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ASYMPTOTIC DISTRIBUTION OF STATISTICS IN TIME SERIES

By F. GOTzZE AND C. HIpPP

University of Bielefeld and University of Karlsruhe

Verifiable conditions are given for the validity of formal Edgeworth
expansions for the distribution of sums X +--- +X,,, where X; = F(Z,, . ..,
Z;yp-1) and Z;,Z,, ... is a strict sense stationary sequence that can be
written as Z; = glej_,: £ > 0) with an iid sequence (¢;) of innovations.
These models include nonlinear functions of ARMA processes (Z;) as well
as certain nonlinear AR processes. The results apply to many statistics in
(nonlinear) time series models.

1. Introduction and summary. Consider a sequence ¢;, j € Z, of iid ran-
dom variables and a measurable function g: RN — R as well as a function
h: R? — R* with a uniformly continuous derivative. Define for j € Z,

1) Z;=g(_;:i>0)
}fj = h(Zj, e ,Zj.,.p_ 1) where ]E||Dh(Z,, e ,Zi.,.p - 1)” < K

for some constant K > 0. This defines strictly stationary sequences of random
variables. A representation of this type is possible, for example, for stationary
ARMA processes and for certain stationary nonlinear AR processes that will
be discussed in the examples below. We are interested in the validity of formal
Edgeworth expansions of order s — 2 for the distribution of

Sni=n"V2Xy 4+ + X, — nEXy).

There are many statistics 7, in time series models such that the following holds:
valid Edgeworth expansions for S, imply valid Edgeworth expansions for T7,.

These statistics include least squares estimators for parameters in the spec-
tral density of a Gaussian ARMA process (see [18-20]), as well as least squares
estimators for ARMA parameters in general ARMA processes ([3]) and func-
tions of autocovariances in general ARMA processes ([4]).

The general question of validity of Edgeworth expansions for statistics of
the above form is answered in an earlier paper ([5]). For extensions of these
results see [9, 10]. However, the verification of the conditions in [5] is not always
straightforward. In this paper we state sufficient conditions for the validity of
Edgeworth expansions for these problems which can be checked easily and
which are even necessary.

The conditions given in [5], pages 216 and 217, specialized to the case (1),
read as follows: ‘

@) E|[X,[**! < oo.
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ASYMPTOTICS FOR TIME SERIES 2063

There exist constants K < co and « > 0 such that for m > 1,
3) E|lg(ej:j > 0) —gleo, . .- ,&m,0,...)|| < Ke™*™,

Finally, there exist » > 0 and o > 0 such that for arbitrary large fixed x > 1
and alln >m > a~!and ¢t € R with n® > ||t|| > o,

@ E[E(exp (V=18 Ko + - + X)) [es: | — m| r)| <e=

In fact, we did require in [5] that (3) holds for X and furthermore that lim inf,
infyy - o var(t”S,) > 0. Both conditions are satisfied here as a consequence of
the special structure of the r.v’s Z; and X; as defined in (1) and conditions
(1)—(4). [See Lemma 2.1, (14) and (15).] The uniform continuity of 4 is a condition
which is used solely to prove an approximation like (3) for X;. To this end one
might use other conditions as well. (See the proof of Lemma 2.1.)

Only recently, the moment condition (2) has been relaxed in [12].

The above conditions appear if we choose the o-fields D;,j € Z, on page
216 in [5] to be generated by ¢j_,,& _r41,. . .,&j+,. Notice that conditions (2.4)
and (2.6) in [5] are obviously satisfied. The slightly weaker statements using
upper bounds on ¢ and m in (4) are an immediate consequence of the actual
use of condition (4) in Lemma (8.33) and Lemma (3.43) of [5]. There we did
not assume that the Z; are strictly stationary. More generally, in applications
for finite time series, the Z; are often nonstationary in the sense that for some
d>1,

(5) Z; :=g(e,g-1,...,6-4,0,0,...)

and X/ :=h(Z},...,Z; 1) are defined similarly as above. Let

—-p+

S, =n"12[(X] - EX]) +--- + (X}, — EX})].

Forr = 0,...,s and ¢ € R? and letting x, ,(¢) be the cumulant of /—1¢TS,, of
order r,

d"
Xr,n(t) = o logE exp[xy/—1¢7S, l.—o

Define the formal Edgeworth expansion ¥, ; of S, by its characteristic function

s—2
T, 5(8) = exp[x2,n(®)] Y n77/2P, 4(8),

r=0

where the functions 13,, »(¢) are defined by the formal identity

exp| X2, 2(®)+ Y 7" "2 " D/2x, ()| = exp[x2,n®)] Y 7Py, ult).

r=3 r=0
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Similarly, let ¥;, ; denote the Edgeworth expansion of S},. Corollary (2.9) in [5]
together with our Remark 2.2 yield that Edgeworth expansions for S, and for
S;, are valid in the following sense.

THEOREM 1.1. Under conditions (2)~(4) we have uniformly for convex mea-
surable subsets C C R?,

P{S, € C} = ¥, 5(C) +0(n~¢~2/2)

and

P{S, €C} =1, (O + o(n=C=2/2),

The crucial condition to be checked is condition (4), the conditional Cramér
condition.

Since it is less technical to check (4) in the stationary case, we stick to that
case in the proofs. We shall now verify condition (3) for the case of ARMA
processes as well as nonlinear AR(1) processes.

ExaMPLE 1.1. Consider the ARMA recursion

d q
S e She o ien
v=0 v=0

where ag = by = 1,d > 1 and the polynomial a(z) = ¥ _ a,2” has only zeros
outside the unit disk |z| < 1. Then a stationary sequence Z;, j € Z, satisfying
the above recursion is given by

0o
Zj=Zci5j—ia JEZ,

where the coefficients c; are defined via £ ¢,z = £¢_, b,2"/a(z). Further-
more, the coefficients c; are exponentially decreasmg such that |c,,| < Ke ™
and therefore condition (3) holds for

g(e) = Zci5i
i=0

provided E|e;| < oo.

Nonlinear AR(p) models of the type

Zip=f(Z;,Zj _v,...,Zj_q+1) +¢€j+1, JELZ,
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like the threshold model of Tong [22], the exponential AR of Ozaki [14] and
others, have been an active area of research lately. Compare the monographs of
Priestley [17] and Tong [23]. The question of stationarity and geometric ergod-
icity, that is, in our setting conditions (1) and (3), has been studied using the
Foster—Tweedie condition in [24] and [13], page 90; see also [21]. These authors
assume for d = 1 that f is bounded on compact sets and is strictly contracting
outside a compact set. Furthermore, the distribution of ¢; is supposed to have
a positive density with respect to the Lebesgue measure.

To apply the result of Theorem 1.1 and to simplify the discussion, let us use
in the following some stronger conditions for stationarity.

ExaMPLE 1.2. Let f: R? — R be strongly contracting in the sense that for
every X,y € R?,

d
IF@) - FDI <D pilxi = il,
i=1

where p; > 0 and ©¢_, p; < p < 1. To construct a stationary sequence Z;, j € Z,
satisfying the autoregressive recursion above, define the function g: RN — R
by

(6) gle) = li’{ngn(e),
where go(¢) = ¢p and
8gn+1(e) = f(gn(OE),gn (6%),... ,gn(é?de)) + €,

with (6¢); = €j+1,J € Z. The limit in (6) exists in the L;-sense if we assume in
addition that

E|g1(e) — go(e)| = E|f (1, ..., €q)| < 00,

since we have forn > 1,

d

Elgn+1(6) — 8n(e)| S E Y pilgn(6'e) —gn - 1(6%)|
i=1

< pE|gn(€) —gn - 1(e)|.

The process defined by Z;:=g(¢;_;,i > 0) with g defined in (6) satisfies the
autoregressive recursion

Ziv1=fZ;,Z;j_1,...,Zj_q+1)+¢€i+1, JELZL.
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Furthermore, it is strictly stationary and satisfies (3) since

oo
Elg(ejij > 0) — gm(ejij > 0)] < > Elgi(gj:j > 0) — giv1(eji j = 0))

i=m

0 T E|f(er, - - Em)|

e

<

1

= p" " E|f(ey, ... em)| /(1 - p).

I
3

Notice that whenever the random variables Z; admit a representation (1) sat-
isfying (3) and h: R? — R* is smooth, then the sequence X := h(Z;, ..., Zj,p 1)
also admits a representation (1) satisfying (3); see Lemma 2.1, (14).

For a function A: R? — R* define for m > p and z € R™ with z; = z;_,
m<i<m+p-1,

) Hue1, ... 2m) = Y _h@i,. ., Zisp-1)-
i=1

The following result provides conditions such that the smoothness condition (4)
holds in cases corresponding to Examples 1.1 and 1.2. The proof of this result
is deferred to Section 2.

THEOREM 1.2. Let cj,j > 0, be a sequence of real numbers such that for
K < c0,a > 0 we have

lem| < Ke™ @™, m > 0.

Let Z; = £2cigj_i,] € Z, where ¢j,j € Z, denotes an iid sequence such that
Ele;| < oo. Let h: RP — R* denote a uniform continuously differentiable func-
tion satisfying E|hP(Z;,...,Zp)|| < 00,i =1,...,k. Assume that 1 has a positive
continuous density and that the moment condition (2) holds. Then the distribu-
tion of Sp :=n"Y%X; +- - -+ X, —nEX;) does not admit a multivariate Edgeworth
expansion of order s — 2 if and only if there exists 0 #a € R*, a € R such that
form=2p -1,

(8) aTHm(zl,...,zm)EaZzi+ﬂand aZci=O.
1 1

The same result holds for S;,.

 Surprisingly, the torus sum H,, which was of importance for the validity of
Edgeworth expansions with error o(n~1/2) in [7] and for local limit theorems in
[6] shows up again in this problem.
Our second result covers the case considered in Example 1.2.



ASYMPTOTICS FOR TIME SERIES 2067

THEOREM 1.3. Let f: R? — R denote a strongly contracting and continu-
ously differentiable function, and let ¢j, j € Z, denote a sequence of iid random
variables with positive and continuous density, satisfying

E|f(eq,. .., €q)| < 0.

LetZ; := g(ej_i,i > 0), j € Z, denote the strongly stationary sequence of Example
1.2, resp. let Z; denote the nonstationary sequence (5) satisfying the recursion

Ziv1=fZ;,Zj_1,...,Zj_q+1) +¢€i+1, JEL.
Let h: RP — R* denote a continuously differentiable function satisfying
E|R(Zy,...,Zp)|| <o, i=1,...,k

Define X; := MZ;, ..., Zj_p.1),J > 0, and assume that the moment condition (2)

holds. Then the dzstnbutwn of Sy :=n"Y%(X; +---+X, — nEX;) does not admit
a multivariate Edgeworth expansion of order s — 2 if and only if there exists
0 # a € R*, 8 € R such that for m = 2p — 1 the torus sum of (7) satisfies

9) aTH,(z1,...,2m) = B.

Note that condition (9) for m = 2p — 1 entails its validity for all m > p, too. The
same result holds for the nonstationary sequence Z.

The next result is concerned with threshold AR(1) processes introduced in
Tong [22]. Here the autoregressive recursion is given by

(10) 7z 1_{O‘Zj+€j+1, if Z; >0,
]+

BZj + €j+1, if Z; <0.
We assume here that
(11) o] <1 and |B|<1.

This is only a small part of the region a < 1,3 < 1,8 < 1 for which Petrucelli
and Woolford [16] proved the existence of a stationary solution. Assuming con-
dition (11), we obtain a representation of the process Z; as

Z;=glej_1:i>0)

in the same way as in Example 1.2, resp. a representatlon (5). However, g no
longer has partial derivatives everywhere.

THEOREM 1.4. Let a, (3 satisfy (11) and let Zj, j > 0, be a stationary sequence
satisfying the recursion (10) where ¢;, j € Z,is a sequence of iid random variables
with posztwe contznuous denSLty, and where &+1 is independent of Z;, i < J
Define X := h(Z;,...,Zj_p.+1),J > 0, where h is the function introduced in
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Theorem 1.3. Then the distribution of S, := n~Y2(Xy +- - - + X, — nEX;) does not
admit a multivariate Edgeworth expansion of order s — 2 if and only if there
exists 0 #a € R*, 3 € R such that for m = 2p — 1 the torus sum of (7) satisfies

(12) a’H,(Zy,....Z,) =0 as.
A similar result holds in the nonstationary case.

Based on Theorem 1.2, the validity of formal Edgeworth expansions for the
distribution of maximum likelihood estimators for the parameters 9 := (94,
..., Up)in a general AR(d) process Z,, = f(Z, _1,...,Z, _ q|¥) +¢&, can be derived.
Let L denote the log density of ¢; and let s(Z,...,Z_;.1|6) denote the log
likelihood of the density of the distribution of Zy,...,Z_g, 1. The log likelihood
function of such a generalized AR(d) process is given by (see, e.g., [11])

5(Zo, - Z-as1|9) + Y L(Zi~ f(Zi-v,... Zi-al9)).
i=1

Under certain regularity conditions the maximum likelihood estimator On
admits a stochastic expansion of length /. Thus the statistic
T, (Z|9) := (9, — O)Wn

or its Studentized version can be written as

1
(13)  Ta(Z]9) =Uno)_n"""QuUn,o,--, Un,) +op(n"),
v=0
where
Un, y = [h,,(Zi, oy Zi_g)—Eh,(Z,,... ,Zi_d)]n_1/2
i=1

forv =0,...,l and @, denotes a vector of polynomials. In the particular case of
the mle, we have

ho(Z;,... Zi—d) =LI(5i)f19(Zi-1,- crZi—d I"9)’
hMZ;,...,.Z;_q) =L"(6i)f,9(Zi_1, .. ,Zi_d|19)2 +LI(5i)f1919(Zi—17~ cZi_q |19),

where fy and fyy denote the vector of first and the matrix of second derivatives
of f with respect to ¥ and hy(Z;, ..., Z; _4) is defined similarly in terms of third
likelihood derivatives. In other cases (e.g., for M-estimators) the stochastic ex-
pansion has a similar structure.
Up to an error of order O(n~—1+*¢) an Edgeworth approximation for the dis-
tribution of T,,(Z | 9) holds for the general class of dependent sequences consid-
ered in Gotze and Hipp [5] provided that only the U, o component satisfies the
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smoothness condition (4). This result is a consequence of Theorem 3.1 of Gotze
and Kiinsch [8].

For stochastic expansions (13) of statistics involving a k-dimensional param-
eter 9 of the nonlinear time series introduced above, the following result holds.

THEOREM 1.5. Let¢;j, j € Z, be iid with smooth positive density. Let Z1,Z,, . . .
be a nonlinear AR(d) process satisfying the recursion

Zo=f(Zn-1r 1 Zn-a|O) +en.

Here ¥ is an unknown k-dimensional parameter vector. The function f(z|9) is a
differentiable and strongly contracting function (for fixed 1) such that

Eﬂlf(&l,...,6d|0)|<00.

The sequence Z; may be given either by (1) or in the nonstationary case by (5)
and is denoted by Z; as before.

Assume that the statistic T,(Z|9) admits a stochastic expansion of type (13)
such that

E|k,(Z;,...,Zi_a)|® < 00

for v =0,1,2 where ||x|| denotes the Euclidean norm. Furthermore, assume that
ho has the following structure:

hO(Zj,---,Zj—d) = <P(5j)F(Zj-1w--aZj—d|‘P),

where ¢ is a real-valued function with Eyp(e;) = 0 and F: R? — R. Assume
that h,, v = 0,1, are continuously differentiable functions of z; satisfying
E|h®(Zy,...,Zp)|| < o0, i = 1,...,d + 1. Finally, assume that h,(0) = O for
v = 0,1,2. [In the maximum likelihood case this follows from f(0|9) = 0 in
a neighborhood of 9.1 Then T,(Z|¥) and T,(Z' |Y) admit valid k-dimensional
Edgeworth expansions up to an error of order o(n=1) if and only if

I:=FEy (hg'ho)(Zi, .+ y2Zji .- ) is positive definite.

Given moment conditions on L'(¢j) and f(Z; _1,...,Z; _ 4| V), Edgeworth expan-
stons hold for (9, — ¥)\/n iff the Fisher information I is positive definite.

2. Lemmas and proofs. In the following two lemmas we shall use the
notation i ;= v/—1.

LEMMA 2.1. Conditions (1)-(3) imply that there is a constant K, such that
there exists @ Dj,p_1-m, j+p - 1-Mmeasurable r.v. Xj* such that

" s
(14) E”X] —-X;j ” < Kjexp [-amm] .
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Conditions (1)-(4) together imply

(15) lin}linf”ti”n_f var(¢7S,) > 515(1 — exp[—2a]),

where q is defined in (16).
PROOF OF LEMMA 2.1. Assuming (14), we shall prove (15) first. With the no-

tation of conditions (2)—(4), let v := (s—1)/(2s) and C, o := 2~ 1/2(1—exp[—20a])/2
(1 - expl-ay)~1:

(16) gi=r+l+ [('ya)'llog(Klas”Cs,a]El/s||X1||s+I)J,

where |x| denotes the integral part of x. For n > 2¢ and F; denoting the o-field
generated by ¢;,I < jg +p — 1, we define

Aj = nl/2T []E(Sn I St:1) - E(Sn |:‘FJ_ 1)] .
Writing n = Lg + N with N < g, the following variance decomposition:
2
(17) var(£'8,) =n~1 Z]EAz + ]E[tT( n—E(S,|enl<n+p-—1 —N))}

Jj=1
holds. Since X,,, v < jq, are F;-measurable we obtain

Jg—1
= 4T .
(ls)Aj—t[ Y (B -E®I%-))+ B - (Xu|ss_1)}
v=jg—q+l v=jq
=V;+R;, say.
Definee, p:=(ey4p—_1,€04p-2,--»EMg+p-1,0,.. ) forv >Mgande, :=(e,,p _;:

1 > 1). We have
]E1/2Af > El/zvjz _ ]EI/ZRJ?

and
n 2
EV2R? < 3" EY?[E(#X, | %) - E("X, | %-1)]
v=jq
n 2
< > EV2[{X, —E(f7X,|%-1)]
=jq
< ]El/2 tTgole,) — trgole, j-1)
(19) }__;] 80 8oy, j-1 )
< Co? Z E"|lgo(e) — goley, j - 1j||
V;jq
< Ca? Z Kexp [—a'y(l/ —Jjg + q)]
v=jq

< Ca?K (1 - expl-an]) " expl—anq],
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where C := EV/s|tTX;|**. The inequality (19) is a consequence of Holder’s in-
equality E1/2X2 < EY|X|E'/2-7|X|**1. By definition of g we arrive at

ER? < (1 - exp[—2a]).

DO =

The inequality x%/2 > 2 sin®(x /2) = 1 — cos(x) together with
Var(Z) = %]E(Z —Z)? > 1 - |EexpliZ]|?
for any r.v. Z and an independent copy, say Z, as well as condition (4) with
2]l = e, entails
(20) EV? > 1 — exp[—20].
Relations (17)—(20) together yield for n > 2q,

1
var(tTS,,) > -éa(l — exp[-20a]),

thus proving (15).

By definition (1) there is a measurable function g¢ (the composition of h and g)
such thath =g0(5j+p _lll > 1).Form >p— 1 letXJ' :=g0(ej+p —L- & —m+p—1s
0,...) and ay, := explam/3]. Define a Dj ., _1_ p, j+p - 1-measurable r.v.

X = X1(1X)| < anl®*P).
Furthermore, let B,,, denote the set of sequences ¢; such that
IDA(X;, ., X} 1p -]l < Kam

and
1Zjvr — 8Ejunr - 1Ejav—m,0,...)| < Kexp[—alm — v)]|am.

By the assumption of uniform continuity (1), there is an mq such that form > my
and ¢j, j € Z, in By, |Dh|| < 2Ka,, on the segment connecting the Z vectors of
the infinite and truncated (at m) sequence of ¢;. Thus by Chebyshev’s inequality
we have

]E”XJ —X;” < E'lXjIIS+1a;s/(s+1) + ]E”XJ _X}”I{IIX,'IISG}"/(”I)} (IB,,. +IBfn)
< E||xj||s+la;s/(s+1) + 2PK2eXp[pa _ am/3] + 2a’1n—1/(s+1)‘
This proves (14). O

- LEMMA2.2. LetO C R* denote an open ball with radius r and let F: R* — R*
denote a measurable, injective and continuously differentiable function on O
such that for some constants n > 0 and M < co and all x € O,

n<|detF'(x)] <M and |F'(x)| <M.
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Let h denote a density on R* satisfying h(x) > n, x € O, and fix § > 0. Then there
exists p < 1 depending only on k,n,6,M and r such that for t € R* with ||t|| > 6,

/ eitTF(")h(x)dx <p.

ProoF. By change of variables we obtain

T 2T h(F—l(u))
it F(x) _ it'u
/Oe h(x)dx = /Foe jdetF’(F*l(u))] du.

For x € O we have

h(x)

T 2

n
|detF'(x)] = M

and therefore

[ o[ BEID ),
FO |detF' (F‘l(u)) | M

Fix 1 Sj < k and ULy o s Uj— 1, Ujs1y .y Upe Then {uj: (ul,...,uk) € FO} is an
interval with endpoints a < b, say, and

b
T
/ ett ude
a

Let A := {(u1,...,4j—1,Uj41,...,up): Ju;j € R: (uy,...,u;) € FO}. We have

T
/ elt udu
FO

Since A is the projection of FO onto R* ~! and FO is contained in a ball with
radius Mr, we obtain

/ o™ gy < 2 @M1,
FO 7]

Since 1 <j < k was arbitrary, we can find ¢ > 0 depending on &, 7, M and r only
such that for ¢ € R* and ||| > &,

T
/ elt udu
FO

< h(x)dx+/h(x)d —l/ de+ - [ dx
A 0 M Jeo™ " 2M Jro

=1- L <1-21 .
1 2M/ dx <1 2M/dx

< h(x)dx — L du.
/o M Jro

<2

itib _ eitja)
TGl

1
i,

Si/dul...de_lde+1...duk.
¢l Ja

1
< = dx.
2 Jro

Hence for these ¢,

/ eitTF(x) h(x)dx
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The k-variate version of Theorem 1 in Petrov [15], page 10, yields for any c.f.
#(2),t € R¥, with |¢(t)| < ¢ < 1 for ||¢]| > &,

1-—¢2

|¢(t)l < 1- 852

> for [l2]] < €.

This immediately proves the assertion. O

We shall replace the smoothness condition (4) by a condition that is easier to
check for the case that X, j € Z, admits a representation

X;=g(g_;:i>0),

with a function g having all its partial derivatives exponentially bounded and
continuous on a set with large probability. Again, ¢;, j € Z, is a sequence of
independent random variables with distribution P. We write P for the joint
distribution of ¢;, j € Z. For j € Z and y € R%,x € R let (y,x)’ be the sequence
with coordinates

Yi, i<j7
Ei=4 X, i=j3
Yi-1, L>].

It will be convenient to write g as a function on R%; that is, instead of (1) we
start from a representation

Xj=g_2i€Z), JjeL.

LEMMA 2.3. Assume that g: RZ — RF satisfies the following conditions:

(i) (Exponentially small Lipschitz.) There exist K < oo and a > 0 such
that for j € Z and x1,%5 € R,

E|lg((e,%1)7) — g((e,x2)) || < Ke™*Vl|xxy — 5.
(ii) (Almost sure continuity of partial derivatives.) For j € Z there exists G,

C R, P(Gj) = 1, such that for all xy € Gj,n,6 > O there exists T > 0 satisfying

P{yeRZVxeR,|x—x| <, —3—X' exists at the point (y,x)’ and
660 J

0 . 0 .
6—€OX,~((y,x)f) - 5;0‘Xj((Y7xO)J)} < 6} >1-n.
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(iii) (Nondegenerate derivative on a set of positive probability.) For some
distinct 1y, ...,1l, > 0,

— 0
det(;glqu.u-l,...,k> #0

on a set of positive P-probability.

If, in addition, €; admits a positive continuous density, then the smoothness
condition (4) holds for the sequence X, j € Z.

Proor. By assumption (iii) we can find a number n > 0 and a set A of
sequences y € RZ with P(A) > 0 such that for y € A the partial derivatives

are defined at y, and

o
E —X(y):v=1,... >n.
det(j=0 361,,X](y)' v=1, 7k) 20

For any % x k matrix B let ||B| := sup{||Bx||: ||x|| < 1} and let C(k) denote a
universal constant satisfying

|det By — det By| < CR)(|[B1]/*~* +[|B2]l* ~*)1B1 — Ba||

for arbitrary & x k matrices B; and Bs.
From property (i) we obtain

o0
> E
Jj=0

Hence there exists a subset A’ ¢ A with P(A’) > 0 and my > 0 such that for
yeA,

2K

1—e@

9
Oe 0

X;(y)

1a(y) <

i/
(21 <10

( > 7, X(y): u-l,...,k)

Jj=mo+1 v
where C := 2C(k)2K /(1 — exp[—al]))®.
Estimating the difference of determinants yields for all y € A’,

mgo a
det<J=ZO EXJ V= 1,,k)

3

(22) 24
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For y € R%Z and x = (x1,...,x;) let (y,x) be the sequence, such that for v =
., k,x, is inserted at place [,, and all other places are filled with the com-
ponents of y:

_ [, iij{ll, +Le}s
(Y,X)j—{yj_i7 ifi=1 kandl,_1<,]<l,+1

Here [y = —co and I, 1 = +00. For x € R* let
A ={y € R%: (y,x) € A}.

Since P(A) > 0, we can find xX© € Gy, x --- x Gy, such that P(Ax®)) > 0. The
condition (ii) implies that for 6 > 0 there emsts a small ball B C R* containing
x© and aset A’ C A’ Wlth P(A”) > 0 such that for y € A” and x € B and for
v= .,kandj=0,. 0

o
55, X exists at (y,x) and

(0)) _ X)H <é.

X;(y,

v

Choosing § sufficiently small, we obtain (estimating the change of determi-
nants) from this and (22), x e Bandy € A",

det(Za (y,x) ...,k)

This implies that for m > m( and x € B,y € A” we have by (21) [which holds
for (y,x), too] again estimating the change of determinants

det(z(9 G((y,x)): ...,k)

With Lemma 2.2 we obtain that for § > 0 there exists p < 1 depending only on
§,n and B (and not on m) such that for m > my and ally € A” and ||| > ¢,

2

N3

>

LS

k
|/exp[itT(Xo+-~-+Xm)] H h(ey,)dey, - - - dey,| < p.

v=1

The left-hand side is an upper bound for
‘]E(exp[itT(Xo +o+ Xom)] | & |J — m| > 7‘) ’,
with » = max(ly, .. .,1;). This implies
E|E (explit? (Xo + -+ + Xam)] | &t |i —m| 2 7)| < 1~ BA") + pP(A"),

thus proving the lemma. O
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In the following we shall prove conditions (i)-(iii) of Lemma 2.3 for the
sequences of dependent r.v’s X; of Theorems 1.2-1.4, thus proving these
results.

Let 2: R? — R* denote a differentiable function. We denote by xj{’m € RP? the

vector (xj,...,%j.p—-1),J > 0, using the identification j + m = j,j > 0. When
there are no ambiguities we denote it by x;,,, and write x; for (x;,...,%j.p_1)
for short. Write

; o]
h(x,) = 8—xjh(x1, ).
The following condition for torus sums like (7) will be frequently used:
m m
(23) H, = Z h(xu;m) =« Z Xy + Bm
v=1 v=1

for all x’s. This condition can be described by the following lemma.

LEMMA 2.4. The following statements (i) and (ii) are equivalent and imply
property (iii).

2.8
@) > iz = o
P

Jj=1

(i) Condition (23) holds for m =2p — 1.
(iii) Condition (23) holds for all m > p.

REMARK 2.1. Condition (23) for m = n + p — 1 yields the representation

(24) n'28, =3 hx)=a) %+ — > {hEKm):n <j<m}.

j=1 Jj=1

PrROOF OF LEMMA 2.4. Condition (i) may be written as

2p -1 )
(25) > A1) = a

j=1

Taking derivatives with respect to x, in (23) results in the left-hand side of (25),
thus proving that (ii) implies (i). Furthermore, by symmetry, partial derivatives
of H,, with respect to any x;,1 < j < m, are equal. Assuming (i) implies that
for m > 2p — 1 the sum H,, has all partial derivatives equal to a. Therefore
(23) holds for any m > 2p — 1. Finally, choosing special arguments x;, such that
Xj+m = xj for p < m < 2p — 1in(25), the left-hand side of this equality equals
the derivative of H,, with respect to x,. Similarly as above this shows that (23)
also holds for p < m < 2p — 1, thus proving the lemma. O
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ExaMPLE 2.1. Functions & which lead to the degenerate case in Theorems
1.2-1.4 are, for example,

h(xy,%2) = g(x1) — g(x2) + axy,

where g and a are arbitrary. Notice that for A(x;,x) = g1(x1)g2(x2) —g1(x2)g2(%1)
with general functions g1, 82, condition (23) holds for m = 2 but not for m = 3.

REMARK 2.2. To verify the expansion for S/, note that (3) implies a similar
condition for Z; as well. Define

,m(®) = E[E(exp[it? Xy _p + -+ Xyum)]|ej: 1 =N 2 7) I
Let 7y ,,(¢) be defined similarly for Z}. Then (3) entails

(26) 17N, m(®) — 75 @) = O(|t|Kme=N-m) = O(n™1)

uniformly for any [, +m < N < n—1, —m and ||¢|| < n", where [, := n® for some
¢ > 0. Thus condition (4) entails a similar inequality for the nonstationary case
and yields the expansion for S}, again by Corollary (2.9) in [5]. By Remark 3.45
on page 235 in [5], it follows that condition (4) needs to be checked for sums
of length 2m involving the random vectors Z , ... ,Z _;, only. [This allows us
to show, e.g., that with 2’ , ,...,Z}, _, and Zn 1ol .,Z!, defined differently
from (5) or (1) the expansion result still holds.]

PrOOF OF THEOREM 1.2. Recall that here We have Z; := 2 cij i, J € Z,
and X := h(Z;) using the notation Z; := (Z;, ..., Zj+p 1) of Lemma 2.4. Thus

] & :
ngj =Y ¢jbio1h9(Z)
i=1

so that, for continuous A%, ... , h® (8/0e0)X; is a continuous function of &o.
Condition (i) of Lemma 2.3 follows under the assumption that ¢; — 0 expo-
nentially, and E||A?(Z,)| < oo,i = 1,...,k holds. Condition (iii) follows from
uniform continuity of A%’ on compact subsets of Rt i=1,... k.

To show condition (ii), note that the power series

oo
c(z) = Zc,,z"
v=0

has a radius of convergence 3 > 1. Hence there exists 1 < ' < 3 such that
c(z) has a finite number of zeros in |z| < (. Let p(z) denote a polynomial of
degree g defined as p(z) := £? _ p,2” which has the same zeros with the same
multiplicity as c(z). Furthermore let A(z) denote the holomorphic function

p&)

A(2) := @
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defined for [z|] < 4. Expanding A(z) in a power series around z = 0 yields
A(z) := X2 (A 2. By Cauchy’s inequalities we have
pz)

1 v
m (E) fOI’VZO.

Hence the radius of convergence for A(z) is at least 3’. For all j > 0 we have

@7) |A,| < max
|z =B

J
> Aci_i=p;
1=0

which is 0ifj > q.
Furthermore, we write (using the notation of Lemma 2.4) C(l1, . . ., ;) for the
matrix with columns

p

o [+
Z%Xf:chj+i—1—luh(i)(zj), v=1,...,k.
j=0 v ‘

j=0i=1
According to Lemma 2.3 we may assume that for arbitrary I, ...,1,
(28) det C(l4,...,) =0 P-almost surely.
This implies with y:=qg+p + 1,
(29) Y Ay AydetClylo+p,... l+pd—1)=0
1, >0,v=1,..,k

P-almost surely, where this sum is defined in the L;-sense; notice that the
coefficients A; are exponentially small by (27).
The sum (29) is the determinant of the matrix with columns

[oe] [o I
Z Z ZAlucj+i— 1-1, - (- l)uh(l)(zj)
l,=0j=0i=1
b

= Z ijﬂ' —1-w -1 hOEZ).

Jj=0i=1

Notice that the summation over j on the right-hand side is a finite sum because
ofp;=0,j>q.
The case k = 1. In the expression

o P
Z ijn' _1h9(Z),
j=0i=1

the only term depending on &4,,_1 is pghP(Z,). Since p, # 0 the function
h™(z;) must be independent of z,. The only sum of terms depending on ¢, , p—2
is given by

(30) P (RVZg) + P (Zy _ 1) +py_ 1hV(Z, _ ).
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Since 2’ does not depend on its last entry, the term
rP(x;) + A2 (xo)

must be independent of x, _ ;. It was independent of x,, hence it does not depend
on x, _1,x,. Repeating this procedure, we arrive at the conclusion that for j
=1,...,p the terms

J
Dj:=> h9Gx;_;41)
i=1
donotdependonx,,,_j,...,%5.,— 1. We shall use these observations to derive
that the torus sum H,, defined in (7) must be linear. Since D; = AY(x,) does
not depend on x, ., _ 1, we obtain that D} := h(q)(xq —p+1) does not depend on
%q - p+1; in fact, when § := x| —x; > 0 we have

(h(xl, e Xp—1,%p + 6) — h(xl, - ,xp))

| =

1
— g(h(x'l,x% Xy 1, %p +68) — hx, xg, ..., %p))

%1
= % / (h(l)(u7x27 e Xp—1,%p t+ 6) - h(l)(u,xz, . ,xp)) du=0.
)

(This is immediate if f is two times differentiable by interchanging partial
derivatives.)
Similarly, the fact that

Dy = hV(x,) + @ (x, _ 1)
does not depend on x, ., _ o yields that
Dj = h'P- 1)(Xq —p+2)+ h(”)(xq —p+1)

does not depend on x; _ .2 and x; _, 1. In general, forj=1,...,p,

p
Dj =3 A0 _iv1)

i=j
does not depend on x, _j,1,...,%; — p+1. We conclude that
D, = D;
does not depend on any of its arguments x; _,41,...,%5+p—1; that is, D, is a

constant equal to o, say. By Lemma 2.4 this is equivalent to the torus sum Gy, _ ;
being affine linear; that is, the torus sum condition of Theorem 1.2 holds.
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We have to show that a # 0 and condition (28) together imply ¥8%c; = 0. This
follows choosing ! > p in view of

o p (o] p
0= ZZCJ'.,.i_l_lh(i)(Zj) = zcj zh(i)(zl—i+u+1)

Jj=0i=1 v=0 i=1

The case k > 1. Assume that the determinant of

o p
(31) Zij”_l_(,,_lmh(")(Zj), v=1,...,k,

j=0i=1

vanishes P-almost everywhere. We have to show that there exists 0 # a ¢ R*
such that the torus sum a”G is constant or affine linear, and if a’G is not
constant that X3°c; = 0. We shall use induction in . The only column depending
on &' := (€ —1)u)-- 1€+ - Du+p—1) is the column with index % since we had
chosen =g +p+ 1. If f1,...,f, denote the components of f, we can find an
a=(ay,...,a;), such that

k co p
(32) 0=)> a, Z ij+i —1- - 1uhE(Z)
1

v= Jj=0i=1

P-almost surely. In fact, the entries to a may be chosen as k—1-variate minorants
of the given k x k determinant. Thus a depends on ¢;, j < (¢ — 1)y, but not on
¢’. If a = 0 P-almost surely, then, in particular, a; = 0 P-almost surely, which
indicates that the determinant of (82) vanishes P-almost surely for dimension
k — 1. In this case we know by induction that for some 0 # a’ € R* ! the torus
sum Eﬁ;lla,,G,, must be constant or nonconstant and affine linear and—in the
nonconstant case—we have %5°¢; = 0. Now a = (a’,0) € R is the vector that
does all we need.
If relation (32) holds for some a # 0, consider

k
¢Cxlp..,ﬁb):= }E:aquCxlw"7xP)

v=1

so that (82) reads

0= pjri-1-t-1u0"(Z).

14
Jj=0i=1

As in the case k = 1 we can conclude that the torus sum a”G must be constant
or affine linear, and, in the nonconstant case, £3°c; = 0. This proves one part of
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Theorem 1.2 for £ > 1. When the torus sum is constant or affine linear, Lemma
2.4 yields

n-1
n'28y =Y Zj+fuip-1+0p(n?)
Jj=0
(¢S] n—-1-v
= aZa,, Z cj+/3n+p—1 +Op(n_1/2).
v=0 Jj=0

Hence aZ% ¢, = 0 together with the exponential decrease of ¢, implies Var(S,)
= O(n~1). Thus the asymptotic distribution of S, is degenerate and Edgeworth
expansions do not hold. This completes the proof of Theorem 1.2. O

PROOF OF THEOREM 1.3. Using the notation Z¢ := (Z;,...,Z;_q+1) and
Zj.’ :=(Zj,...,Zj_p+1) as in Lemma 2.4 (with the order changed), we obtain for
an autoregressive recursion with a smooth and strongly contracting function
f: R? — R the following relation for (8/9e¢)Z;:

d

0 . F] .

__OZ] = 6j,0 +Zf(’)(Zf_ l)éazj—i, JEZ.
i=1

(33) %

If f is strongly contracting, we have || f ?(z)|| < p;, Zp; < p < 1. Hence

o j .
EE_()'ZJ <p’y Jj20.
Furthermore, we have
0 v =y O
(34) 55&-;" (Z) 5egZi-i1
and therefore
K] a ® i1
ey 5;“"‘ @)=

for j > 1 where q := min(p, j — 1).

Thus, by the assumptions on A, condition (i) of Lemma 2.3 is satisfied in this
case. Again, condition (ii) follows from uniform continuity of f®,i = 1,...,d,
and Y, j=1,...,p, on compact subsets of R*.

To simplify the argument, let us consider the case d = 1 first. Here the recur-
sion yields a simple expression for the partial derivatives. Using the convention
I}, := 1, we have

0

(35) —6_&‘;

Jj-1
z=][r@) Ji=o
i=0
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This implies that, especially for nonsmooth f, the partial derivative exists for
all points z € RZ such that the right-hand side exists.
It remains to verify condition (iii) of Lemma 2.3; that is,

(36) ii =3 S h022) 22,
Oeo i=1j=0 77060 7T
cannot be 0 P-almost everywhere. Let 6z denote the right shift
Or(e)j ==€j+1, e e R?, J € Z.

By the representation of Z; in terms of ¢; of Example 1.2, wehave Z;,; = Z; o 6g
and therefore X, ; = X o 6. Thus relation (35) yields

37 B(Zo ,+1—f(Z0)( 0 ) o Og.

Hence we obtain

(38) f’(Zo)( Zlh“) P 7 _ Hl) ofg = Zh(‘) a%zj_,-”.
Jj=i- j=i

This immediately implies, by (34) and (36),

(39) S = Xp: RO(ZP_ ) +F(Zy)S o Op.

i=1

In the general case d > 1 we will show by induction inj > 1,

(40) 7= Zf‘” 7) (o Zi-i00h).

which holds for j = 1 by (83). For j > 2 we have by induction, interchanging
summations and (33),

9 , 9
2= 30t ) s 3 r0E (—650 J-ior) ok}
o 0 (z 9 !
Zf (Z2 1) {6 10+Z f 1_1) aEOZJ i—1) | o0g
d N
0
Zf(l) Zl—l ( €Z—>°‘9£2’
0

where we used Z¢ = Z¢ , o 6}, in the second equality and (33) again in the last
equality. This proves 40).
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As in (36)—(39) this result implies
p oo 8

i=1

p d oo
; ; 9]
Z{h() Z" Z (l) zl_ < E h(z)(zjf’_l)a—%zj_i_l“) 0(953}.

i=1 J=i+l—1

Hence we obtain the following generalization of (39):

(41) S = Zh(l) ZP l) Zf(t) Zd I)SOBL

i=1

Assuming that S is 0 P-a.e. implies by stationarity that S o # is 0 P-a.e. and
therefore

p
S hO(ZP_) =0 P-ae.

i=1

This condition implies via Lemma 2.4 that the torus sum Hy, _ ; satisfies
(42) Hy, 1=0p_1

This contradicts the assumption in Theorem 1.3 and shows (iii) of Lemma 2.3.
The lemma is turn guarantees the smoothness condition (4). Finally, by The-
orem 1.1 Edgeworth expansions hold up to the order s — 2. For the only if
part of Theorem 1.3 notice that (42) implies by Lemma 2.4 that S, = constant
+ Op(n—1/2); that is, the distribution of S, is degenerate in the sense that it is a
sum of O(p) r.vs only and therefore Edgeworth expansions are not valid. This
completes the proof of Theorem 1.3. O

PROOF OF THEOREM 1.4. In the threshold model of Theorem 1.4, if |a|,
|8] < 1, condition (i) of Lemma 2.3 follows as above since f is strongly contract-
ing. Condition (ii) is more delicate. From the product structure we see that it is
sufficient to show that for xy € R and 6,1 > 0 there exists 7 > 0 such that

(43) P{e € R%: V|x — x| < 7,Zi((,2)) #0} 2 11,

[Recall that in the representation Z; = g(e; _;: i > 0) the argument ¢, appears
as the ith argument.] For i = 1 we have

Zl = h(f(X_l) + 60) + &1
and the probability (43) is given by

]P{e € R%: V|x — x| < 7,f(F@_1) +x) +e1 # 0}.
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This probability, by the choice of 7, can be made arbitrarily close to 1 if ¢; admits
a continuous density. Notice that, for Z_; fixed, the set

{f(f(X_1)+x): |x — xo| < 7-}

lies in an interval of length at most 27. For { = 2 we similarly obtain
the probability

]P’{e e RE: V|x — x| < T,f(f(f(Z_l) +x) +51) +eg # 0}.

This is close to 1 for small 7, since for fixed £, and Z_; the set

{f(f(f(X-1)+x) +€1) +eg! |x — x| < 7'}

is again contained in an interval of length 27.
Let M be an upper bound for the density of ;. We conclude for arbitrary i:

]P{e € R%: Ve — xo| < T,Zi((s,x)i) # 0} >1-2Mr.

Hence condition (ii) of Lemma 2.3 holds in the threshold model of Theorem 1.4
for the variables Z;.

Condition (iii) of Lemma 2.3 in this case follows similarly as in (35)-(39).
Notice that whenever the right-hand side of (35) is defined this equality holds
and therefore (37) holds P-a.s., too. Assuming that S defined in (36) is 0 P-a.s.,
we obtain by stationarity that S o §z must be 0 P-a.s., contradicting (39) that
holds P-a.s. O

ProOOF OF THEOREM 1.5. Write as before Z; := (Z;,...,Z;_3,1). Further-
more, define h(Z;) := (ho, h1,h2)(Z;) € RE and the torus sum H,, := (H,,, 0, Hp, 1,
H,, ¢)asin(9) with m := 2d — 1. Let M denote the dimension of the vector space
of functions with real coefficients spanned by the component functions of H,,
in L2. Let 0 denote the null vector. Note that the assumption A(0) = 0 implies
that a linear relation of the type

(44) aTH,,(z) = const

for some a € RL is equivalent by continuity to const = 0, that is, a linear relation
for the components of H,,. We may now distinguish several cases.

The case M = L. Here a linear relation like (44) does not hold. Thus the
moment conditions on A and (9) imply via Theorem 1.3 that a multivariate
Edgeworth expansion holds for U := (U, ¢, Uy, 1, Uy, 2). Applying the usual tech-
niques like the “delta method”; that is, integrating the multivariate Edgeworth
expansion over the region defined by the asymptotically linear stochastic ex-
pansion polynomial taking values in a convex set and expanding the result in
powers of n=1/2, we arrive at the formal expansion based on the cumulants of
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the statistic 7,(Z |9). As in [1], this method works provided the e-boundary of
the region defined by the stochastic expansion has Gaussian probability propor-
tional to €. This in turn follows from the polynomial structure of the stochastic
expansion.

Furthermore, we claim that the £ components of H,, ( are independent func-
tions which implies M > k. To demonstrate this fact, assume that there exists
an a € R*, a # 0 such that

m+d

(45) a’ > ho(Z) =0,
j=d

where m := 2d — 1 and Z,,,; = Z;. By Lemma 2.4 we conclude that (45) for
m = 2d — 1 implies (45) for all m > 2d — 1. Since f5(0|6) = f(0|6) = 0 we
may choose X; = 0 for all j = 1,...,m consistently with the cyclic boundary
conditions. Thus we conclude §,, = 0 for any m > 2d — 1. Furthermore, notice
that by assumption we have Ep(e;) = 0. Recall that the r.v’s Zy, ..., Z;_1, €4,

€d+1, - - -» Em are independent and let the remaining variables be determined by
Zj 1=f(Zj_1 |6) +€j,
(46) g = Zi —f(Zi_l |9)

= Zi _f(Zm—d+i’ v ,Zm,le v ’Zi—l)a

whered <j<mand1l<i<d.
Let A, denote the o-field o(Zy,...,Z4_1,£q4). Taking the conditional expec-
tation of (45) with respect to Ay yields

(47) (e)aTFy(Zg - 1|9) + Hn(Ag) =0,
where
d-1
Hn(Ag) =) Eople)a Fy(Z; |9)
i=1

for any m > 2d — 1. Since Z; = g(gj_;: i > 0) satisfies the ergodicity condition
(3), we obtain

(48) mli_l)noon(Zd —1, ‘Sd) = H(Zd - 1) a.s.

Conditional expectation of (47) given Zy, ..., Zy_ yields in the limit as m — oo
H(Z,,...,Z;_1)=0. Thus

(49) wleg)alFy (X4-119) =0,

contradicting the assumption of a positive-definite Fisher information matrix
I. This proves the assertion.
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The case M < L. Here we may choose a basis of length M > &, say H, of
components of Hy, that contains the £ components of H,, o. Thus the remaining
L — M components, say H:*, of H,, for m = 2d — 1 may be expressed as

(50) H)' =AH;,

where A denotes a (L — M) x M matrix that does depend on the distribution
of Zy,...,Zsq -1 and the function A only. By Lemma 2.4 the linear relations
H3;_ |, —-AH;, , =0imply the relations H* — AH} = 0. Thus we may express
the corresponding components of U,, say U;*, by

Uy = AU + [AH" ~ Up) — Hy - U]
= AU;: + An.

The hy components of A, appear in the O(n~1) term of T}, (Z| %) only; that is,
their contribution to T,(Z| 9) is of order Op(n~3/2). We replace the r.v.s Z; (resp.
the nonstationary versions Z)forn—d <j<nby

(51) Zj :=g(sj,...,ej_ln,O,O,...)l{,gK,,ﬁ}

for some 1/4 < 3 < 1/2 and [, :=n®,e > 0 small. This amounts to a change in
T,(Z|9) of order Op(n~le~%) by the smoothness assumption on 4, and a change
of order O(1) with probability O(n~5/%) = o(n~!) by the moment assumptions on
hy.Letus denote the corresponding version of U* by U,. Then the cumulants up
to the order 4 of U}* and U, differ by o(n~!) only. (Compare Lemma 3.30 of [5].)
Thus by standard smoothing inequalities (see Lemma 11.4 and Corollary 11.5
in [2]), we obtain that the Edgeworth expansions of T, (Z|¥) and its modified
version, say T,(Z| ), differ by o(n~!) only. Let & denote the o-field generated
byej,j<d-1,ande,_y,...,&,. Then

E(U, | &) = E(AU? | €) + A(€),

where A(€) is constant given €. Thus, conditionally on €, 7T,(Z|¥) is a polyno-
mial in Uy only. The distribution of Z;,0 < j < n, given ¢ is not stationary but
(8) together with the smoothness of 2y and &, implies that for /, <j < n—1, the
L'-difference between Z; and the conditional version with some ¢; fixed is expo-
nentially small. Similar to (5), it follows that U} given & satisfies the conditional
Cramér condition (4) since the linear independence of H}, implies as in the proof
of Theorem 1.3 via Lemma 2.3 that (4) holds for U} (based on the stationary un-
conditioned version of Z;). Furthermore, (3) holds conditional on € and therefore

we obtain an Edgeworth expansion for the conditional distribution of 7, (Z | ¥)
given & with error of order o,(n~1). Taking expectations over these conditional
expansions finally yields an Edgeworth expansion [up to an error o(n~1)] that
is equal to the formal expansion since the conditioned Edgeworth expansions
are standard (i.e., depend on the cumulants of the distribution only).
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On the other hand, when I is not positive definite the stochastic expan-
sion is asymptotically degenerate and a multivariate Edgeworth expansion for
T,.(Z|¥) does not hold. This concludes the proof of Theorem 1.5. O
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