/(1 — p);

(e) F(x; 0) is exponential, with § = E(X) = 1/4;

(f) F(x;0) is normal, with § = E(X) = p and ¢ constant.

In the above cases it is equivalent to use F~*(u; 6,) for ¢(u) to obtain an asymptot-
ically most powerful rank test. T hat is, because of Corollary V.1.6 of [10], the
scores :

(11.4) ay(i) = the

! quantile of F(x; )

may be used in the average scores method, the mid-rank method, or the
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randomized ranks method to obtain an asymptotically most powerful rank test
for the cases listed. The above list is not intended to be exhaustive.

The flexibility now allowed by rank tests may be illustrated by the following
example of a mixture of discrete and continuous distributions. Consider the
distribution function of X,

(11.5) F(x)=0 if x<0,
=l—p+pfi9@d if x=0

where g() is some density function on (0, co) with mean b, say. Such a distri-
bution function F(x) could be used to describe monthly volumes of water carried
by streams which are dry during long periods, or individual incomes in a popula-
tion where not everyone has an income. If = p, 6, = p,, and b is constant, then

(11.6) b, FLEX) = ——1 _ if 0<us1—p,
b(1 — pg)
1 if 1—p<u<l.
bp, .

This indicates that the asymptotically most powerful linear rank test of random-
ness uses scores given by (11.6) in a statistic such as S, defined by (11.2) or,
equivalently, simply

(11.7) S, = XX, sign (X))

where sign (X;) equals 0 or 1 depending on whether X, equals 0 or is positive.

Usually a most powerful test is described for alternatives which include a class
of distributions, such as the class of Poisson distributions with unspecified
parameter 2. In such a case it is permissible to estimate the unspecified param-
eter or parameters from X, the combined ordered sample, because X'’ is, for
a given vector of ties, independent of the ranks R by virtue of Theorem 2.1. If
the estimator used is consistent, then asymptotically it is equivalent to the true
value of the parameter and the asymptotic efficiency of the test is not impaired.
In fact the entire function may be estimated from X", perhaps in a manner
similar to that in Theorem VII.1.5 of [10], to obtain a test that is asymptotically
efficient against all alternatives. The details of such a test in the noncontinuous
case have not been worked out.

In closing we should add a postscript to the remark that the asymptotic effi-
ciencies of the average scores method, the midrank method and the randomized
ranks method all equal 1.0 when the most powerful test is being used. If we
are using the wrong scores because of ignorance concerning the true distribution
function F(x; 6,), or if we are deliberately using nonoptimum scores for con-
venience, then the asymptotic efficiency of the randomized ranks method is
likely to be inferior to that of the average scores method. That is, the latter
test will be more powerful whenever the function being used is not constant
over all constant intervals of G(u; 0,), such as when using the Mann-Whitney
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test in the presence of ties. It is likely that simple conditions exist under which
the midrank method is superior to the randomized ranks method, but such
conditions have not been established. A comparison between the midranks
method and the average scores method has been made in[7], in which comparisons
are made between the results of this paper and Table 1 of [4].
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