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SOME LIMIT THEOREMS WITH APPLICATIONS
IN SAMPLING THEORY

By Lars HoLsT
Uppsala University

From a finite population units are drawn with varying probabilities
with replacement. There is a certain cost for observing a unit. In this
paper samples are obtained partly by drawing a fixed number of times, and
partly by drawing and observing units until the cost reaches a specified
level. Let X be the number of times the kth unit has been drawn in
either case. Consider for a given function g(+) the random variable Z =
2k 9(X&, k). Under general conditions it is proved that Z is asymptot-
ically normally distributed (actually a multidimensional generalization is
considered). By appropriate choices of g(-) asymptotic distributions are
obtained in successive sampling with varying probabilities without replace-
ment and for the mean of the distinct units in a simple random sample with
replacement. It is also investigated how heterogeneous catchability and
effects of marking affect the ‘‘Petersen’’ estimator in capture-recapture
theory.

1. Introduction. Suppose that we draw with replacement from a finite popu-
lation {U,, - - -, U,}. We take ¢ independent samples Z,, - - -, X . When obtaining
T, the probability of drawing U, is p,, in each drawing, and the drawings are
independent. Furthermore, there is a cost ¢,, > 0 associated with observing U,
in X, where (without loss of generality) >4, ¢,, = 1.

First let X, be obtained by drawing a fixed number of times N - 7,. Let X, be
the number of times U, is drawn in X, and consider for a given function g(+)
the random variable:

(1'1) Z(ty, - -, tq) = 2= g(ka ) qu, k) .

In Section 3 it is proved that under general conditions this random variable is
asymptotically normally distributed when N — co. A generalization of a method
given by Rényi (1962) to study the classical occupancy problem is used for the
proof. By specializing the function g(+) various results on occupancy problems
follow, see, e.g., Holst (1972) and the references given there.

Next we suppose that the sample %, is obtained by drawing so many times
N - T,, that the observation cost for the (different) units obtained for the first
time reaches a level f,, 0 < f, < 1. Let X, be the number of times U, is drawn
and consider for a given function g(-) the random variable

(1'2) Z(Tl’ R Tq) = ZkN=1 g(le ct ity qua k) .
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LIMIT THEOREMS IN SAMPLING THEORY 645

In Section 4 the asymptotic distribution of this random variable is derived under
general conditions when N — oo.

In Sections 5 and 6 we suppose that to each unit in the population there is
associated a real number. Using the result of Section 3 the asymptotic distri-
bution of the mean of the distinct units in a simple random sample drawn with
replacement is obtained in Section 5.

Suppose that the units are drawn one after the other without replacement so
that in each drawing the probability of obtaining U, is proportional to p, if U,
has not been drawn before. The cost of drawing and observing U, is ¢, > 0.
We keep on drawing units until the total cost reaches a specified level f. Using
the result of Section 4 the asymptotic distribution for the sum of the real num-
bers corresponding to the units in the sample is derived in Section 6. The special
case when the costs are equal, often called successive sampling, has been studied
by Rosén (1972) by different methods. When as well the p’s are equal we have
simple random sampling without replacement. Inapplications in sampling theory
one usually is interested in obtaining an unbiased estimator of the population
total. For this purpose an “approximate” Horvitz-Thompson estimator of the
population total is given.

In Section 7 we study how the large sample properties of the ““Petersen esti-
mator” in capture-recapture estimation for finding the size of a finite population
are influenced, if the usual assumptions concerning simple random sampling and
no effect of marking are not valid. The theorem in Section 4 is used to prove
the asymptotic results.

2. Assumption and notation. To give precise formulations of the asymptotic
results given below we will consider sequences of probabilities, costs, functions
and so on. This will sometimes be indicated by an extra index N, but to facili-
tate the notation N will often be suppressed. We also introduce the following
assumptions used below:

(2.1) 0<CENYy=SC < 0,

for 1<k<N,1<s5<gq, andall N,
(2.2) 0< G =Ny =C <o, il =1,

for 1<k<N, 1<s5s<gq, andall N,
(2.3) ty— 1, , 0<t, < oo, when N — oo, for 1 <s5<4¢,
(2.4) fiv— 10> 0<f,< o, when N — oo, for 1 <s5s<4¢q,
(2.5) 19X -+ Xy K)| < [y - eXP(O(x + -+ + %)),
(2.6) 95 (X0 -+ 5 X K)| < ayy| 5
2.7) SN ay<C < oo, forall N,
(2.8) max, .y g — 0, when N — co.

We denote by Po (m) a Poisson distribution with mean m, by Mult (n, p,, - - -, py)
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a multinomial distribution, and by N(m, ¢*) a normal distribution with mean m
and variance ¢2. The notation, X, € AsN(my, o,*) when N — oo, means that the
sequence {(Xy — my)/oy}y converges in law to N(0, 1).

3. Fixed sample size. Let the sample I, be obtained by drawing a fixed num-
ber of times Nt,. In Z, the unit U, is drawn X, times. Evidently

3.1) (X =+ +» Xyo) € MUlt (N2, prgy + -+, Pava) -

The samples Z,, - - -, X, are independent. For convenience in notation we intro-
duce independent random variables {£,,} where

(3.2) €€ Po (Np, 1),

and set

(3.3) § =6+ - + &y

We consider for a given function g(.) the random variables
3.4 Z=Zy=2Z(ty, - -, t,) = 2019 Xus - -+, Xip» k)
and

(3.5) C=Cr =8t -5 1) = Zia 96 -5 &upp K) -
Finally we set

(3.6) o*=9¢,2=Var( — X, 8,¢,),

where

3.7 B, = Cov (§,, {)/Nt, .

THEOREM 1. If (2.1), (2.3), (2.5), (2.7), and (2.8) are satisfied and
(A) if

(3.8) liminf,_ ,0,* >0,

then

3.9) Zy e ASN(ECy, 0% , N— oo,
®) if

(3.10) lim,_ 0, =0,

then

(3.11) Z, — E(,— 0, inlaw, N> .

ReMARK. From the conditions it follows that
(3.12) lim supy_. 0,° < co.

Proor. In Holst (1972) the characteristic function of Z is derived in a special
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case. We obtain in an analogous way:
E(exp(iuZ)) = (1 + o(1)) - TIi=1 (N1,/2m)}
X §7 - 7 exp{Xo, Ni(exp(if,) — 1 — i6,)}
X TIi= [ + ZZ,~-~,zq=o PE¢,=x,1<s5s=Z9q)
(3.13) X exp{ 5L, (i0,x, — Npy,1,(exp(if,) — 1))}
X exp(iug(x,, -+, x,, k)) — 1}]db, - .- db,
= (1 + o(1)) - L& (Nt,/2m)?
X §Tpnee §7 Ay(u, 0y, -+, 0,)dl, ---db, .

We will study this integral when N — oo as in Holst (1972), following a method
by Rényi (1962).
LEMMA 3.1. For fixed u and 3 > O we have when N — oo that

(3.14) Nez§ ... Ay(u, 0y, ---,0,)d0,---df, — 0, where
A

(3.15) A={o) <7 1<s<g\6I <8, 1 <s=<q).
Proor: In the region 4 we have for some s and K, > 0 that
(3.16)  |exp{Nt(exp(if,) — 1 — if,)}| = exp{Nt,(cosd, — 1)} < exp(—K,;N).
Using this estimate and the conditions of the theorem it follows that
[Nz § e § Ay(---)db, - db,|
(A7) SN exp(=KN) T {l 4 B5egms Pk = X0 1 S TS 9)

X 0(g(xy, - -+, xp K))}
< N2 .exp(—K; N + o(N)) .

As this estimate converges to 0 when N — oo the lemma is proved. []
LeMMA 3.2. For fixed u and 6 > O we have when N — oo that
(3.18) Ne72 § e § Ay(u,0,, ---,0,)db,..-d6,—0, where
(319  B={) <4, 1<s<q\6 <Ny 1<s<g}.
Proor. For some K, > 0 we have in the region B that
(3.20) exp{Nt,(cos 0, — 1)} < exp(—Nt,K,6,%) .

By expanding the logarithm of T];_, {- - -} in the integrand and using the assump-
tions we find that (3.18) can be majorized by

N2 § ... §exp(— 2 N, K, 0. - [TIY {---}| 46, - - - db
(3.21) Bg Naa§ ... §exp{— ¢ N, K, 0,
+ z;zf O(N#,) + O(1)}d6, - - - db,
= Vexp{—K, D¢ + 110 + O(1)}d¢y - - df,

q
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where
(3:22) B ={¢] = (N)%, 1 < s < g\[l¢o] = (N)h 1 < s < ¢}
As the estimate in (3.21) converges to 0 when N — oo, the lemma is proved. ]
LeMMA 3.3. For fixed u we have when N — oo that
(3.23) exp(—iuEQ) - T1i, (Nt,2z)t - § --- § Ay(u, 0, ---,6,)dl, ---db,
’ =exp(—a, w2 + o(1)),
where
(3.24) C={6]< (Ne)y 15 q).

Proor. By expanding In 4, and using the assumptions we find that the left-
hand side of (3.23) can be written:

I (N 2m)b - § - -« §exp[— 20 2 Zz,m,xqﬂ P, =x,1=r=y9
X g(xl’ R} xq’ k)(xs - Npks ts)ﬁsu
- ZkN=1 :ol,~-~,zq:0 P(Ekr = xr’ 1 é r é ‘])(g(xl, D) xq’ k))2 * ll2/2
(325) o+ DTS Pl = X0 1 < 7S Q)01 -y Xy KO 12
— DL Nt 022 + 3L, 0(N(933) + 0(1)] dag, ... dﬁq
= exp(—oyf2) - § -~ § (2m)=e” - exp[— DL, {(¢, + O(1))
+ O@2INY) + o(1)}/2]do, - - - di, ,
where
(3.26) O = (g £ (N 1 S 5= g

As the last integral in (3.25) converges to 1 when N — oo, the assertion follows. []
Combining the lemmas gives:

(3.27) Elexp(iuZ,)} = exp{iuEl, — o,*u*/2 + o(1)}.
By the continuity theorem for characteristic functions the theorem follows. []

4. Fixed sample cost. Let us consider the random variable studied in the
previous section

4.1 Z(ty, o5 t) = Di 9(Xa(t), - - -5 Xi(2,), k)

as a function of (¢, ---,t). In this way we define the random process Z(-).
In (4.1) X,(z,) denote the number of times U, is obtained after Nz, drawings.
Let us also define

4.2) e.(t,) = min (1, X, (1),

the random variable indicating if U, has been obtained after Nz, drawings. The
total cost associated with the first Nz, drawings in the sth sample is:

4.3) Z(t) = 21 Crara(ty) -
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For notational convenience we introduce independent random variables {£,,(z,)}
where

(44) £u(t) € Po (Npy,1,) -

Furthermore, we set

(4.5) &ty -0 - tq) = 2w g(Ekl(tl)’ s Ekq(tq)’ k)’

and

(46) Cs(’s) = lecv=1 cks sks(ts) = Ziv=l cks min (1 ’ Eka(’s)) .
We define a function g(-) by

(4‘7) ﬂ(tl’ ] tq) = EC(I,, ) tq) s

and functions g,(+) (1 £ s < q) by

(48) !’ls(ts) = Ecs(ts) *

Now we suppose that the sample X, is obtained by drawing units until the
total cost for the first time is at least f,. If (2.1), (2.2), and (2.4) are satisfied
then it is easily seen, that the drawing when this happens

(4.5 N.T,=min{Nt; Z(t,) = f.},

is a proper random variable, and that the equation

(4.6") u(t) = 2V e {1 —exp(—=Np, 1)} = £

has a unique solution ¢, = 7,, 0 < 7, < oo. To simplify notation we set

4.7) Ehe = E1s(7s) 5 €hs = €1s(T4) » ¢ = C(zy) C=2C(ty, + -5 70) s

(4.8 € = 2k €ul(zy)
(4.9) o' =Var ({ — ZL.7.0) >
(4.10) 7, = Cov (§,, {)/Cov (§,, C,) -

In the following theorem we consider Z(7), - - -, T,), the random process Z(+)
at the stopping time (7}, - --, 7,). We will study the asymptotic behavior of
Z(T,, ---,T,), or more precisely, the limiting distribution of the sequence
{(Zy(Tyys -+ > Tyx)}y Wwhen N — co. But to facilitate the notation the index N
will often be suppressed. '

THEOREM 2. If (2.1), (2.2), (2.4), (2.6), (2.7), and (2.8) are satisfied and

(A) if

(4.11) liminf,_ 0,2 >0,

then

(4.12) Zy e ASN(p(tyy -+, T,), 047 N-— oo,
(®) if

(4.13) liminf,_ 0,2 =0,
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then
(4.14) Zy — p(ty ooy t)— 0, inlaw, N> oo.
REMARK. From the conditions it follows that
(4.15) limsupy ., 0,° < oo .
Proor. Let us write
@16)  Z(Ty -+ Tp) — ey -+ 7) = {Z(Ty -+ T) — Ty -+, Tp)}
+ {(Ty, -+, Tp) — prlTy, -5 T}

In Lemma 4.2 the second part of the right-hand side of (4.16) is studied; the
first part is investigated in Lemmas 4.3—4.6. But first we consider the 7’s.

LeEMMA 4.1. We have

@17) Y, = NUT, — 7)) = —NUZ(5) — [ 4w + 0,(1) ,

where, for some real numbers K,, K,,

(4.18) A,y = Cov (£,, &)z, » 0<K ZA4,5<K, < .
Proor. From the definitions of Z, and T, we have for a fixed real number v, that

(4.19) Z(t, + /N = fi=T, <7, + 0[Nt =V, S 0, .

Hence ‘

(4.20) P(V, < v,) = P(NHZ (s, + 0,/N) — p(z, + 0,/NY)

= N/, — (e + 0 /ND))) -
By expanding ,(z, + v,/N*) we find that (4.20) can be written:
(4.21) P(V, < v,) = P(NHZ(z, + v,/N}) — p(z, + v,/N*)}
= — Ay, +o(1)).

Hence ¥, and —N* . {Z(z, + v,/N}) — p,(r, + v,/N*)} have the same asymptotic
distribution, and by using Theorem 1 we see that V, € AsN(0, O(1)).
After some straightforward calculation we find

(4.22)  N-Var (Z(z, + v,/N¥) — p(r, + v/NY) — Z,(z,) + [,) = 0,
' N> oco.

Hence we have
(4.23)  NYZ(z, + v,[N?) — p(z, + 0,[NY)) = NY(Z(z) — f.) + o,(1) -
Combining these results proves the lemma. []
LeEMMA 4.2. When N — oo we have
(4.24) Ty s Ty) = p(ens -5 7)) = L BV 4 0,(1),
where for some real number K,

(4.25) B,y = Cov (5,, {)/Nir, , 1B,y < K < o .
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Proor. Let v, ---, v, be fixed real numbers. By expanding y we find
(4.26) w(ty + vNY, oo T+ vq/N*) — p(Ty 5 TY)
= N, By, + 0(1) .
Lete > Oand d > Obefixed. Because V, € AsN(0, O(1)) there exists a K, such that
(4.27) PV <K, 1<s<q)>1—3.
From (4.26) it follows that

P(|p(ry + ViINE, oo 7y + V[N
— Ty s T) = L B Vi > )
(4.28) =P(---| > |V, £K, forall s)
+ P(]---] > ¢, |V, > K, for some s)
< P(max,, <, |#(r: + INE, - T, + v, [NY)
— ¢ty c e Tq) - Z;’=1Bazv'va| >e)+0=290,
for N sufficiently great. This proves the lemma. []

In Lemmas 4.3, 4.4, and 4.5 we only consider the case ¢ = 1. In these lem-
mas we suppress the index s = 1.

LeEMMA 4.3. When N — co we have
(4.29) Z(T) — w(T) = Z(z) — p(z) + o0,(1) .

ProoF. Let e > 0and ¢ > 0 be fixed, and choose K; as in Lemma 4.2. We
have

P(ZT) — w(T) — Z(r) — (7)) > ¢)
(4.30) =P >e VI SK)+ P > 6 V][> K)
< P(max,, <, |Z(c + v/N*)
— e + OINY) — (Z(z) — (@) > €) + 3
Combining (4.30) and the next lemma it follows that it is sufficient to prove that
(4.31) P(max,, cx, |Z(r + v/N¥) — EZ(z + v[N?)
— (Z) — EZz))| >¢) >0, N-ooo.
As the stopping time N - T is an integer-valued variable we have
P(max,, .k, |-+ +| > ¢) < 2K, Nt max,, c«, P(|Z(z + v/N?)
(4.32) — EZ(r + v|N¥) — (Z(z) — EZ(r))| > ¢)
< 2K, N*max,, ., E|- - - ['/¢*.
In Lemma 4.5 it is proved that N:E|...|* — 0 uniformly for |v| < K;. From

this the lemma follows. []

LEMMA 4.4. When N — co we have

(4.33)  p(r 4+ vNY) — p() = EZ(z + v N¥) — EZ(2) + o(1) .
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PrOOF. Suppose that v > 0 (v < 0 can be treated in an analogous way). Con-
sider independent random variables such that X, e Bin (Nz, p,), Y, € Bin (Ntv, p,),
&, € Po (Nzp,), and 7, € Po (Ntvp,). (4.33) can be written

(4.34) DL E{9(Xi + Yo k) — 9(X,, k) — 9(5, + s k) + 9(§,, K)} = 0(1) .

Using the Poisson approximation of the binomial-distribution it follows that the
left-hand side in (4.34) can be estimated in the following manner

(4.35) XL E(- o = Dialado(Vh) = (ZT a)t-o(l) = o(1) . O

LEMMA 4.5. When N — oo we have
(4.36) NE|Z(t + v[N¥) — EZ(t + v|Nt) — Z(t) + EZ(7)]* - 0.

Proor. We only consider the case v > 0 (v < 0 can be treated in an analogous
way). Let (X, ---, Xy) e Mult (Nz, p;, - -+, py), and (Y3, - -+, Y,) € Mult (N,
P1s ++ -, py) be independent random vectors. With
(4.37) A, ={9(X, + Yy, k) — 9(X,, k) — Eg(X, + Y, k) + Eg(X,, k)}/a, ,
(if a, = 0 set A, = 0) we can write

E[---|' = E|ZiL Ay
(4.38) = DisalEN! + 4 T a0 °ED DAY
+ 3 Xinr P EAPDE + 6 Fisiimss alapa, EAPA LD,
+ 24 Zi<k<m<;n a‘i alc am ap EA‘L Ak Am Ap .
Using the assumptions we find after some elementary but cumbersome calcula-
tions the following estimates:

(4.39) EA} = O(N-Y),
(4.40) EA; A2 = O(NY),
(4.41) EA2A2 = O(N7Y),
(4.42) EA2A A, = O(N7Y),
(4.43) EA A A, A = O(N7Y).

Hence, when N — oo,
(4.44) Nt Y a!EN' <K, Y a' < K,maxaq?— 0,
(4.45) INt 3 a,aEA AP < K,N7' Y ag| e < K,maxa?— 0,
(4.46) N} Y a2aEAAR < K,N-X3 @) < K, - N2 — 0,
(4.47) Nt > ala,a, EAPALA,| < K;N-¥ 3 atlay||a,| < Kymax |a,| — 0,
(4.48) IN"t 3 a,a,a,a, EA; A A, A
< K N7t 3 |a,a,a,a,| < K3 |a|/NY) - NP < K,,- N2> 0.

Using these estimates in (4.38) the lemma follows. [J
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LemMMA 4.6. When N — oo we have
(4.49) Z(Ty, ---,T) — u(Ty, -+, T)
= Z(Tyy v 5 Ty) — t(Tys v -5 T,) + 0,(1) .
Proor. It is sufficient to prove that forr =1, 2, ..., g we have
Y,=Z(ty, - Ty Tpy o3 T)) — gy -3 Ty Ty - -+, T)

(4.50) =Z(ty s Tpy Tpygy + o s Tq) — (T s Ty T o5 Ty) + op(l)
= Y, + o,(1).

For fixed ¢ > 0 we have (summation over all x’s)

P|Y, — Y, >e)= X P(X(r) =X, 1 £k
(4'51) X P(Xkl(Tl) = Xka» 1 é

X P(|Yr - Yr+ll > el{Xka = xkl}k,a#r) .

Because the random variables defined for different values of s are independent,
we can consider {Y, — Y,,, given {Z,, = x,,},.,+,} as a random variable defined
for the case ¢ = 1. By Lemma 4.3 we have
(4'52) P(er - Yr—l{ > eI{Zka = xlu}k,s*r) = 0(1) ’

where o(1) is uniform in {x,,} because of the condition (2.6). Hence we have

(4.53)  P(Y, = Yol > ¢) = [Z P({Xis = Xubewr)] - 0(1) = 0(1) . O
Combining the results of Lemmas 4.2 and 4.6 we have proved that
Z(Ty, -+, T,) — iy, -+, T,)
= Z(z-l, . ',T.,) — !‘(Tv ceey Tq)
(4.54) — Zia{Cov (£, 0)/Cov (£, CONZ(7.) — fo) + 0,(1)
= [Z(z1, -+ -5 1) = Tl {CoV (5, O)/Cov (£,, L)} Z(7)]
= [e(zs -5 1) — Bl {Cov (&, §)/Cov (€, COM] + 0,(1) -
Using Theorem 1 on (4.54) proves Theorem 2. (]
REeMARK. The condition (2.5) is sufficient for proving Lemmas 4.1—4.5. So

for the case ¢ = 1 the stronger condition (2.6) can be replaced by the weaker
(2.5) in the theorem.

5. Mean of the distinct units. Suppose that to each unit in the population is
attached a real number, say a, for the unit U,. The population mean is denoted
by m, and the population variance by ¢,’. For estimating m, a simple random
sample with replacement of size n is taken. The sample mean is an unbiased
estimator, but a “better” estimator is the mean of the distinct units in the sam-
ple; see Lanke (1972) and the references given there for a discussion of this
estimator. By defining

(5.1) e, =1 if U, is obtained,

=0 otherwise,



654 LARS HOLST

the mean of distinct units in the sample can be written
(5.2) m* = 3l a2k -

THEOREM 3. If, when N — oo,

(5.3) n/N —t, 0< < o,
(5.4) max, <y (@, — m,)}/No 2 — 0,

then

(5.5) m* ¢ AsN(m,, ¢,/(¢¢ — 1) . N).

ProOOF. We have
(5.6) N¥XVa,e/X¥Ye — m,)o, = (LY (a, — m,)e,/Nis,)/(X Y e,/N).

From Thorem 1 it follows that

(3.7 Zie/N =e"+o(l),
and
(5.8) ¥ (a, — m,)e,[Nto, et € AsN(0, 1/(et — 1)).

Combining (5.6) and (5.7) it follows by the Cramér-Slutsky theorem that (5.6)
and (5.8) have the same asymptotic distribution. []

REMARK. The sample mean is AsN(m,, ¢,%/n). Thus, the ratio of the asymp-
totic variances is 7/(e! — 1) < 1. Lanke (1972) has proved that the same limit is
found for the limit of the ratio of the variances.

6. Successive sampling. As in Section 5 we consider the finite population with
real numbers attached to the units. We also suppose that it costs ¢, > 0 for
observing U,, ¥ ¥ ¢, = 1. We draw units without replacement one after the
other, so that the probability of drawing U, is proportional to p, if U, has not
been obtained before, 3V p, = 1. Keep on observing units until the total cost
for the first time reaches the level f, 0 < f < 1. Let

(6.1) e, =1 if U, isobserved,
=0 otherwise.

The sum of the a’s corresponding to the observed units can be written

(6.2) Sh.ae,.
Using
(6.3) 9(x, k) = min (1, x)a,/(5V a,2)}

in Theorem 2 we immediately have:
THEOREM 4. If (2.1), (2.2), (2.4) are satified and

(6.4) max, .y (@) 27 a*) — 0, N— oo,
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then

(6.5) 2t aye, € ASN(LY apmy, 1V ¢fmy(1 — m)((awfer) — 2 (a;/ew,))
N - oo,

where

(6.6) ., =1 — exp(—Np,7),

and 7 is defined by

(6.7) 21 (1 —exp(=Np,7))e, = f,

and

(6.8) wi=c(l —m)In(l —m)/n¥e(l —m)In(l — 7).

It is easily seen that we get the same theorem if the last unit drawn is not
observed, so that the total sampling cost does not exceed f.

To obtain an unbiased estimator of the population total one can use the
Horvitz-Thompson estimator

(6.9) (HT) = $¥ a,e,/P(e, = 1).

But we have no simple expression for the inclusion probability P(e, = 1), so let
us instead consider an approximation of (6.9)

(6.10) (AHT) = ¥V a, ez, .

If in Theorem 4 a, is replaced by a,/z,, k =1, ..., N, then we obtain the
asymptotic distribution of (4HT).

There is an important special case of the sampling procedure above when the
costs are equal. In this case a fixed number Nf of different units are drawn, so
called successive sampling. Rosén (1972) has investigated this case using methods
quite different from ours.

THEOREM 5. If (2.1) and (2.4) are satisfied, and if
(6.11) max, .y (a4, — m,)*/Ne > — 0, N> oo,
then we have for successive sampling that
(6.12) YV ae e ASN(LY apmy, LY m(1 — m)(a, — YV a;w;)?), N-— oo,
where the n’s and w’s are defined in Theorem 4 using equal ¢’s.
ProOF. We have
(6.13) > ¥a,e, = Nto, Y ¥(a, — m,)e,/Nto, + f ¥ a,.
Using Theorem 2 with ¢, = 1/N and
(6.14) 9(x, k) = min (1, x) - (a, — m,)/Nis,,

we find the asymptotic distribution of 3% (a, — m,)e,/Nts,. Now the theorem
follows from (6.13). ]
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REMARK 1. (6.11) is often called Noether’s condition. Rosén (1972) needed
a somewhat stronger condition.

REMARK 2. By replacing a, by a,/z, we obtain a theorem concerning an
approximate Horvitz-Thompson estimator.

REMARK 3. If ¢, = 1/N, p, = 1/N, 1 < k < N, then we have simple random
sampling without replacement. In this case Hajek (1960) showed that Noether’s
condition is necessary and sufficient.

7. Capture-recapture estimation. Suppose that the finite population has un-
known size N, e.g., the population can consist of an unknown number of some
sort of animals. To estimate N, methods based on capture-recapture are some-
times used. The most simple of these methods is: take a sample of size M, mark
it, replace it into the population, take a new sample of size n. On the basis of
the number of marked units, m, in the second sample, N is often estimated by
the “Petersen estimator”

(7.1) N* = Mn/m .

For a discussion of the logical grounds for capture-recapture estimates and for
further references on the subject, see Cormack (1972). Here we will only indi-
cate how Theorem 2 can be used to study the large sample properties of the

Petersen estimator, if the samples are not simple random due to heterogeneous
catching probabilities or effects of marking.

Sampling procedure 1. The two samples are obtained by successive sampling of
M respectively n units (cf. Section 6).

In practice the sampling scheme should be planned so that the samples are
simple random (i.e., all the p’s equal in successive sampling). But due to, e.g.,
differences in the age distribution or the location of the units, heterogeneous
catchability can occur. The object of Theorem 6 is to elucidate how such
heterogeneity affects the properties of the Petersen estimator.

THEOREM 6. If two samples of size M and n are obtained by sampling procedure
1, the condition (2.1) is satisfied and if, when N — oo,

(7.2) M/'N—>p, 0<p<1,
(7.3) n/N—f, 0<f<l,
then

(74)  N* = Mrjme ASNMn| S m g, (Mo ) (SF tuma))

where the n’s are defined as in Theorem 5, and
(7.5) oy = D {mu(l — ma)me(l — m4)

+ Tl — ma)(me — 72" + Tl — ) (T — 1))
(7.6) =2l —m)In(l — 7))/ 2V (1 — 70) In(1 — 7)),
(7.7 1= L1 ma(l — mp) In(l — )/ 27 (1 — m) In(1 — 7).
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Proor. Let us consider Theorem 2 with ¢ = 2, equal ¢’s and
(7.8) 9(xX1, X5, k) =1 xzl, =1,

=0 otherwise.

For this case the random variable Z(T,, T,) in Theorem 2 is the number of units
which belongs to both samples, or the number of marked units in the second
sample, i.e., m. Using Theorem 2 it follows that

(7.9) me ASN( LY Ty« Ty 047 N—oo.
Using the Cramér-Slutsky theorem the assertion follows. []

REMARK. If the samples are simple random then m has a hypergeometric
distribution. In this case (7.9) gives

(7.10) me AsN(np, (1 — f)np(1 — p)), N> oo,
the normal approximation of the hypergeometric distribution. We also get
(7.11) N*e AsN(N, N - (1 — f)(1 — p)/fp) .

Sampling procedure 2. The units 1, ..., M are marked. A sample of size n is

obtained by successive sampling.
This sampling scheme can occur in practice, e.g., if a random sample of M
units is marked, but due to the marking procedure the catchability is changed.

THEOREM 7. If a sample is obtained by the sampling procedure 2, and if the con-
ditions (2.1), (7.2), (7.3) are satisfied, then

(7.12) N* = Mn[m e ASN(Mn| 31w, (Mno )} /(¥ 7)Y,
where the n’s are defined in Theorem 5, and
(7.13) oyt = L' ml — @)1 — 1) + D mll — m)r?,
(7.14) r=281 —m)n(l — z)/ 0V (1 — m)in(l — =) .

Proor. Consider Theorem 2 with ¢ = 1, the ¢’s equal, and
(7.15) g(x, k) =1 if 1<k<M and x=1,

=0 oth'erwise.

In this case Z(7T') is the number of units in the sample among U}, - - -, U,,, or the
number of marked units in the sample, i.e., m. Using Theorem 2 it follows that
(7.16) me AsN(Q¥ m,, 0,7, N— oo.

Using the Cramér-Slutsky theorem the assertion follows. []

REMARK. For simple random sampling we obtain the same result as in the
previous remark.
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mistakes and obscurities in an earlier version of this paper.
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