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A GENERAL METHOD FOR THE APPROXIMATION
OF TAIL AREAS
By D. F. ANDREWS
Bell Laboratories and University of Toronto
For a density function f(x), the tail area
ax) = (7 flx) dx,
may be approximated by

a(x) = % ck =1 {1+ %(jﬁ;‘; - )},

where g(x) = f(x)/f"(x), and K = limz e {g’(x)/g%(x)}. The formula requires
only one constant and three function evaluations; g and g’ are typically
elementary functions. Such approximations are useful for programmed
calculators or very small computers where only a few constants can be
stored. The accuracy of the approximation is calculated for some common
distributions. The approximation is very accurate for a large class of
distributions.

1. Introduction. Tail areas, or significance levels, are used widely in statistical
problems. The nature of their use frequently does not require that these levels
be known to any great precision. A proportional error of several hundred
percent typically makes very little difference. In these cases an approximation
accurate to within 5 or 10 percent is quite acceptable. Here a fairly general
method of approximating such areas is given. The error of the approximation
has been evaluated for some common distributions.

2. The basis for the approximation. Many distributions have tails that “look”
exponential. See Fig. 1. The following discussion applies only to such distribu-
tions, not for example to the uniform. It is assumed that the density function
and its first and second derivatives exist, are continuous, and are non-zero in
the region studied. For an exponential distribution the tangent at x bisects the
tail area. For exponential-tailed distributions the tangent at x partitions the tail
area in a fairly constant proportion. See Fig. 2. Let

a(x) = {7 f(x) dx,

the tail area to be approximated.
For the exponential distribution a(x) is twice the area of the triangle formed
by the tangent to f at x and the line y = x. Thus

a(x) = — fA0)/f(*) -
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Fig. 1. The logarithm of the tail area, a, is, for the exponential distribution, linear
in x—for some other distributions—almost linear.
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Fic. 2. The tangent at x bisects the tail area of the exponential distribution.
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FiG. 3. The functions Ki(x), Kz(x) plotted for the normal distribution.
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In general

2
a(x) = L9 g )
fe
where K (x) = a(x)f"(x)/f*(x). Typically K,(x) is a slowly varying function of x
and in the region of interest, for small a(x), is not far from its limiting value

K, = lim,__ K(x) .

See Fig. 3.
So as a first approximation let

- X
al(x):fj( )-Kl.
f(®)

The exponential shape of the density function in the tail suggests that the ratio
of two successive derivatives of the distribution function is approximately a
constant. It suggests, then, that the behavior of —K,(x) will be not unlike that
of

Ky(x) = [ (LS (x).f'(x)]
obtained by taking the derivative of each term in K(x). See Fig 3. An ap-
proximation that makes use of this is

a(x :fz(x)lelx ,
() = L3 R

where

Ry = K, (14 B =8y,

and K, = lim,__, K,(x).

3. Algebraic considerations. The approximation has a more rigorous algebraic
basis. Let g(x) be defined by

[/() = 9(0f(x) -
For many distributions g(x) is a surprisingly simple function. See, for example,

Table 1. Note also that g(x) is Fisher’s score for location.
It follows from L’Hopitals rule and the definition

Ky(x) = f(0) [0/ ()]
=1+ [¢'(%)/9°(x)]
that

—Kl = liI’I’lm_,oo ) a(x)
SO ()
= lim,_,, S1x)
2f(x) — "L ()T
1
2K

= llmx__
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Let

K, = lim,__ K,(x) .

L0

The tail area is given by
a(x) = §7{/"(x)/9(x)} dx
— —f(x) + S;ofz(x) ng)dx

) 9%(x)
) 06 -
" Ve reEs

since g"(x)/ga‘(x) is a continuous function of x. Thus K (x) is given by
a)f'(x) _ 1 _ 9(x)  9'€)
Jf(x) 9¢) &€
k(1o 99 10O e
. < 9(§) K, 9*(§) ¢ )>

_ g9(x) 1 _
- K1<1 - K@) — 1) — (K, 1)),

since —K,(2 — K,) = 1.
Now typically & is close to x and the ratio g(x)/g(§) is not far from 1. In many

cases K, also is not far from — 1. Therefore it may not be unreasonable to ap-

proximate the term g(x)/g(§)K, with — 1. Furthermore, if K,(£) is monotonic in

the region & > x it follows that

K() — K

1.
K,(x) — K, <

0<L
This ratio may be approximated with . In many cases the errors introduced
by these two approximations are compensating to some degree.
The resulting approximation for the tail area,

A(x) — [*(%) K <1 Ky(x) — Kz)
R T G
is very good for a wide range of distributions. Note especially Table 2D.
The final expression may be simplified by letting

K = lim, _9®)
I g(x)
Then
o f(X) o (\a 1 /g'(x)
o=t (o)

The functions required for the approximation of some common distributions
are given in Table 1. The proportional error is given in Table 2.
If the limiting value, K, is difficult to obtain it may be approximated by
K = ¢'(X)/g%(X)
where X = 10x say.
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TABLE 1
Approximating functions for common distributions

Density g(x) g9’(x) K
. 9'(x)
4 "(x limgz—e
! rir o) e
Standard normal —X —1 0
2
1 t 1 (1 B %)
t, n degrees freedom — (1 + ;) e <1 + ;) v ;-T-T
e
n n
2 n_—_2 _ _1_ _r= 2
x2, n degrees freedom 7% ) %2 0
F L {nl -2 _ (ny + nz)nl:l _1_ [2 —m  (m+ ng)mz] 2
T 2 x (me+mx)] 2| x2 (n2 + 11 x)? 2+ n2
TABLE 2A

t distribution
Relative error of approximation, (& — a)la

n 0.05 0.025 0.01 0.005 5 x 108

2 0.01 0.008 0.003 0.002 4 x 10-¢

4 0.03 0.02 0.02 0.01 4 x 104

10 0.03 0.03 0.03 0.03 0.006

20 0.03 0.04 0.04 0.03 0.01

) 0.02 0.04 0.04 0.04 0.02
TABLE 2B

12 distribution
Relative error of approximation, (& — o)/«
Degrees of freedom = n

[4¢

n 0.05 0.025 0.01 0.001

4 0.009 0.009 0.007 0.004
6 0.01 0.01 0.01 0.007
10 0.02 0.02 0.02 0.01
20 0.02 0.02 0.02 0.01
40 0.02 0.03 0.03 0.02

80 0.02 0.03 0.03 0.02
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TABLE 2C
F distribution

ny, ny degrees of [freedom

Relative error of approximation, (& — a)/a,

For a = 0.05 and a = 0.01

ny
a 2 2 4 10 20
.05 5 ~0 0.001 0.002 0.002
.01 ~0 ~0 —0.0002 —0.0007
.05 4 —0.0001 0.0002 0.002 0.002
.01 ~0 —0.0002 0.004 0.004
.05 10 0.0003 0.002 0.01 0.007
.01 ~0 0.0009 0.002 0.004
.05 20 —0.002 0.002 0.01 0.02
.01 —0.00001 0.0001 0.001 0.003
~0is <10-5
TABLE 2D

Relative error of approximation for some other distributions

a(x) — a(x)

Distribution f(x) x a(x) a(x) o)
Log-normal 2z)% ﬁ exp{— %1n? |x|} 7.39 0.0227 0.0200 0.12
Logistic P In19  0.050 0.0497  0.006

(1 + e=y?
Extreme value e~Texp{—e*} In 20 0.0488 0.0487 0.002
Stable (« = 1) 2n)-# i% exp {— flx—} x>0 625 0.0319  0.0319 ~2 x 10-8

Log-Cauchy

Cauchy

X
. r
z|x[(1 + In? |x|)
1 1
71 + x2

K =1, approximation fails

0.0317 0.0317 0.002
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