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ADAPTIVE POLICIES FOR MARKOV RENEWAL PROGRAMS

By BENNETT L. Fox AND JoHN E. RoLPH
Universite de Montréal and The RAND Corporation

We recast a class of denumerable-state, infinite-action Markov renewal
programs with unknown parameters as one-state programs with actions
corresponding to stationary policies in the original program. Under suit-
able conditions we find an adaptive (nonstationary) optimal policy in the
sense of maximizing long-run expected reward per unit time.

1. Introduction. Finite-state, finite-action Markov renewal programs with all
parameters known were defined by Jewell in [10]. We study the denumerable-
state, infinite-action analog with the parameters unknown. One-step reward
distributions, transition-time distributions, and transition probabilities are un-
known a priori. Beginning in state i ¢ S, the decisionmaker takes action k e A;,
moves to a new state with probability distribution g(. |, k) and given that he
moves to j, receives reward R¥; during a transition lasting T% after which he
takes another action, has a transition, etc. These one-step rewards and tran-
sitions are random variables and actions are taken only at the completion of
transitions. His objective is to find a policy which maximizes his expected long-
run average reward. A policy (d,, d,, - - -) is a collection of functions such that
the nth action at state i is d,(/) where 4, may depend on the history of the process
prior to n. A stationary policy § is of the form (4, , - - -) where now d depends
only on the current state and thus cannot be history-remembering. Define A to
be the set of all stationary policies. Making certain assumptions, we construct
a nonstationary adaptive policy which does as well as any stationary policy in
maximizing expected reward per unit time no matter what values the unknown
parameters have.

Thus, using the average reward rate criterion, our policy is optimal whenever
a stationary optimal or stationary e-optimal policy exists. Lippman [11] shows
the existence of a stationary e-optimal policy under essentially our assumptions,
although in general a stationary optimal policy need not exist. Similar results
are unattainable in the general multichain case because there is no way to be
sure of optimizing the action in a transient state when the action determines
which absorbing chain will be entered. A stationary optimal policy exists in
the finite-state, finite-action case (Fox [5]), and sufficient conditions for existence
have been given (Fox [6]) in the finite-state, infinite-action case.

Mallows and Robbins [13] give results analogous to ours in the discrete-time,
one-state case. Part of our argument is an adaptation of theirs. Bafios [1] and
Shubert [17] treat similar problems from game theoretic and statistical decision
theoretic viewpoints, respectively.
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2. The maximizing policy. Suppose a stationary policy ¢ € A is always used.
For any fixed path let

R’(f) = total reward received up to time 7 and R’(f) = r Ré(1) .
t

The strong law of large numbers together with a standard renewal theory argu-
ment implies that for any 6 € A, lim,_, R’(1) exists and is a constant with prob-
ability 1. Since we later show that R’(7) is uniformly integrable, the expected
gain rate associated with ¢ exists and is defined as g’ = lim,_., E[R’(r)]. Let
g* = sup,., g°. Using the adaptive policy defined later for any fixed path, let
R(t) = total reward received up to time 7, and R(f) = t~'R(¢). Under the assump-
tions given below we show that the rewards from the adaptive policy satisfy

(1) P[lim, ., R(H) = g*] = 1.

It will then follow that

2) lim,_, E[R(1)] = g* .
ASSUMPTIONS.

1. There is an a priori known countable set of stationary policies A < A such
that
sup {g*: 1e A} = g*.
2. For each state, the expectation and the variance of the time and reward
until state 1 is next reached, is uniformly bounded over A. Call this bound H.
3. For each state, the expected time to return to state 1 is uniformly bounded
away from 0 over A.

In the denumerable state-denumerable action case, Assumptions 2 and 3 on A
imply Assumption 1. It is shown in [16] that we can take A to be the union of
sets of policies of the form (d|d(i) = a;, 1 < i < n) for some n and some fixed
sequence of actions a,, - - -, a, with (i) arbitrary for i > n. An analysis of the
structure of a particular problem with a given parameter set may establish the
form of an optimal policy and thus yield an appropriate A directly. In lieu of
Assumptions 2 and 3, conditions on the transition matrices, one-step reward
distributions and one-step time distributions can be given which may be easier
to check for some applications. The age replacement application given later is
an example with an uncountable action set where Assumption 1 is easily checked.

To ensure that our adaptive policy will concentrate with probability 1 on the
high gain rate stationary policies, only policies in A are tried and each policy
in A is tried infinitely often. The basic unit used in defining our policy is the
state 1-to-state 1 cycle. Within each state 1-to-state 1 cycle the same stationary
policy is used.

Beginning in the initial state some fixed stationary policy is applied until state
1 is reached. From this point forward we have a one-state problem since policy
choices are only made at state 1. Following Mallows and Robbins [13] our
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strategy specifies a sequence of positive integers which number the forced-choice
cycles in which predetermined stationary policies are applied. Let s, 535, - - -
be any increasing sequence of positive integers with s, = 1. Let sy, s,, - - - be
a second sequence disjoint from the first with s,,, s, - - - being a third sequence
disjoint from the first two, and so on. If for the nth cycle n = s,,, for some ¢
and / we use stationary policy ¢ for the nth cycle; otherwise we choose the sta-
tionary policy with the leading observed reward rate. The observed reward rate
for policy 0 at time ¢ is given by

R(1)

R = 20,

where R’(f) is the total reward received and B’(r) is the total time spent prior to
t while ¢ was applied. (In the case when a stationary policy J is always used,
B’(f) = t and R’(t) = t"'R’(¢) as in the beginning of the section.) The relation-
ship is defined only for those 6 which have been applied in a forced-choice cycle
prior to ¢. Let s(n) be the total number of forced choices up to the nth cycle,
i.e., the number of integers s,, which are < n. We choose the s; so that
s(n) = log n.

In sampling policies directly rather than actions, we do not fully utilize all
information since each action is associated with many different policies. We do
not know a general remedy, but in Section 4 we give a modified policy for the
finite case that uses information more efficiently.

3. Proof of optimality. We first show that taking the limit as ¢ — oo is the
same as taking the limit as the number of state 1-to-state 1 cycles become infinite.
By Assumption 2, we can neglect the contributions of the time and reward before
reaching state 1 for the first time to the overall time and overall reward. Indexing
consecutive cycles by m and excluding the time and rewards before reaching
state 1 for the first time we define

V; = time to complete ith cycle,
V> = time to complete ith cycle if policy d is used,
=0 otherwise.
B(m) = i Vi, B(m) = 21, Vi
Similarly for the reward sequence define U;, U/ and abusing notation R(m),
R’(m). (Strictly speaking we should use R(B(m)) and R°(B(m)) to be consistent
with R(r) and R’(f) notation.)

LEMMA.
@) P<lim sup,_.. 20" oo) =1
m
(b) P <lim inf, ., BO" S o> =1.
m

Analogous relations hold with B replaced by R.
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ProOF. We can take a space Q on which the following o-fields are well defined:

and %:G{Di, Vi,Ui;l’ZI,Z,---,]‘}
F = s ng: s

the smallest o-field generated by all the .57’s, where D, is the stationary policy
used in the ith cycle and, ¢{.} means the smallest o-field with respect to which
{+} is measurable. The probability measure P is induced on .& by the distri-
butions of the one-step rewards and transition times and the one-step transition
probabilities given by the adaptive policy specified in the preceding section.
Thus E(V;|.~;_,) is the expected time to complete the ith cycle given the previ-
ous history of the process, while E(V;|D;) is the expected time to complete the
ith cycle given the value of D, the stationary policy used. Note that .% >

i D ;. D;is measurable over % ;_,, and

E(V;| 7 52) = E(Vi| D;) -

Let .

X = 2ia(V; — E(V;|Dy)) .
Then {X;, > ,,i=1,2,...}isa martingale relative to the .%; (see Doob [3])
since E(X;|.~;_;) = X,_, with probability 1. Now

m

By Assumptions 2 and 3, E(V;| D;) is bounded away from 0 and co. Since
2 (1/P)E(V; — E(V;| D)Y < H Y2, 1/ < oo,

a standard martingale convergence theorem (e.g., Feller [4], page 238, Theorem
2) implies that X,,/m — 0 w.p. 1 as m — oo, completing the proof. []

We first show that we can neglect the contribution to the average reward at
time 7 (for large 7) of the forced choice cycles and of the last (prior to #) cycle in
which a particular policy was freely chosen. To see that the contribution of the
forced choice cycles to the overall reward and the overall time can be neglected,
note that in view of Assumption 2, for any o e A

. 1 . s
3 limsup,_ ., | —— 32, U’ < H with bability 1,
(3) P No(n) 1 = proba y
. 1 . s
lim sup, _,., <W [ Vi"> < H with probability 1,

where N°(n) = the number of the first n cycles which use policy 6. Now observe
that s(n)/n — 0 and apply the lemma.

Define the last free choice cycle prior to cycle n for a policy d as the last cycle,
if any, for which policy 6 was chosen as the leader. At the nth cycle, define
p(n) to be the number of different policies used prior to the nth cycle. Let r(n)
be the number of different policies used on free choices prior to the nth cycle.
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Since r(n) < p(n) < s(n), the above argument implies that the contribution of the

last free choice cycles to the overall reward and overall time can be neglected.
Fix a policy ¢ € A, then

Re(m) _ Re(m)[N*(m)

Be(m)  B°(m)/N°(m)

R"(m) =

By (3), both numerator and denominator have expectations. An application of
the SLLN to the numerator and denominator separately yields that both con-
verge to a constant w.p. 1 as N°(m) — co. Since the union of the two null sets
where convergence does not occur is a null set and N°(m) — co as m — oo,
application of (3) and the lemma yields the value of the limit as:

4) lim, ., R°(m) = ¢° w.p. 1.

This would be a special case of a result of Pyke and Schaufele ([15] Theorem
5.1), except that in their paper there is only one decision available in each state.
From (4) for, ¢,, ¢, > 0, there exists an m, such that

P{R'(m) = g° —¢, forall m>m}>1—¢.

Let I' be the set of policies used in free choices for m > m,. For ye I and
m =z m,, define [’(m) as the largest cycle index < m where y was freely chosen.
From the definitions,

Ri(li(m) — 1) = Re(l(m) — 1) ,
forall o e A.

Set R(m) = R(m)/B(m).

By earlier arguments and neglecting the contributions from policies not used
after cycle m,,

R(m) = 33, ¢ RI(I/(m) — 1)/B(m) + o,(1),
where the last term goes to O w.p. 1 as m — co. Thus,
R(m) = Jirer Re(lI'(m) — D)Br(l"(m) — 1)/B(m) + o,(1)
= (9° — &) 2, cr B'(I7(m) — 1)/B(m)] + o0,(1)
=9° — ¢+ op(l) ’

since the term in square brackets goes to 1 w.p. 1 as m — co, and as ¢, was

arbitrary,
liminf, ., R(m) = g° w.p. 1.

Since ¢ was arbitrary and a denumerable union of null sets is null,
(5) P(lim inf, . R(m) = g*) = 1.

Now R’(m) — ¢° w.p. 1 as m — oo so that

(6) P(limsup,,_, R(m) < g*) =1,

since R(m) is a weighted average of the R’(m). Thus we have proved

(7) P(lim,,_,, R(m) = g*) = 1.
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From the lemma, taking limits as ¢t — oo is the same as taking limits as m — oo
so that (7) implies (1).

Turning to the proof of (2), we let P be a measure on the reward sequence
corresponding to our policy. By the lemma (stated for R as well as B), there is
an M < oo such that for any a > 0,

Y iBwsa |R(t)| dP < a S\E(:)Da [R(’)/a]2 dP < Mja —0 as a—oo.

Thus, the random variables {R(7)} are uniformly integrable so (1) implies (2) by
a theorem in Loéve [12], page 163. (Similar reasoning shows that R’(¢) is uni-
formly integrable.) We have proved the following

THEOREM. Under Assumptions 1, 2, and 3, the average rewards from the above
strategy satisfy

(i) P{lim,_, t'R(1) = g*} = 1

(i) lim,_, t7'E[R(?)] = g*.

4. Remarks. In the finite-state, finite-action case we could sample actions on
each transition rather than policies on each cycle. By sampling actions on
forced-choice transitions, we can obtain consistent estimates of the parameters.
One choice is the natural empirical estimates, which are consistent (Moore and
Pyke [14]). On the free-choice transitions, we follow the leader obtained by
substituting these estimates for the unknown parameters in the gain rate formula
for stationary policies. The estimated optimal policy can be calculated using a
policy improvement routine or linear program (Fox [5], Denardo and Fox [2]).
The proof that g* is attained is different from the foregoing one since we do not
reduce the problem to one state, but the number of policies being finite leads to
some simplifications. Intuition indicates a faster convergence rate for sampling
actions directly rather than just sampling policies.

We can constract an adaptive policy for infinite-state problems based on sam-
pling actions rather than policies if (i) we are able to calculate an optimal policy
knowing all parameters, (ii) we can obtain uniformly consistent estimates of these
parameters by sampling actions in forced choices, (iii) the gain rates are con-
tinuous functions of these parameters, and (iv) the reward and time on the forced
choices can be neglected. This adaptive policy would probably converge faster
than the one described in Section 2. For example, the conditions may be satisfied
in some problems where the mean one-step rewards, transition probabilities, and
mean transition times depend on only a finite number of unknown parameters
such as the arrival rate in queueing problems. This is an open problem.

5. Examples. Many problems studied in the literature satisfy our assumptions.
Typical applications include:

(i) Replacement problems where we return to state 1 (replace the item) when-
ever the state (observable deterioration) exceeds a certain level, to be determined.
(ii) Queueing problems where we activate the server whenever the queue
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length exceeds a certain level, to be determined. Heyman [8] and others give
conditions under which a policy of this form is optimal for the M/G/1 queue.
To satisfy our assumptions, we rule out policies that do not activate the server
when the queue length exceeds a given (large) number.

(iii) Inventory problems where we determine a reorder point and a reorder
level. See Iglehart [9] or for a general reference [7].

(iv) The “streetwalker’s dilemma”, where the server must decide whether to
accept a given proposition or wait for a more desirable one. Lippman [11] gives
simple conditions under which our assumptions hold and the optimal policy has
the form: accept an offer if and only if the ratio of expected reward to expected
service time exceeds a certain number.

(v) Age replacement. We replace an item at a scheduled time or at failure,
whichever occurs first, with respective costs ¢, and ¢, (0 < ¢; < ¢;). This is a
one-state problem with actions selected from [b, co]. Here b is a small positive
number and oo corresponds to no planned replacement. Assuming that the
failure distribution is continuous, we could take A equal to a set of rationals
dense in [b, oo].
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