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ON THE ASYMPTOTIC SHAPE OF BAYESIAN SEQUENTIAL
TESTS OF 6 < 0 VERSUS ¢ > 0 FOR
EXPONENTIAL FAMILIES!

By P. J. BICcKEL
Princeton University and University of California, Berkeley

We show that, in a weak sense, as the cost of observation tends to zero,
the shape of the continuation region of the Bayes solution for the expo-
nential family problem given above is approximated by that of a corre-
sponding problem for the Wiener process with drift. The approach is an
extension of that used in Bickel and Yahav, Proc. Sixth Berkeley Symp.
Math. Statist. Prob. (1971).

1. Introduction. Consider the problem of testing H: ¢ < 0 versus K: 6 > 0
by sequential sampling in the following two models.

A. (i) We observe X}, X,, - .., which are i.i.d. (given #) with density
(O) p(x, 0) — el=—b)

with respect to some ¢ finite measure p.
(i) The parameter # ranges over © which includes 0 as an interior point.
Moreover,
b'(0) =0, b"(0) = 1.

(iii) The terminal loss is O or 1 according as the decision to accept or reject
H is made correctly or not.

(iv) The cost of observation is ¢ per unit time.

(v) We are given a generalized prior density ¢, (with respect to Lebesgue
measure) with which we measure our performance. Thus if we denote the risk
of a procedure given ¢ by B,(x, ¢), our aim is to choose = so as to minimize
o By(z, ¢)¢,(0) df. We denote this minimum (Bayes) risk by B(c, ¢,).

B. (i) We observe X(t) = 0t 4+ W(t), t = 0 where W is a standard Wiener
process and ¢ is unknown.

(i) The parameter # ranges over R.

(iii) The terminal loss is as in problem A.

(iv) The cost of observation is ¢ per urit time.

(v) We are given ¢, as above and our aim is the same. The risk of a proce-
dure 7 is denoted by R,(x, ¢) (given ) and the Bayes risk by R(c, ¢,).

In [2], to which we refer the reader for a precise definition of the notion of
procedure in the two problems, the following theorem was proved (Theorem 4.2).
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232 P. J. BICKEL

THEOREM. Let ¢ be a bounded probability density which is continuous at 0. Then,

B(c, R(e,
(1) € 0) - RO 1 o(1) = gOR(L, 1) + 0(1)
where the second 1 in R(1, 1) denotes the density of Lebesgue measure, ¢ = 1.

Moreover, there exists a sequence of policies {r,} independent of ¢ and the expo-
nential family such that

) ¢t §=, By(z,, ¢)(0) d6 — H(O)R(1, 1) .

This type of result, convergence of the Bayes risk, was given by Chernoff [3]
and Kiefer and Sacks [6] for testing problems as above, when hypothesis and
alternative are separated at least by an indifference region.

It is well known that in these two problems the optimal stopping times are
describable in terms of a continuation region (or the complementary stopping
region) Q, a subset of points of the right half plane such that one continues
sampling if and only if (n, S,) (respectively (7, X(¢)) is in Q, where S,, = 1™, X,
m = 0. Of course the continuation region depends on which problem we are
considering, ¢, and ¢. In 1962 Schwarz [8] showed, in the analogue of problem
A, when hypothesis and alternative were separated at least by an indifference
region, that the continuation regions suitably rescaled in space and time con-
verged to a limiting shape. Our main result, Theorem 2, establishes a weak
version of Schwarz’ result for problem 4. Of course, both rescaling and limiting
shape are different. The latter, as the result of [2] suggests, is the continuation
region for problem B with ¢ = 1 and ¢ = 1.

2. The results. We recall a well-known characterization of the continuation
regions in these problems which we shall from now on denote by Q,(c, ¢) and
Q5(c, ¢) (with dependence on (¢, ¢) usually suppressed). Denote the posterior
density of @ given S, = x/ct, n = [t/c] by

3) 001, 0) = exp {25 = [ L |60} |90 4(x, 1, )

with A(x, ¢, ¢) defined by {=, ¢,(f|x, f)df = 1. Note that (3) is well-defined for
all + = 0 real. Let,
@) B(x, 1, ¢) = B(c, §.(+ | %, 1)) »

the expected future risk given that sampling has proceeded to time n = [¢/c] and
S, = x/ct. Let,

(5) Y(x, 1, ) = min {§7 40| x, 1) d0, 1 — 5 4,(0 | x, 1) d)
the stopping risk at time n = [¢/c] given that S, = x/ct. Then,
(6) Q4 = {(s, n): Y(sc, nc, ¢) > B(sct, ne, ¢)}

where n ranges over the natural numbers. We shall however suppose throughout
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the sequel that Q, is given by (6) where n ranges over R*. Similarly let
7) R(x, t, ¢) = R(c, ¢,)

where ¢, is the density of the normal [xc!/t, ¢/r] distribution, the posterior dis-
tribution of @ given X(r) = x/ct, © = t/c when ¢ = 1, and

(8) P(x, 1, ¢) = min {§3 6.(0] x, 1) dB, 1 — §3 4,(0] x, 1) dB)} .
Then,
%) Qu(c, 1) = {(s, 7)1 ¥(sct, vc, ¢) > R(sct, zc, c)}

with equality holding on the complement of Q.
Our scaling of time and state space is, of course, such that,

P(x, 1, 1):@[;11{'],

R(x,t,¢) = R(x, 1, 1),

(10) Y(x, t, c)

Il

(cf. [5]). Define the homothety 7, of R x R* onto itself by, T(s, ) = (sct, zc).
Then, (10) implies that

(11) T(Qs(es 1)) = Qy(1, 1) .

To apply this characterization we need the following simple extension of the
theorem stated in the introduction.

THEOREM 1. Let ¢ (+) be a sequence of nonnegative measurable functions such
that,

(a) sup,, ¢l (0) < o
(b) ¢t (0ct) — y(0) #0asc—0

(€) §7. ¢.(0)df = o(exp (¢ 7)) for all y > 0.
Then,
(12) B(c, ¢,) = R(1, 1) + o(1) as ¢—0.

That Theorem 1 is indeed an extension of Theorem 4.2 of [2] may be seen by
taking ¢ (0) = ¢(0)/ct. The proof of this result follows exactly the lines of the
proof of Theorem 4.2 and will not be given. A ready consequence is,

COROLLARY. Let ¢ be bounded and continuous at 0. Then,
(13) B(x, t, ¢) = R(x, 1,1) + o(1) as ¢—0
uniformly for |x| E M < o0, e <t < el e > 0.

Proor. It suffice to show thatif x, — x, 1, >t > 0¢,(+ | x,, t,) satisfy (a), (b),
and (c). Since b is convex fx,/c? — [t,/c]b(f) is maximized by the solution ¢, of

(14) b() = X, [ tc]*l N ﬁ

¢t e t
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Since 6'(0) = 0, 5”(0) > 0 we obtain,

P) xct

(15) e

and hence exp {(/ct)x, — [1,/c]b(6)} is uniformly bounded.
By Taylor expansion we also obtain,

(16) ox, — [%] b(fct) = <0x — %"2) +o(1)

uniformly on compact sets of 6.
Moreover, there exists a 6 > 0 such that

(17) Ox, — [’_] b(oct) < ox, — 19
c 2
for some ¢ > 0, and all |§| < dc~*. Thus by dominated convergence,
_ b
18)  lim, {*1, [exp {0xc _ [’_] b(ec%)ﬂ $(0ct) db = <2_”) [exp ;‘_j] #(0)
4 t

for some § > 0. On the other hand by the convexity of 4 and (15) we can bound
for ¢ sufficiently small,

i=s [exp { Ox, — [’?] b(ac%)}] $(Oct) db

(19) < crexp {% — [Lc] b(a)}
< ctexp {% - ti52} =o(1)

for some ¢ > 0. A similar bound applies to ijf_* for the same expression. In
view of (18) and (19),

(20) HA(x,, 1,, ¢) — (27”)* <exp ;‘_j> $(0) .

Therefore (a) holds as does (b) with y(6) = ¢,(¢| x, r) and the corollary follows.

REMARK. The same argument and obvious estimates (cf. [1] Section 3) show
that if K(c) 1 oo, K(c) = o(c™?) then,

21 V¥l 1017|¢2(c?0) — ¢4(0 | x, 1)] d6 — O

uniformly for |x| < M < o0, e <t < e
A direct argument or a proof parallel to that of Theorem 1 shows that,

(22) Y(x,1, 1) = ¥(x, £) + o(1)
uniformly in [x| S M < 00, e <t < el e>0.

The result we are aiming at is, of course, T,(Q,) ~ Q5(1, 1). To make this precise
we need another notion.
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DEerFINITION. If S is a subset of a metric space and d is > 0 let $° = {xe S:
B(x, ) c S} where B(x, d) is the open d-ball about x. It is easy to see that S is
closed and |J;., S’ = S"—the interior of S. We can now state,

THEOREM 2. For every ¢ > 0, 0 > 0, y > 0 there exists ¢, > 0 sufficiently small
such that if ¢ < c,,

(23) [{LQs(1, DI'PT D [TQ)] N A,
(24) Tc(QA) > [QB(19 1)]5 n As
where ' denotes complementation and A, = {(x, 1): e <t £ 7'}

Thus a region slightly larger than the continuation region for B with¢ = ¢ = 1
contains a region slightly smaller than the continuation region for 4 and con-
versely. If we knew that the 7,(Q,) had no enduring spikes (23) and (24) would
imply Hausdorff convergence of T,(Q,) n A, to Q4(1, 1) n A, and hence con-
vergence of the boundary of T,(Q,) to that of Q4(1, 1). We have, however, not
been able to show this.

Proor oF THEOREM 2. By a weak compactness argument it is easy to show
that R(x, ¢, 1) is continuous. Thus

inf {¥(x, 1, 1) — R(x, 1, 1): (x, ) e [Qu(1, DPP N A} > 0.

Furthermore it is well known that for each r > 0 {x: ¥(x, 7, 1) > R(x, t, 1)} isa
finite symmetric interval. Assertion (24) is then an immediate consequence of
(13) and (22). Now suppose (x, t) € [T(Q,)]°. By taking the suitable metric we
can suppose (y, t + 0) e T,(Q,) for x — 0 <y < x + 6. Let v = c[first m = t/c
such that [(¢tS,, — x, cm) e [T,(Q,)]] — ¢. Then
n = [ijl, S, = _)f.>
c ct

Let ¢(c) be any sequence tending | 0 as ¢ | 0 such that ¢} = o(e(c)).
For convenience, define

(26) W(g, ¢) = A8ty 9z0.

(25) B(x,t,¢c)=E <[Y(C*S<r+tvc’ THho e [%ﬂ

Let P*, (E*) denote conditional probability given n = [t/c], S, = x/ct. Then,
(27) Y(x,t,¢) > B(x, t, ¢)

= e(e)P*[r = e(c)] + EXBW(r + 1,¢), T + 1, )iz -
Then,

(28)  E*BW(z + 1, ¢), 7 + 1, Wiczeen)
= EX(BW(t + (), €): t + (), )iezeen))
(cf. [9], for example). Now in view of the definition of / (27) implies that,
(29) Y(x, t, ¢) > e(c)P¥[t = e(c)] + EX(B(W(t + ¢(¢), c), t + &(c), ¢))
— Pz < ¢(0)] .
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For convenience, in what follows, write ¢, for ¢,(+ | x, 7). Since (x, t) e[T(0 )]

(30) =sz°mP.9[max{|sj|: <j< <>}>§]¢0<0>d0

< [§"s, ct¢.(Oct) df] max {Pv [max {|S].| 1< < s_(cc_)}

5 1
> ;gj| 7| = Mcci} + S|0|>Mc c%(r/;c(ﬂcz) g .
Now, (if we denote the positive part of a number a by at),

P[mMﬂS|1<]<€9}>CJ
(31) < P, [max {is, — popl: 12725 > e (5 “©pe)]

= 30— sy | (0 - o) T

by Kolmogorov's inequality. Since #'(y) ~ 7 in a neighborhood of 0, if M, =
o(c™*), the right-hand side of (31) is o(¢*(c)) uniformly for || < M,c}. Arguing
as for (19) it also follows that under our hypothesis on M,.

(32) § 101501, ¢t (Oct) df = o(M,™)
as M, — oo uniformly for |x| bounded, ¢ bounded away from 0 and co. We
conclude from (29), (31), and (32) that P*[z < ¢(c)] = o(e(c)). Hence
(33) Mnmﬁj%[ﬂnuc) E*(B(W(t + &(c), ¢), t + &(c), )] = 1
e(c

uniformly on [T,(Q )]’ n A, n T',, where
(34) Ty ={(x,0): |x] £ M}.

To complete the argument we need a result complementary to (33) which we
isolate as a lemma

Lemma 1. Uniformly on [Q,/]" n A, n T,
(35) [Y(x, 1, 1) — E*(R(W(t + ¢(c), ¢), t + ¢(c), ¢))] = o((c))

for any sequences e(c) such that (c) = (A(c))™" satisfying (50), and ¢t = o(e(c)). It
is clear from the definition of i(c) that such sequences exist.

Let us first note how (33) and (35) establish (23). For fixed M, 7 choose ¢(c)
(by Corollary 1 and (22)) so that

(36) B(x, 1, ¢) = R(x, 1, 1) + o(e(c))
(37) Y(x, 1, ¢) = P(x, 1, 1) + 0(e(c))



BAYESIAN SEQUENTIAL TESTS 237

uniformly on A, n I';, and such that (35) is satisfied. It follows from (36) that,
(38) EX[B(W(t + ¢(c), ¢), t + ¢(c), ¢) — R(W(t +¢(c), ¢), t + ¢(c), 1)]
= 0(e(c))

on A, n T',,. This is clear since,
() P ) = X 2 1] = 5% P S 2 L [0u0) @0

= 0(¢(¢))
for any y > 0, by arguing as in (30) and (32). Now, (33), (35), (37), and (38)
imply that,
(40) [T n{[Qs(1, DI} 0 AnTy=¢

for ¢ sufficiently small. Suppose that M > sup {|x]: (x, ¢) € [{[Qs(1, 1)]'}?]. Itis
then clear that the restriction |x| < M may be dropped in (40) since the ¢ sections
of [T(Q,)P n A, are intervals (cf. [10]). Thus, (22) and the theorem will follow
once we have established Lemma 1.

We prove (35) in two steps

(41) EX(R(W(t + ¢(c), ¢), t + &(c), 1) — Y(W(t + ¢(c), ¢), t + €(c), 1))
)

and
(42) Y(x,t, 1) — EX(Y(W(t + ¢(c), ¢), t + ¢(c), 1) = o(e(c)) .
Since Y(+, +, 1) = R(+, +, 1) on [Q,']” (41) follows from (38) and (39). To prove
(42) express the left-hand side of (42) as,
- — I _ —[x 4 W(e(e), o)
(43) §=.. [cb <T> E, <<I)< e m 0.(0|x, 1)do .

On [Q;']” n A,, |x| is bounded away from 0. Suppose without loss of generality
that x is > 0. Then,

(44)  PIW(E©), ) < —x] S P|
= 0(¢(¢))
uniformly for |#] < cto(e(c))™'. Moreover,
(45) §101>etoceen—1 Le(0] x, 1) df = S¢|m>o<s<c>)—1» ctg (cty|x, t) dy = o(e(c))
by estimates apparent from the proof of Corollary 1. Thus if x is positive,
Y(x, t, 1) — EX(Y(W(t + ¢(c), ¢), t + €(c), 1))

W =sa[o() e (ZE N s g

Sé(c)/c - E%‘—) b'(0)l 2 % _ i(c_c2 b/(a):l

+ o(e(c)) .



238 P. J. BICKEL

Now,
alo(5) o T
@ =5 () (POUD 4w+ @y — ) — g (3) (11T

% [e(c)b”(ﬁ) + (b’(ﬁ) 59 + x(( + (o) — ’_é)ﬂ

+ E, <M(0, X, 1) <‘W—((,e‘(_c|_)_€2)j7x B %>3>

where M though random is uniformly bounded in x, r on A,, and ¢ in a neigh-
borhood of 0. Now on a neighborhood of 0 by a standard inequality (see Chung
[5] for example).

(48) E, | Wie(e), o) — 10O < kei(e)

where K is a constant (used generically). Let A(c) T oo, 4(c) = o(c™%). Then, by
(47) and (48) and the usual Taylor expansion,

i B @ (5) - o (FEEEE D) [e0ix s

@9 =g ()52 (5) (0L + @+ eenr = 1) = 2 (T 1) a0
+ k[0l ete) + “O ] [ 4D 1 KO ooy

X ¢,(0]x, £)do + O(¥(c)) .
Now by (21) for suitable A(c) 1 co we have,

(0§ (0 0 50 — 01 0] 0 = o)
uniformly on A, n I',,. If ¢(c) = (4(c))™* it follows from (49) and (50) that uni-
formly as above,

61§ [ B (0(5) ~ @ (T ) 4015 0 40 = oete),

and hence by (45)
(52) Y(x, 1, 1) — EX(Y(W(t + &(c), ¢), t + ¢(c), 1)) = o(e(c)) -
The lemma is proved.

3. Extensions and comments. Consider problems 4 and B as before with the
same cost structure and prior but a more general loss function which is 0 if the
decision is correct but otherwise is a bounded function [ of € such that

(53) l(0) = 101" + o(16]")



BAYESIAN SEQUENTIAL TESTS 239

in a neighborhood of 0 for @ > 0. Using the methods of [2] it is straightforward
to prove the following generalization of Theorem 1. (Retain the notation of the
preceding section noting that R and B depend on a.)

THEOREM 1. Let ¢, be a sequence of nonnegative measurable functions such that,

(2) sup, 4 ¢ (0) < o
(b) c(l/(a+2))¢c(0c(l/(a+2))) —7(0)#0asc—0

(€) §2w ¢.(0) = o(exp (c77)) for all y > 0.
Then,
(54) B(c, ¢c) — ¢(0)c‘“/‘“+2”R(1, T) + o(c(a/(a+2>)) .

A sequence of procedures independent of ¢ and the particular exponential family
which is asymptotically Bayes may also be found.

If we now redefine 7, more generally as the mapping of R X R* onto itself
given by,
(55) Tc(s’ T) e (Sc(l/(tx-)-z))’ TC(Z/(a+2))) .

Theorem 2 goes over verbatim.

The mapping (55), of course, indicates what changes are needed to make the
proof of Theorem 1’ and the generalization of Theorem 2 go through.

We must consider 0 neighborhoods of orders slightly larger than c®/(«+2)
truncate at Tc~¥*+? and then let T — oo. In the proof of Theorem 4.1 of [2]
we must in general take more than 2 stages (e.g., 3 for a > 4). Assertions (33)
and (35) may also be readily checked.

The principal weakness of our Schwarz-type results in our opinion is that al-
though they indicate that the Wiener process approximation is valid for that
portion of the Bayes procedure which applies to the sample sequences contributing
substantially to the risk it gives no idea of what happens for that portion of the
sample space which is really likely to occur. For example, if a« = 0 clearly
P[Stopping on or after time ¢/c] = O(ct) whatever be ¢ > 0. More refined studies
of the shape for ¢ near 0 would certainly seem desirable. Some numerical studies
due to Lindley and Barnett [7] of the approximation of the Wiener process solu-
tion given by Chernoff for a« = 1 to the binomial-beta problem lead one to believe
that the fit should be reasonably good.
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