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INTEGRABLE EXPANSIONS FOR POSTERIOR DISTRIBUTIONS
FOR A TWO-PARAMETER EXPONENTIAL FAMILY!

By DONGCHU SUN
University of Missourt, Columbia

Asymptotic expansions of posterior distributions are derived for a two-
dimensional exponential family, which includes normal, gamma, inverse
gamma and inverse Gaussian distributions. Reparameterization allows us
to use a data-dependent transformation, convert the likelihood function to
the two-dimensional standard normal density and apply a version of Stein’s
identity to assess the posterior distributions. Applications are given to char-
acterize optimal noninformative priors in the sense of Stein, to suggest the
form of a high-order correction to the distribution function of a sequential
likelihood ratio statistic and to provide confidence intervals for one param-
eter in the presence of other nuisance parameters.

1. Introduction. The question of asymptotic posterior expansions can be
dated from Laplace (1847) and has become one of the most widely studied prob-
lems in statistical theory and application. Johnson (1970) was among the first
authors to investigate pointwise expansions of the posterior distribution of
vl (6 — 6) rigorously. Here 6, is the maximum likelihood estimator of a pa-
rameter # given n iid observations. Ghosh, Sinha and Joshi (1982) and Bickel,
Gotze and Van Zwet (1985) gave a uniform variant of Johnson’s result for a
one-parameter case.

A natural application of posterior expansions is to find Bayesian confidence
intervals of 4. Alternatively, Bayesian confidence intervals can be derived from
log-likelihood ratio statistics. Let L, (6) denote the likelihood function and /,,(6) =
log(L,(6)). The likelihood ratio L (6)/L (6) or equivalently 2{1,,(8,)—1,(6)} can be
studied to assess the truthfulness of the simple null hypothesis Hy: 6 = 6. Efron
(1985) proved the asymptotic normality of the posterior distribution of A,
{2[1,(6,) — L,(O)]}/2 sign(8, — 6), the signed squared root of the log- hkehhood
ratio statistic, and recommended the use of A,, rather than \/n (0, — ), to find
a Bayesian confidence interval. The use of the signed squared root goes back
to Lawley (1956), Woodroofe (1986) and Barndorff-Nielsen (1986), all from a
frequentist point of view. Bickel and Ghosh (1990) extended Efron’s (1985) result
to a multiparameter case and pointed out that the normal approximation to A,
is correct to a higher order than the normal approximation to /7! (6, - 0).

A posterior expansion of A, can also be used to characterize priors lead-
ing to posterior confidence regions with approximate frequentist validity. In a
single-parameter case, Welch and Peers (1963) proved that a one-sided poste-
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rior confidence interval from the Jeffreys (1961) prior, which is proportional to
the square root of the determinant of the Fisher information matrix, has the de-
sired coverage probability up to O(n~1). In spite of the success in one-parameter
problems, the Jeffreys prior frequently runs into serious deficiencies in multi-
parameter problems [cf. Berger and Bernardo (1992)]. To overcome these defi-
ciencies, Stein (1985) extended the results in Welch and Peers (1963) and Peers
(1965) and introduced a method to find a prior by requiring the frequentist cov-
erage probability of the posterior region of a real-valued parametric function to
match the normal level with a remainder of O(n~1). Tibshirani (1989) general-
ized this method by using a one-to-one transformation of the parameter vector
into a parameter of interest and a nuisance parameter vector orthogonal in the
sense of Cox and Reid (1987). Berger and Bernardo (1989, 1992) extended the
reference prior approach of Bernardo (1979), giving a general algorithm to de-
rive a reference prior by splitting the parameters into several groups according
to their order of inferential importance. Ghosh and Mukerjee (1992) applied
Bickel and Ghosh’s (1990) result to derive a noninformative prior matching the
frequentist and posterior coverage probabilities of a confidence interval of a
parameter in the presence of nuisance parameters.

Another important problem is to obtain posterior expansions when a stop-
ping time is involved. Alvo (1977) and Ghosh, Sinha and Joshi (1982) derived
posterior expansions for Bayesian sequential estimation in a one-parameter
natural exponential family. Unfortunately, this area has received inadequate
attention. With the wide use of Bayesian sequential designs and Bayesian se-
quential tests [cf. Woodroofe (1982, 1989), Lalley (1983) and Hu (1988)], it is
desirable to find simple posterior expansions.

The main technique in the articles above is Taylor expansion. For a one-
parameter natural exponential family, Woodroofe (1992) noticed that the like-
lihood function of A,, the signed squared root of the log-likelihood function, is
exact normal. He called A, a data-dependent transformation and showed that
the remainder term is exactly a conditional expectation. Therefore, martingale
theory can be employed to deal with the integrability problem, especially for se-
quential problems, thus avoiding messy Taylor expansions. Woodroofe’s (1992)
results can be easily generalized to the special case of a multiparameter expo-
nential family that is the product of several independent one-parameter natural
exponential families. However, it is not clear how this can be done for arbitrary
multiparameter exponential families [cf. Brown (1986)] such as a multinomial
distribution. In this paper, we will consider a two-parameter exponential family
of densities on the Borel sets of R,

1) Plo,, py®) = exp{1U1(x) + BoUs(x) — $*(61, B2) },

with respect to some o-finite measure. Bar-Lev and Reiser (1982) first
introduced a subfamily of (1) which is characterized by the following two
assumptions.

AssuMPTION A. The parameter 35 can be represented as: f; = —6,G5(65),
where 0y = Ep, 5, (Ua(X)), G4(62) = dG2(63)/dbs, for some function G.
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TABLE 1
Examples of a certain two-parameter exponential family of distributions where X, = (1 /Y7 X,
Yn = Y7 U1(X) — nGo((1/n)30} . Ua(Xy)), N is the natural parameter space for (61, 8;) and
8(6,) = —0; + 6 log(—67) + log[I'(—64)]

Name Normal Inverse Gaussian Gamma Inverse gamma
. 1 A — )2 2 2 - 2 — 2 a,a—1 _ a _
Density et WA oo e A Sl el
U,(x) x2 Z —log(x) —log(x)
Usy(x) x x x 1
6 ! @ o iy
! 202 2 @
[ —p - —a
P o? 2 B 7
[e3
62 7 - © ©
I
N R™ xR R~ x (R~ U {0}) R~ xR~ R~ xR~
(O] R™ xR R~ x R* R~ x R* R~ x R*
G1(67) —1log(-26y) —1log(~26,) g6y) £(61)
1
Ga(02) 0§ r —log(63) —log(62)
2
no "1 a n (X, no (1
Yy (X; — Xn )2 = - = log (-ﬁ) log (-)
n
ni4di

AssuMPTION B. Ujy(x) is a one-to-one function on the support of p*.

The normal, inverse Gaussian, gamma and inverse gamma distributions are
special cases of (1) satisfying Assumptions A and B (see Table 1). Any monotone
function of these random variables also satisfies the two assumptions. One can
reparameterize (1) by the mapping (61, 82) — (61, 62). It is easy to verify that
0; and 6, are orthogonal in the sense of Cox and Reid (1987). In addition, from
Theorem 8.4 of Barndorff-Nielsen (1978), this mapping is a homeomorphism
with range space © = ©; x O, (i.e., components 6, and 8, vary independently).

Under Assumptions A and B, one can show [cf. Bar-Lev and Reiser (1982)]
that G, is infinitely differentiable, G; is positive and the variance of U, is
—1/{61G5(62)} > 0. Therefore, §; never changes its sign. Without loss of gen-

erality, we will assume that ©; C R~ = (- 00,0). With this reparameteriza-
tion, write
2) po(x) = exp{6,U1(x) — 61G5(62)Us(x) — 9(6)},

where 0 = (61, 62) and ¥(8) = — 6;[02G5(8) — G2(62)] + G1(6,) for some differen-
tiable functionG;(6;). We need an additional assumption on the function G, for
this paper.
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AssuMPTION C. suplx|Gi(x) = v(f;) < oo for any 6; € ©;.
x<61

Note that Assumption C holds for all the distributions in Table 1. Basically,
it controls the left tail behavior of the underlying distribution function. Similar
conditions have been used by Woodroofe (1978) and Bose and Boukai (1993) for
various design problems.

The purpose of this paper is to establish the following kinds of results. Some
preliminary information is given in Section 2. Motivated by Bickel and Ghosh
(1990), a data-dependent transformation (Z;,Z5) of (64, 62) is defined, that gen-
eralizes the signed squared root. An extension of Stein’s identity is given to
provide a key to the posterior expansion, so that the remainder terms can be
written as conditional expectations and treated by martingale convergence the-
ory. Some important inequalities are also derived for later use.

Asymptotic expansions for the posterior expectation of functions of (Z;,Z,) as
n tends to oo are given in Section 3.1. Second-order and higher-order expansions
are given in Sections 3.2 and 3.3, respectively, as a sequence of stopping times
tends to co. Although Bickel and Ghosh’s (1990) results are general for a fixed
sample size, it is not easy to verify the conditions for which the expansions are
valid. In contrast, the results here hold for the distribution family (2) even when
a stopping time is involved. Bartlett (1937) showed that the x? distribution is
a far better approximation to the distribution of A, /E¢A, than to A, itself. Box
(1949) and Lawley (1956) generalized the Bartlett correction. A general concept,
expansion by rescaling, was established by Efron (1985) and Woodroofe (1992)
for a univariate case and Bickel and Ghosh (1990) for a general case with fixed
sample size. In Section 3.4, asymptotic integrable expansions by rescaling are
also studied for polynomial functions and symmetric functions of (Z;, Z,).

Three applications of the main results are given in Section 4. First, second-
order expansions from subsection 3.2 are used to characterize some optimal
noninformative priors in the sense of Stein (1985). The expression of the op-
timal noninformative prior is derived and the relation with Tibshirani’s and
Berger and Bernardo’s reference priors is discussed. It is shown that the Jef-
freys prior could be improved by taking the stopping time into account [cf. Ye
(1993) for a one-parameter case]. Second, expansions by rescaling are applied
to suggest the form of a high-order correction to the distribution function of a
sequential likelihood ratio statistic. OQur correction to the sampling distribution
of the sequential log-likelihood ratio statistic for the normal population with
unknown mean and variance greatly improves the chi-square approximation,
especially for small sample sizes. Finally, inferences about 6; in the presence of
the nuisance parameter 0 after sequential experiments are investigated.

Due to space limitations, some proofs are given in the Appendix and many
proofs are outlined. Readers who desire a more complete exposition can contact
the author.

2. Preliminaries.

2.1. Data-dependent transformation. Consider a Bayesian model in which
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the prior density of @ = (01, 6,) is £, and X;,X;,... are conditionally iid with
density (2) for given § € ©®. We will denote probability and expectation in the
Bayesian model by P¢ and E¢, conditional probability and expectation given 6
by Py and Egy and conditional expectation given X;,Xs,...,X, by E§. For sim-
plicity, @ will be treated as either a random variable or its observation. The
log-likelihood function of @ = (6y, 8;) given X, ...,X, is

l,,(0) = 01Tn1 - 91G/2(02)Tn2 el n’l/f(o),

where T,; = ¥, U;(X)). Let 0, = (§n1,§n2)Adenote the maximum likelihood
estimator of 6. Note that 6,3 = T,2/n, and 6, satisfies G}(6,1) = Y,, where
Y, = {Tw1 — nG2(Th2/n)}/n. It follows from Bar-Lev and Reiser (1982) that
both G; and G, in (2) are strictly convex and infinitely differentiable. The log-
likelihood ratio test statistic is then

@) 1(8a) — 1(8) = nI(B,,0) = nly(Bn1,01) — 10115 (Bnz, 6),

where

4) I1(w1,01) = G1(61) — G1(wy) — Gy(w1)(0, — wy), w1, 01 € Oy,

(5) Ip(we, 02) = Ga(ws) — Ga(fz) — G(O2)(wa — 62), wa, B2 € O.

The convexity of G; implies that Ij(wj, §;) is always nonnegative and equals 0
if and only if w; = 6;. Therefore I(w,8) > 0, and equality holds if and only if
w = 0.[I(w; 6) is the Kullback-Leibler divergence between p,, and py defined by

Ew log {pw(X1)/pe(X1)}.]
The data-dependent transformation is defined by

©  Z=Z =G zu= V200 sign - G )
= &p = \Lnly4en2) = — —~ .
\/ —2n¢91I2(0n2, 02) sign(02 - 0n2)

Denote the partial derivatives of I, with respect to 6, by I}, j(wg, 6) = 8/ Ix(wg, 6;)/
6] . Since

a(an ) ZnZ)
det( 80y, 62) )

VI, 1(§n1,91)|/\/ 211 (81, 61) 0
= det ~ =
. VTG, 1 B, 62)] [ /213, 02)

is positive, the transformation from @ to Z, is one-to-ene and onto. Let S, be
the range of Z, and define J;(wg, 6r) = v/2I(wi, Ok)/ I, 1(wk, 6r)| and J(wq,we;
601,02) = (1/4/—6y) J1(w1, 01)J2(wz, 62). Then the conditional density of Z, given
Xl, BN ,Xn is

) a(2) o< E(0)T (Br1, Ba; 61, 92)exp{ —%zzf}ls,l(zl
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Here 14 denotes the indicator function of an event A. The partial derivatives of
Jy, with respect to 6, will be used:

(8) Jk,l(wk,ek)—\/_{l Ik 2Jk}s1gn(0k—wk)

_ il .
(9)  Jp, 2w, 0) = { o, Jr, 01+ m[llz,st + 2@, 9y, 1] ¢ sign(6y — wp)

for w,#0, € O,k = 1,2. The value of J;, and its partial derivatives on the
diagonal may be obtained from ’Hospital’s rule as

Jr(wp, wp) = ﬁ; E=1,2,
J1, 1wy, wy) = —3—6;%)1)%2-,
J1,2(wr,w1) = 31616}?:::)15)/22 - 4(5?2333/%
Jo,1(we, we) = —%,
J2, 2(w2, wa) = 116G (wa)l® 3G (wp)

9G (w2 4Gy (we)3/?

2.2. Inequalities.
LEMMA 2.1. DefineA, = {Y, € G(01)},B, = {Tyz € 92}andA B, =A,NB,.

For any x > O,m = 2,3,...,0 € ©, we have Pa(supnzmI(emmlAan 2 %) <
[em0D) 4 4] exp{—(m — Dx/2}.

ProOOF. See the Appendix.

LEMMA 2.2. For any x > 1,0 € © and a positive integer n,Pg(max; <,
1Z||14,8, > %) < [e™70D) + 4](1 + log, n) exp{—x%/4}, where log, denotes log-
arithm to the base 2.

Proor. Let M, be the smallest integer which exceeds log, n. We have
M, R
Pg(rl:lgx A x) < S Po{A4B; and 1(8;,0) > 2%/2m*1, 3k > 27~ 1},
=n m=1

The result follows from Lemma 2.1. O

For any fixed prior density ¢, let W denote the class of all functions W: © x
©® — R for which

(10) E¢ [SUP IW(anv e)llAan] <

n>m
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for some m = 2,3, .... Observe that W is a linear space which contains all
constant functions.

LEMMA 2.3. Assume that ¢ has compact support and w is a real function on ©
such that E¢|w(@)| < co. For any fixed my, define W(w; 8) = w(0) exp{mol(w, )},
w,0 € ©. Then W € WE.

Proor. The conclusion is true if my < 0. For my > 0, choose an integer
m > 4(mg + 1),

E¢ [ sup W(8,, e)lAan]

n>m

< E¢ [|w(0)| /°° ]}De( sup exp{moI(an, 9)} > S) ds]
0 n>m

< Ef (lw(o)l{ / Py [ sup 1(8,, 9) > 1°g(3)] s+ 10})
10 n>m my
<Ef (lw(e)l{ ™Y 4 4] /oo exp [— mzl;g(s)] ds + 10})
10 0
m~y(61)
< EE <|w(0)|{£T“1 + 10}) :

Here the third inequality follows from Lemma 2.1. Since v(6;) is bounded on the
compact support of ¢, the right side is bounded by CE¢|w(6)|, for some constant
C, which is finite by assumption. O

2.3. Stein’s identity. Let 3 denote the collection of measurable functions
h:R? — R of f polynomial growth; let 30, = {h € 3:|h(2)|/(1 + |21 + |22P) <
1,Vz € R?},H, = {h:h/c € H,, for some ¢ > 0}. Thus K = U, oH,. Let ||z be
the Euchdean norm of a vector z. If |h(z)| < c¢(1 + ||z||?) for some 0 < ¢ < oo,
then h € H,. Let ®; and & denote one- and two-dimensional standard normal
distributions, respectively. Let ¢; and ¢ be the corresponding densities and let

#h= [ h@o@ds, = | her s dzs,
R? oo
Vi(z) = (Vi(z), Vi(z))
[Bie0] ™ [ (@) Bk} oy

T

[p1(e2)] " / {h(z1,y2) — B4z} da(y2) dy

For example, if A(z) = 21,25 or 27 +22,V"(z) (1,0),(0,1) or z, respectively. Note
that V{', as a function on R?2, is a constant in its last variable. The transformation
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from & to V* is a linear operator from J{, into , x H, and satisfies

oV = / 2h(z)d(dz) and BV oVh)
]R2

1/ (4-1 0
2 /RZ ( 22129 25— 1>h(z)<1>(dz)_

Here and in the following, V o V is the composition of V with itself.

(11)

LEMMA 2.4. Given any nonnegative integer p, there is a constant C,, so that
for any h € 3,

IVE@)|| < Cp (1 +[21P +[22fP)  Vz € RZ

PRroOOF. The assertion for p = 0 is proved by Stein (1986). The proof for
p > lissimilar. O

STEIN’S IDENTITY. Let I' be a finite signed measure of the form dI" = fd®,
where f is in integrable function with respect to ® on R? and is absolutely con-
tinuous on every compact subset of R2. Denote Th = Jge hdT', when h € H and
the integral exists, and define Vf = (f10(2),f01(2)), where

j+k
fir(2) = —r. éef(Z).
If for any nonnegative integer p,
(12) /Rz (l21/P + |22/7) [[10(2)| + |f10(2)]] @(dz) < oo,

then
Th—T1-0h= / VAV 8dz)  VheX,.
R2

PrOOF. For any h € J(,, Lemma 2.4 implies that V! € ¥, and (j21)° +
l22|P)[|f10(z)| + |f10(2)|] is integrable with respect to ® from (12). The rest of
the proof follows from integration by parts and is similar to Stein (1986) or
Woodroofe (1992). O '

~ 3. Asymptotic expansions.

3.1. Basic consequences. Let =g denote the class of all absolutely continu-
ous densities with compact support, and let AC be the class of all absolutely
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continuous functions on ©. For a > 1, define two subclasses of 5, by

(13) 5;*:{5@5 {‘ﬁm ‘501‘} oo}

and
(14) =5= {§€ E1: &10,801 € AC, ]Eg{‘&ol %‘a+|%‘a} < oo},

where £ ,(0) = 87+%¢(0)/00] 96%. Let £0) = £(6)//=0y, s0 & /E = Eon /€ for
k= 0,1,. Iff € 5, then E§{|€10/§|a + |§01/§| } < 00, and lff € Ey, then
E£{|§2o/§|a +[€11/€|* + |€02/£]°} < 00. For w0 € ©, define

Ki(wa 0) = (Ki 1(“‘” o)aK]iz(wa 0)) = E]:'(ang/aela agJ2/602))

Kg(w 0) = (Ké,u(‘-"’e) K§ 12(“”0))
’ Ké 12w, 6) K§’22(w, 0)

21 0%6J1/96% 0%€J1J5,/86; 86,
E\O%EJ1Jy/00100,  9%Edy/067 )

REMARK 3.1. The value of K on the diagonal may be obtained from 'Hospi-
tal’s rule as
510 1 . GY')
& (66" s[eyen)
1
K¢ ,(0, o1 7 - 26, (02;,2,
£ [Gy(65)] 3[G5(62))
K o0~ L Eo Gy SR Gp
2,112 £ Gl ¢ [G’l']2 12[GY13 4[G’1’]2’
n 1 &y 2Gy
£ GIG7 ~ ¢ 3(qyiaye) "
&01 G/// G/// GI/I
3 3{[G"]3G”}1/ = * SIGIGRITE
f2 1 &n 2Gy" 5IGY1? T 3GY

£ — >z —~ 501 —
K2, 22(0’ 0) - g G” g [G//]z + 3[G”]3 4[G"]2.

K{ (6,0 =

K§’ 15(6,0) =

Recalling (7), the posterior distribution of Z, given X,,...,X,, say Iy, is of
the form dU, = f,d®, where f,(z) = cnﬁ(B)J(Gn,G)lsn(z) z € R?, for some
0<c, =cp(Xy,...,X,) < oco.
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LEMMA 3.1. Assume that A,B;, occurs. If ¢ € 2%, a > 1, then f;, is absolutely
continuous with

1 ~

(15) Vi (z) = ﬁfn(z)Kﬁ(e,,, 0), zeR?

and if £ € S, o > 1, then f, is twice continuously differentiable for which
1 ~

(16) Vfu(@) = ~f(2)K;@,,0),  zeR’.

ProOF. This follows from the assumptions immediately. O

LEMMA 3.2. If¢ € B¢, a > 1, then |[KS ||*+|K: ,|* € We;ifE € Eg, a > 1,
then K5 11|% + |K§ 15]® + K5 55|% € We.

Proor. This follows from the compactness of the support of £ and the
smoothness of G; and G;. O

THEOREM 3.1. If ¢ € ES for some a > 1, there is an m > 2 such that, for all
heXH,

1 a T
17 B {h(Z,)} = Oh + ﬁ]Eﬁ{Kﬁ(en, 0)[V*(Z,)] }

a.s. (P) on A,B, for all n > m. If ¢ € EY for some o > 1, there isan m > 2
such that

1 -~ T
ES{h(Z,)} = ®h + —\/—7_;(<I>V")IE§,{K§(0n, 0)}
1 JrelRé@ h
(18) += tr{]En{K2(0n, 0)[V o V4(Z,)] }}

forall h € K, a.s. (P*) on A, B, forall n > m.

Proor. If¢ € 2, then |Kf *+ |Kf 4|* € W* from Lemma 3.2. Let m > 2
satisfy (10). If n > m and A, B,, occurs, then for all 0 < p < oo,

Ja /R (P + zaP) )-a%fn(z) 8(d2) = B { (1Zol? +1Z5al?) |KS 18,00},

which is finite w.p.1 by Hélder’s inequality. It is also finite w.p.1 if (8/0z1)
f(2z) is replaced by (8/8z2)f,,(z). Then (17) follows from the Stein identity and
Lemma 3.1. The proof of (18) is similar. O
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3.2. Second-order expansions. In order to obtain a second-order expansion
as a sequence of stopping times goes to co, we need the following lemma.

LEMMA 3.3. Assume that ¢ € Ef*l, 1 <p < co. Then

{ess sup vn|E§ [h(Z,)] — ®h|14,5, }
he,

n>m

and

{ ess sup|E§ [h(Z,)]|14,8, }
he,

n>m

are both uniformly integrable.
PrOOF. See the Appendix.

For the following, {t,: a > 1} is an increasing family of stopping times with
respect to the o-field generated by {Xj,...,X,}. For clarity, we will let ¢ = ¢,.

THEOREM 3.2. Assume that £ € Ef +1 for some p > 1. If the stopping time
t satisfies

(19) ]PG{AtBt} =1 Va Z 1, 0 e @,

(20) a/t — p%(0) in Pt-probability as a — oo,

and

21 lim a9P¢{t <na} =0 for somen >0, q¢ > 1/2.

Then
lim Ef {ess sup ﬁ(]Ef [A(Z)] — @R — 2L ovhEs (@K (O, e)]f> } =0.
@— he 3, va

PRrOOF. Note that E¢|h(Z,)]P < oo for any h € H, and @ > 1 by Lemma 3.3.
Let R, (¢, h) denote the quantity within the absolute value. Then

]E‘5{1{t<,,a}esssulea(§,h)l} —0 asa— o0
- ke .

by Holder’s inequality, Lemma 2.2 and assumptions (19)—(21). For the integral
over {t > na}, we may write

3
ess sup|Rq (&, h)|1 <>» R,
sssu IR, 11¢t > na} Z_} J



INTEGRABLE EXPANSIONS 1819

where
Ry, = esssup E§ | (K 1, 0) — Ef [K$(0, 00] [VHZD] " |Lies vy /v
Ry,q = esssup ]Ef‘IEf [K$(0, 0)]ES [VAZ) — ®V*]" |15 nay /+/T
and
R = e sup| oVVES [V o) [KE0,0) [11 /.

It follows from Hoélder’s inequality and Lemma 2.4 that E¢(Ry,) — 0. Itis
clear that Ry , — 0, w.p.1. By Lemma 3.3 and Hélder’s inequality, R o, @ >
1, is uniformly integrable. Therefore, E¢(Ry,,) — 0. From (20) and (21), we

have |\/a/t — p(@)|1gs ey < |v/a/t — p(@)] — 0in probability and |\/a/t —
p(O)| 1> nay < 1/4/7+ p(6), which is essentially bounded. Therefore,

2
ES(R3 o) < C(p)ZEEOKLj(O, 0)[vVa/t — p(0)]|1{t>na}) -0

Jj=1
by the dominated convergence theorem. O

COROLLARY 3.1. Assume that § € E(’)”l for some p > 1, (19) and (20) hold
and for every compact © C ©, there is an 1 = n(6y) for which

(22) lim of /@ Py(to < 1)d@ =0 for someq > 1/2.
0

a — o0

Assume further that p is absolutely continuous on all compact subsets of ©
and define

GY(6,) 2 [p(0)v=01 ]
K’l, 1(0) = 3/2 - 1/2 )
6[GY(61)] [GY(61)] " p(8)v/ =01
" 2 0
K1,2(0) = — Gy (@) 20,7%)

6[Gy@))* (G

p(0)
and Eij = E¢[p(8)k1, ()], j = 1,2. Then we have
(a) |

lim E¢ {ess supva

a—=0 he3H,

< (b)

bo

B [1(20) - 0~ —=@VA(E 1,7 )"

lim sup va =0,

G Ope,

E¢ [h(Z,)] — ®h — —\%@V")(Ri )"
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()
lim sup |E‘Va[F, gh — <I>(1)oh]| =

G2 OheH,
where F, ¢(z) = Pg(Z; < z) and gk = Ok + (p(6)/v/a)(k1,1(6), k1, 2(O))@VP)".

ProoOF. Note that condition (22) implies (21) for every ¢ with compact sup-
port. Assertion (c) is just a restatement of (b). For assertions (a) and (b), in view
of Theorem 3.2, it is enough to prove that E¢ [p(O)Kf’ j(e, 9)] = Ki j»J=1,2.The
technique, based on integration by parts, is due to Stein (1985) and has been
used by Woodroofe (1992) and Ghosh and Mukerjee (1992). O

3.3. Higher-order expansions.
THEOREM 3.3. Assume that ¢ € B2, p > 2, and (19), (20) and (22) hold
for some q > 1. Then

Eg{ess sup|Sa(§,h)|} —0 asa— oo,
he X,

where

Su(&,h) =a (Ef [A(Z)] — ®h — %(cpvh)mf [K$6,0)]"

—% tr{ BV o VVIEf [0*(0)K(0, 0)] }) :

PROOF. A proof similar to that of Theorem 3.2 shows
E¢ { 1t < na} €sssup|Sa (€, h)|} — 0.
ke,

To estimate the integral over {¢ > na}, we need the decomposition S,(¢,h) = R+
Rx*, where R}, = (a/t) tr E{ {K5(8;, 0)V o VA(Z,)} — \/a/t tr B(V o VA)ES [0(0)KS(8,
0)] and R:* = (a/DES [KS(8;, 0) — KS(8, 0)I(2V*)". The analysis of R? over {¢ >
na} is similar to R, in Theorem 3.2. For R}*, we use the facts that Kf 1(w,0)
does not depend on w; and that £ has a compact support. O

COROLLARY 3.2. Assume that the condztzons of Theorem 3.3. hold and that
~ p() is twice absolutely continuous with

]E3<\/§) - p(O)} de =0

lim va

a— oo

0



INTEGRABLE EXPANSIONS 1821

for every compact set ©g in ©. Define

2
@ V=0 qr B[PV=0]  5G;? GV

0 — + —
2, 1(0) = QU= G2 /=6 12G]3  4Gy¥

30, aez[ vV Glz" 56, [/’ vV I

Ko 12(0) =
2,12 G//G//pz /_0 6 /G,/G,,3 9 —5;
. G PV=0]  196rGy
6,/G3Gypy—a;  SOIGIGEI™
32 2 " .
G 2 le
0 2 2
Ko, 22(0) = G'z'p " 367 + e
and
Rs,ij = B¢ [0 (O)na, ()]
Then
(a)
lim sup a|E¢[A(Z,)] — ®h — —1—<I>Vh %il
@ =00 p e, Va Ei 9
1 7., R’
— 2 tr{ &(VoVA) g,u 212 -0,
a K3 12 K3, 22
(b)

13 _ 5@ -
alimmhsellggp |Efa[F,, oh <I>a’9h]| =0

where F, ¢(z) = Pg(Z; < z) and

p(@)
Ta

. p(0)? tr{ (fﬁz, 11(0) ke, 12(9))‘1)(‘, th)}.

a Kg,12(0) K2, 22(0)

®Dgh = Bh + == (1,1(6), £1,2(0)) (BV*)

Proor. For part (a), it is enough to show

sup |Va{Ee/aftEf [K{6,0)] - 9V* (R 1,7 ) )} o,

hEH,

which follows from the additional assumption. Part (b) is a restatement of
part (a). O
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3.4. Asymptotic expansions by rescaling. One of the significant features of
transformation (6) is that the correction terms in the asymptotic expression
may be described by rescaling.

THEOREM 3.4. Assume that the conditions of Corollary 3.1 hold. For z €
R2, 8 € ® and a > 1, define

‘I)fz:f)e(z) = fb( fi(/g_) [K,l 100), k1 2(0)])

Then
lim sup Va|E*[F, gh — <I>(3) k]| =
G2 OpeH,

ProOOF. The proofis similar to the proof of the next theorem. O

As mentioned in the Introduction, the symmetric functions of Z; play an
important role in many cases. For example, the log-likelihood ratio test statistic,
A(O) = lt(Ot) 1:(0) = t1i (Ot, 0)=1 3(Z4 2 +Z; 2 %), can be used to test the null hypothesis
Hy: 6 = 6. In general, a subset of symmetnc functions in ¥, is defined by

= {h € Hp: h(z1,29) = h(—21,22)
= h(zla —22) = h(—ZI, —22) v (21»22) € Rz}

Note that for any h € 3(;, ®V" = 0, ®h is the approximation for both IE§ [h(Zt)]

and E¢[h(Z;)] of the second-order accuracy for any ¢ € 2!, h e 3. Further-
more, it is also possible to have a high-order rescaled expansmn

THEOREM 3.5. Assume that the conditions of Corollary 3.2 hold. In addition,
suppose kg 11(0) > 0, j = 1,2. Define

osg-o{e- 2 )

forz € R%,0 € © and a > 1. Then lim, _, o SUp;, . g¢* |aE¢[F, gh — <I>fz4)0h]| =0.
p b

ProoF. First, the absolute value is no more than S; + Sy, where

81 = a | ES[h(Z))] — @h - —Z » / 2 - 1)h(2)8(d2)

and

S2=a

2
ES®0h — ©h — é% > *(0)ks,(6) / ] (2% - 1)h(2)(d2) |.
j=1 ®
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Here we use the facts that [, zh(z)®(dz) = (0,0) and [, z122h(2)®(dz) = 0 for
any h € f}{;. It follows from (11) and the argument of Corollary 3.2 that S; — 0
as @ — oo uniformly for 2 € 3(;. By a simple calculation, the integrand in S is
bounded by

- = Z() 3(0) (9, 1100)]** [, 52(0)] ©
R2

X | ——a—p(z")
82’{ Bzg k

(23)

(1 +[z1]? + |22l )d=

where

|lz* —z|| < %\/@, 11(0) + kg, 22(6).

But (23) is independent of & € ﬂ{;, approaches 0 as a — oo, for each 6, and
is bounded by a constant multiple of 1 + Q(8). Here Q(6) depends only on 1 +
IV o(8)|| + || V2p(8)||, which is bounded on the compact support of ¢£. So Sy — 0
uniformly in k € 3(; by the dominated convergence theorem. O

4. Applications.

4.1. Matching posterior and frequentist expansions. It would be desirable
to choose a prior ¢ such that the frequentist expansion Eg[h(Z;)] = ®oh +
O(a~1),Vh € H,, holds uniformly on compact sets of 6. In general, no such
a prior is available. [See Ghosh and Mukerjee (1992).] However, we are able

to find a prior so that the posterior and frequentist expansions for any h € H
match up to the second order, that is,

(24) Va{E[(Z)] - Ep[h(Z)] } » 0 asa - oo,
in Pg-probability. In fact, it follows from Theorem 3.2 that
1 T ].
ES [R(Zy)] = ®h + W%Vth [(@)KE(0)]" + 0(5)

for any h € H. Furthermore, if the frequentist expectation of h(Z;) (Eg[h(Z;)])
can be uniformly expressed up to the second order O(a~!), then

1 T 1
]Eg [h(Zt)] = oh + ﬁ%vhp(())(m, 1(0), K1, 2(0)) +0 (E) .

This leads to the following two partial differential equations for &:

(25) K (0)— k1, (0=0, j=1,2.
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THEOREM 4.1. The optimal noninformative prior of @ matching the posterior
and frequentist expansions of h(Z)Y h € H has the form

1
£(8) oL | G{(61)G5(62).

ProoOF. Note that (25) is equivalent to

o Gy oo [POWV=O1]

¢ 2G{6)  p0v—0

Apart from a constant, the solution to the equations is

log(£(8)/+/—61) = 3 1og(G7(61)G5(65)) — log(p(8)+/—61).
This completes the proof of the theorem. O

REMARK 4.1. Consider special stopping times ¢ for which p(@) = constant.
A typical example is a fixed sample size problem. Theorem 4.1 implies that the
priors matching posterior and frequentist expansions of ~#(Z,) are proportional
to \/G7(61)G4(62). In a forthcoming work, we will show that this prior agrees
with Tibshirani’s and Berger and Bernardo’s reference priors for 6; in the pres-
ence of nuisance parameter 6y, or 8, in the presence of nuisance parameter 6;.
One can show that the Jeffreys prior for the case is 1/—6,G7(61)G (8,), different
from the optimal noninformative prior.

4.2. A generalized sequential test. One application of Theorem 3.5 is to ap-
proximate the sampling distribution of the log-likelihood ratio test statistic. For
example, let Xy, X,, ... beiid. N(i, 02), where both —co < y < coand 0 < 02 < oo
are unknown, and define

n
t =t, = min <b2a,inf{n > bia: X:X,2 -n - nlog(&‘ﬁ) > 2a}),
i=1

where 0 < b; < by < 0o are two prespecified numbers, 52 = 1/n)er (X -X,)?
and X, = (1/n)x?_, X;. Then

t t
2A; = ||Z)% = ;15 > (X; — p)? +tlog(o?) —t —tlog(57) on Y (X;—X)* > 0.
i=1 Jj=1

From Table 1, 8 = (—1/202, u). Theorem 8.3 of Woodroofe (1982) implies that
bs, if p?(6) < 1/bg,
ti =4 p20), if1/by < p%(8) < 1/by,
¢ by,  if p2(0) > 1/by,
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in Py-probability, as @ — oo, where p%(0) = I(8,(—0.5,0)) = {(u? + 1)/o2 + log(c?)
—1}/2. Let hy(2) = I,z < 24 for z € R%. Then Theorem 3.5 suggested the ap-

proximation Py(A; < u) ~ @;‘f)ehu ~ 6(u;a, ), where
12
6(u;a,0)=®h, + -ézj:zlpz(O)Kz,jj(e) /]Rz (2—'3 - 1)hu(z)@(dz)-

It is easy to verify that

p2+1 11

p2(0)n2y 11(0) = P + -é—pz(o), p2(9)f€2,22(0) = _01 = 1

202"

Also, ®h,, = P(x3 < 2u) = 1 —e ™ and [p,(2% — Dh,(2)®(d2z) = —ue™ forj =
1,2 and u > 0, where x2 is a chi-square random variable with 2 degrees of
freedom. Therefore,

(26) Su;a,0)=1—e"%—

ue ™ (u2+1.5
2a a2

Figure 1 shows Monte Carlo estimates of Pg(A; < u) fora = 8,b; = 0.5, bg =
50, against z in [0, 10] for various combinations (1, 02) = (0.5, 1.25), (0.5, 0.8), (1,
1.25) and (1, 0.8), together with directed x2 approximation ®h, =1—-e~%,u > 0,
and the corrected approximation 6(u;a, 6) given by (26). The x2-approximation
seriously overestimates the probabilities. The corrected term in (26) is always
negative and the corrected approximations are closer to Monte Carlo estimates
in all cases as shown in Figure 1.

+ lﬁlp?(e)}, u>0.

4.3. Inferences about 6,. In this section, we will apply Theorem 3.5 to the
problem of sequential tests and confidence intervals for §; in the presence of
the nuisance parameter ;. Suppose that we want to test Hy: 6; = 659 under
a stopping rule ¢. The log-likelihood test statistic after obtaining the first ¢
observations is then A; = I(6;,6;2) — U(61, 6). It turns out that 2A, = Z2. Let
hy(z) = I(Zfl < 2u)- If the stopping time ¢ = #,, a > 0, satisfies the conditions of
Theorem 3.5, the following approximation can be used:

ue ¥
a
Here we use the facts that [, — Dh,(2)®(dz) = —2\/u/me™* and [p,(z3 —1)

xh,(z)®(dz) = 0.
Bose and Boukai (1993) considered the stopping time

]Pg(At <u)=®h, — p2(0)n2y 11(0) + o(a‘ 1).

t, =inf{n > 2: |B,1] > a®/n?} = inf{n >2:Y,< nG’l(—az/nz)}
for @ > 0 and proved that

lim % = p%(0) = /—0;, a.s.in Py-probability.
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u=0.5 02 =1.25 p%6)=0.1116 p=0.5, o2 =0.80, p*(8) = 0.1697
1.0 1.0
0.8 0.8 -
0.6 - 0.6 -
04 04 -
0.2 1 0.2 -
o0 {/ 0000 o0 {0
0 2 4 6 8 10 0 2 4 6 8 10
u u
p=1.0, 0% =1.25, p*(0) = 0.4116 p=1.0, 02 = 0.80, p*(0) = 0.6384
1.0 - 1.0 -
0.8 - 0.8 -
06 0.6 -
0.4 - 0.4 -
0.2 1 0.2 -
o0 {' - 0o {/ .
0 2 4 6 8 10 0 2 4 6 8 10
u u

Simulations of IPg(A; < u) based on 40,000 replications
e Bhy=1-e ‘
5 o) = —u_wemt 2415 L 11 209
- 6(u,a,0)=1-c¢e % {—7—-+6p()

o

Fic. 1. Simulations of Pg(A+ < u) and approximations for a = 8.
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After observing (X3, ..., X;), we may use the following confidence interval for 0y:
{01: 1811, 82) — 61, Bio) <} = {B1: t11(Brn, 60 < w} = {61 Z2 < 2u},

where I;(-, ) is given by (4). The confidence coefficient for this interval is then

9 ue ™" Gy  5G{? GV -
< — — - .
POa<u) = S5v 01{91(;'1'2 T 1267 T 4G +o(a™)

Here X3 is a x? random variable with 1 degree of freedom. In particular, for the
normal distribution N(u, 02), it can be shown that
Gy  5G;% GV 11

5 T g g T T T ¢
0GP 1267 1G22 3

APPENDIX

In order to prove Lemma 2.1, we need the following lemma.

LEMMA A.l. Forall € ® and m =2,3,...,
Po(An and 8,1 > w1, 3n > m) < exp{-ml(wy,6;)} ifwy > 61,
Po(An and fp1 < w1,3n > m) < exp{—ml1(wy,61)
+G1(mby) — Gi(mwy)}  if wy < 6y,
Po(By and Bpp > wy,3n > m) < exp{mbil5(ws,05)} if wy > b,

Po(B, and 5n2 <wy,In>m) < exp{m@llz(w2, 02)} if wg < By

PROOF. First, Pg(A, and fp1 > wy,3 n > m) = Po(sup, s, ¥ > Gi(wy)),
whereY, = (1/n)3F. \Vi—&, =V, —¢&,, Vi = U1(X3) - Go(u)Ua (X)) + (G (g )ug —
Go(uo)l and &, = (Tyo/n — pg)?GY(1,)/2. The first assertion follows from the facts
that Eg exp(sV1) = exp{G1(s +61) — G1(61)} and that exp{m(w; — 6,)V,.}, n > m,
is a reverse submartingale. From Bar-Lev and Reiser (1982),

Eg exp(sY,) = exp{n [G1s +62) = G1(80)] — (G (nls +60) — G1(nty)| }

The second assertion follows from the fact that exp{m(w; — 61)V,}, n > m,
is a reverse submartingale. The third assertion follows from the facts that
{exp(—m0;[Gf(ws) — G4(02)1Ty2/n), n > m} is a reverse submartingale and
that Eg{exp[sUa(X1)]} = exp{61[G2(02) — Ga(62) +02G5(62) — 02G5(82)]}, where 6;
is the unique solution of the equation G}(6;) = G4(62) — s/61. The last assertion
follows similarly. O
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PROOF OF LEMMA 2.1. For any fixed 6 = (6;,6,) € ©,

ﬂ”o( sup 1(3,, 01,5, > x) < Po( sup I By, 01)1s, > f)
n>m n>m 2

27

+]P’0( sup Ip(6,z,02)1p, > ud )
n>m _201

If G, is bounded, the assertion holds. Otherwise,

28) —11(w1,01) + G1(mby) — Gi(mw) = (m — D[61G}(6}) — w1 G} (w}))]
+ 91G/1((U1) - lel (wl)

for some 67 € [m6,6] and w; € [mwy,w;]. Since G is positive and strictly in-
creasing, (28) is no larger than —mw; G/ (w;) < m7(01) for allwy < 6; by Assump-
tion C. Therefore, (27) is bounded by e”’“’(el) exp{—(m — 1)x/2} + 3 exp{—mx/2}.

The proof follows from Lemma A.1 and the monotonicity of ;. O

PROOF OF LEMMA 8.3. Let m be in (10) for W = |Kf | P*1 + K] P+ If
h € 3, then for n > m,

2 +1 V(p+D)
VrlES [n(,)] - oh| < 3 {Ef|KS @,,00" "}
Jj=1

p/(p+1)
EE[|VA(@, )|“’“’/”]} :

a.e. on A,B, by Theorem 3.1 and Hélder’s inequality. Let C;(p) denote pos-
itive constants depending only on p. From Lemma 2.4, ]E€[|Vh(Z )|+ D/P] <
Co(PIES[1+|Zn1 P+ 1+]Z,2P *1] ae. on A,B,. Letgp(2) = 1+[21/P. Then VE#*'(z) <
C3(p)gp(z) and Vg"”(z) = 0. Therefore,

N s ) V@D
VIES [gp+1(Z0)] — Bgp .1 < C4(p){1E5 (15 1@n, 00 ] }

p/(p+1)
% {E’EL [Igp+1(zn)|(p+1)/p]} P .

Observe that if 0 < b, ¢ < 00, 1 < p < c0oand 0 < x < b + cx?/P+D then
x < pb +cP*1. This inequality shows that

Eflgp+1(Zn)| < pOgp.1+ (Ca(p)/v/n)" " EE[IKE B, 0P *1).
Similarly, let g,,(z) = 1 + |z5/P. Then
Ef 8y +1(Zn)| < P8y 41+ (Cs(p)/v)" " ES[|KS ;@ F 7).

Now the first assertion follows immediately. The second assertion can be proved
similarly. O
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