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A POISSON APPROXIMATION FOR SEQUENCE COMPARISONS
WITH INSERTIONS AND DELETIONS!

By CLAUDIA NEUHAUSER
University of Southern California

We construct a statistical test for a sequence alignment problem which
enables us to decide whether two given sequences are related. Such a test
can be used in DNA and protein sequence comparisons. It is based on a
comparison of two long sequences of i.i.d. letters taken from a finite alphabet.
The test statistic typically employed is the length of the longest matching
region between the two sequences in which a certain number of insertions
and deletions but no mismatches are allowed. We give a distributional result
which enables one to compute P-values, and hence to decide whether or not
the two sequences are related. Its proof utilizes the Chen—Stein method
for Poisson approximation. The test is based on a greedy algorithm that
searches for the longest matching region. We show that this algorithm finds
the longest matching region with probability approaching 1 as the lengths
of the two sequences go to infinity.

1. Introduction. Sequence comparisons are important in a variety of
fields, such as molecular biology, computer science, code and error control and
in human speech research (see, e.g., [16]). Using the language of molecular bi-
ology, we illustrate the problem we wish to consider. In molecular biology, one
compares DNA, RNA and protein sequences; here we focus our attention on
DNA sequences. Such sequences can be represented as one-dimensional chains
of letters taken from a finite alphabet consisting of the four letters A, C,G and T'.
These letters stand for the four bases adenine, cytosine, guanine and thymine,
also referred to as the standard nucleotides. The nucleotides are linked together
by a sugar—phosphate backbone, forming a one-dimensional chain. Their order
determines the function of the sequence.

DNA sequences change over time. These changes, called mutations, are pri-
marily caused by errors during chromosome replication (i.e., when DNA is
copied). There are three main sources for mutations: substitutions, insertions
and deletions. A substitution in a DNA sequence consists of replacing one nu-
cleotide by another one. An insertion or deletion consists of inserting or deleting
a nucleotide in the sequence; more than one letter can be inserted at a partic-
ular location in the sequence. There are several mechanisms that can cause
these insertions and deletions: unequal crossing over between chromosomes,
replication slipping during DNA replication, and DNA transposition (in which
genetic material moves from one chromosomal location to another). Unequal
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crossing over and replication slipping typically cause only a few nucleotides to
be either inserted or deleted, whereas a transposition can result in thousands
of nucleotides being inserted or deleted at a particular location. (More on this
can be found in, e.g., [12], [ 13] or [ 23].)

Currently, a large effort is under way in molecular biology to sequence DNA
chains, that is, to find the order in which the letters are arranged. Once a
sequence is known, one can investigate whether there are functional or evolu-
tionary relationships with already known sequences. Closely related sequences
typically show highly similar segments (contiguous subsequences) among them,
that is, an alignment of these segments results in a high number of matching
pairs. Such an alignment will typically also contain mismatches, insertions and
deletions (insertions and deletions will be defined precisely later on). On the
other hand, if two sequences possess unusually long highly similar segments
compared to what one expects from completely unrelated sequences, then this
might indicate a close relationship between the compared sequences. (Of course,
the final decision on whether or not DNA sequences are related has to be made
by a biologist since, due to chance, even completely unrelated sequences might
once in a while give alignments of unusually long highly similar segments.)
The decision on whether or not two sequences are similar can be formulated
as a statistical test. In order to obtain P-values, one computes tail probabilities
for the length of an alignment between two segments, one segment from each
sequence. The null hypothesis will be that both sequences are unrelated, that
is, independent.

Several aspects of this general problem have already been addressed (see,
e.g., [3], [7], [8], [10] and [11]), with the most recent results appearing in [4].
(Reference [4] also includes a brief history on sequence comparison with refer-
ences to earlier work.) The main result in [4] is a distributional Erdés—Rényi
law for computing tail probabilities for the length of a matching region between
two segments with a certain proportion of mismatches but no insertions and
deletions. They posed the problem of finding a distributional result for seg-
ment comparisons when insertions and deletions are allowed. We address this
problem in this article.

We study alignments between twoi.i.d. sequences where insertions and dele-
tions, but no mismatches, are allowed to occur. The main goal is to prove a
distributional result that will allow us to compute tail probabilities for the
length of such alignments. (We ultimately hope to prove a distributional result
for an alignment between two sequences with mismatches and insertions and
deletions.) We make the simplifying assumption that both sequences consist of
independent letters. This is not true for DNA sequences; they can be described
better by second-order Markov chains [20]. However, some justification for us-
ing ii.d. sequences as an approximation when studying long matching regions
can be found in [17]. In that paper, Monte Carlo simulations show that when
comparing biological data and independent sequences with the same nucleotide
frequencies, the distributions of the lengths of alignments are similar in both
cases (see also [9]).

We consider the following model. Let  and v be distributions on a finite set E.
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Consider the case where A = (A1, Ay, ...,A,), A; € E,and B = (By, B, ..., B,),
B; € E, arei.i.d. sequences which are independent of one another. The A;’s are
distributed according to u, thatis, P(4; = I) = y; for ! € E;the B;’s are distributed
according to v with P(B; =) = v, for [ € E. The probability of a match between
a letter from A and a letter from B is denoted by p, that is, for all 1 < i < m,
1<j<n,

(1.1) p=PA;=B)=) PA;=B;=D=3 uy.
leE l€E

The last equality follows from the independence of the two sequences. Through-
out the paper, we assume 0 < p < 1. We wish to study local similarities between
A and B, that is, we are interested in finding local alignments between segments
of A and B, one from each sequence, with insertions or deletions (in short, in-
dels) but no mismatches. We will call such local alignments of two sequences
matching regions. A matching region therefore consists of contiguous subre-
gions in which all pairs match and which are linked together by regions where
insertions or deletions of one or more neighboring letters occur. These regions
are called links or indel regions. (Note that links do not contain matching pairs.)
For instance, the alignment

aggttcACTT-- GAATCTTaTaCTT---CCAG

1.
(1.2) agACTTac GAATCTT-T-CTTact CCAG gt

consists of five matching subregions linked together by indels, the first link
consisting of two indels, the next two links of one indel each and the last link of
three indels. The total number of matching pairs is 19. (Letters in the matching
region are capitalized.) We say that a matching region is of type (¢;%,1) if the
total number of matching pairs is ¢, it consists of % indel regions Gi.e., £ + 1
matching subregions), and each link has at most / indels. Example (1.2) is
therefore of type (19; 4, ) for any / > 3. (When computing P-values, one chooses
the smallest possible value for [.)

To visualize matching regions, one can represent matching pairs in a dot
matrix. This is an m x n matrix where the entry ¢;; = 1 if A; = B; and equals
0 otherwise. (The 1’s are the “dots” in the matrix.) A contiguous subregion in
which all pairs match corresponds to a run of 1’s along one of the diagonal lines
Hy = {c;j;j—i=d} forsomed € {-m+1,-m+2,...,n — 1}. Insertions or
deletions of letters correspond to switching diagonal lines. Matching regions
are then obtained by piecing together contiguous subregions.

In Section 4 we will give a detailed description of an algorithm that will
search for matching regions; our results are based on this algorithm. An im-
portant feature of this algorithm is that it will only search for a particular type
of matching region: since a matching region consists of contiguous subregions
which are pieced together, there may be more than one way of piecing together
two such subregions at a particular indel region. The algorithm will only search
for those for which each of the subregions (except for the last one) is maximal
in the sense that if (7, j) is the last site of a subregion (when represented in a
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dot matrix), then (i + 1,7 + 1) is a mismatch, that is, the algorithm switches
diagonal lines only when it cannot continue along the same diagonal line. (A
biological justification of this algorithm can be found at the end of Section 4.) In
the following, we will restrict our attention to those matching regions that are
found by the algorithm. We will see in Section 4 that, for m and n both large,
most of the possible alignments the algorithm misses are not important, that is,
the algorithm will find the longest alignment(s) with probability approaching
1 asm,n — oo. (For m and n both large, most of the missing alignments can
be obtained by rearranging insertions and deletions in the indel regions. These
missing alignments therefore do not provide us with really new alignments.)
We wish to mention that in [15] an algorithm is described that searches for the
longest common subsequence under the constraint that the number of inser-
tions and deletions in an indel region is bounded by some fixed number. That
algorithm is based on the Needleman and Wunsch algorithm and is different
from our algorithm.

To state our results, we need a few definitions. Set J = {1,...,m} x {1,...,n}.
For a € J, let {ﬁ‘l", 175", UI‘}(a 1, U > C J, be the set of all poss1ble matching
regions of type (¢;k,1) startmg at a We wish to point out that we are only
counting a subset of the matching regions, namely, those that can be found by
our algorithm. Therefore, a’;" is a matching region found by the algorithm if

cg=1forall g e I’]j"‘ (i.e., |I’J\'J9‘| = ¢t), the first k& subregions are maximal in the

sense described in the previous paragraph, and each indel region has at most [
indels. Denote the event that U} is a matching region found by the algorithm by
Up. (We suppress the dependence on ¢, k and [.) Note that if a = (i, /) is in the
znterwr of J, thatis, ifi <m — (¢+kl) and j < n — (¢t +kl), then K(c), the number
of possible matchmg regions of type (¢; &, 1), does not depend on «. In this case
we denote K(a) simply by K. If « is not in the interior of J, then K(«) might
be smaller than K since it might not be possible to realize all candidates for
matching regions. (We might simply run out of sites in J before having obtained
¢t matchings.) If for two matching regions U and Ujﬂ , Ugn Uf # @, then the
two matching regions are said to share matching pairs. We will now define an
equivalence relation which partitions the set of matching regions found by the
algorithm into equivalence classes: U and Ujﬂ belong to the same cluster if we

can find a sequence ﬁ;“’ = ff;", ﬁi"l‘l, e, 17::‘ = ﬁf of matching regions of type
(t; k,1) found by the algorithm which satisfies ﬁ';m n 17::‘ £@,..., U 'n U i

ls 1

# @. (The definition of “cluster” used here is the same as the one used in [22] )

We now define the starting point of such a cluster. Let I denote the indicator
function of the set Aand Y, =1 (UguUg UL UZ ) that is, Y, = 1 if there is at
least one matching region of type (¢; k,[) starting at « that can be found by the
algorithm. (Unless we say otherwise, from now on we simply say “matching
region when we really mean “matching region found by the algorithm.”) For
1<i<m1<j<nletZ;= I{A =B;} and VU = I{Y,,_landz, 1,j—1=0} Let
A={aed:V,=1}(@.e.,thereisa matchmg region starting at « preceded by
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a mismatch). Partition A into disjoint sets .A;, Ag, ... so that «, § € A, for some
k > 1if there is a matching region starting at « and a matching region starting
at 8 which belong to the same cluster. We order the elements in Az, £ > 1,
as follows. Write ||, j)|| = i +Jj, m(@, j) = i and 7m3(, j) =j. We say o < g if ||«]|
< ||1B]| or if ||| = ||B]| and ma(e) < wa(B). The smallest index in A according to
the ordering “<” is designated as the starting point of the corresponding cluster.
Also, let X, be the indicator function of the event that « is the starting point of
a cluster and let W = 3, ¢ 1X,, denote the number of clusters in J.

The following heuristics will describe the behavior we can expect in most sit-
uations that occur in practice. If ¢, the number of matching pairs in a matching
region of type (¢; k, 1) for fixed k and [, is sufficiently large (compared to m and n,
the lengths of the two sequences), then there will be very few clusters in the dot
matrix consisting of matching regions of that type. The clusters are of course
not independent, but under the additional assumption (1.3) (see below) on the
distributions x and v, we will be able to show that the dependency structure of
the clusters is weak enough so that the total number of these sparse clusters
will be approximately distributed according to a Poisson law. In this paper, a
family of random variables W(.), « € I (I some index set), will be called approx-
imately Poisson distributed with parameter \(.) if for Z(1) a Poisson random
variable with mean A(:), W(t) — Z(:) — 0 in the variation norm as ¢« — oco. (For
many more examples using Poisson approximation based on these heuristics,
see [1].)

In order to formulate our results, we need the distributions p and v to satisfy
the condition
(1.3) logcy, + loge,
logp ~ logp

where ¢, = P(By = A1 |A; = By) and ¢, = P(A2 = B;|A; = By). Note that (1.3)
automatically holds when x = v: in this case, ¢, = ¢, = (1/p)Zicgpd and (1.3)
reduces to

3/2
(1.4) > oud< <Z u?) :

i€E i€cE

> 1,

(This follows from the simple algebraic fact that, for a;,ag,...,a, >0, ¢ > 1,
then (a; +ag + -+ +a,)? > al +al +--- +al.) Before we formulate the first
theorem, we wish to explain (1.3). Given a matching pair at a = (i, j), the ratio
logcy,/ logp (respectively, log ¢, /log p) is a measure on how difficult it is to obtain
a second matching by choosing a fresh letter for only By (respectively, Aj). This
second matching pair will then be on a horizontal (respectively, vertical) line
through « in the dot matrix. The effect of condition (1.3) is to prevent the
second moment of W from blowing up. As we will see in the next section, this is
a crucial ingredient in the proof of the first theorem. We do not believe that (1.3)
is necessary. (A reason for our belief is that the same condition is used when
utilizing the Chen—Stein method to establish Poisson approximation for the
case of matching two sequences without allowing mismatches or insertions and
deletions. The author has shown in [14] for that case that Poisson approximation
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can be done outside of the regime in (1.3). This of course requires different
techniques.)

The first theorem establishes the Poisson approximation for W. To do this,
we have to scale m, n and ¢ appropriately. We will be more specific on how to
choose relative growth rates for m, n and ¢ at the end of Section 3. Here, we
only wish to mention that (1.3) allows us to choose relative growth rates for m
and n so that (logn)/(lognm) — p as m,n — oo for some

loge, logcn
pe (1_ logp’ logp )

Then ¢ can be scaled appropriately with m, n so that X stays bounded away from
0 and oo [¢ is of order log(mn)] and so that W is Poisson distributed in the limit
as m,n,t — oo. (The rate of convergence of W in the total variation norm is
faster than some negative power of mn.)

THEOREM 1. Let A and B be two i.i.d. sequences, independent of each other,
with distributions pu and v, respectively. Let W denote the number of clusters
of matching regions of type (t;k,l) found by the algorithm and let \(m,n;t)
=EW. Set

G(m,n;t) =mn(l —p)(t; l)lkpt”k

k
Z pivi(2 — pi — Vi)] .

i€E

If (1.3) holds, then, for fixed k and l, relative growth rates for m,n and t
can be chosen so that W is approximately Poisson distributed with parameter
Mim,n;t), where

A(m,n;t)

G(m,n;t) -1

(1.5)

and \(m,n;t) stays bounded away from 0 and oo as m,n,t — oo. The rate of
convergence in (1.5) is faster than some negative power of t.

The basic method employed in the proof of Theorem 1 is developed in [6]. This
so-called Chen—Stein method enables us to establish the Poisson approximation
in Theorem 1 since the first and second moments of W are well behaved. Bounds
for these moments are somewhat routine and are proved along the lines of the
corresponding proof in [4]. One also needs to estimate the parameter \(m, n;?).
The upper bound for A(m, n;t) follows from a combinatorial argument and the
first Bonferroni inequality. The lower bound for A(m,n;¢) is considerably more
complicated and is obtained by using the second Bonferroni inequality; this
requires a detailed analysis of the geometry of the clusters. [A similar amount
of work would be needed just to show that G (m,n;t) gives the correct order of
magnitude for A(m, n;?).]

Theorem 1 together with estimates stemming from the analysis of the algo-
rithm and an elementary boundary estimate enables us to compute the P-values
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for the length of a local alignment between two sequences. This is the content of
the next theorem. For this, let S = S(m, n; &, ) be the largest number of match-
ing pairs in any matching region with & indel regions and at most / indels per
indel region. We wish to emphasize that for S we consider all matching regions,
not only the ones that can be found by our algorithm, whereas for W we consider
only the ones found by the algorithm.

THEOREM 2. Let A and B be two i.i.d. sequences, independent of each other,
with distributions p and v, respectively. Let S be defined as above, and let A =
A(m, n; t) = EW bedefined as in Theorem 1. If (1.3) holds, then there exist relative
growth rates for m, n and t, and constants C,~ > 0 so that

|P(S <t)— e_’\| < C(log(mn)) -7,

Of course, the relative growth rates here will be chosen in the same way as
in Theorem 1. The reader will see that the error estimate in Theorem 2 comes
mainly from the error introduced by the algorithm, that is, it is basically the
probability that the algorithm will fail to find the longest matching region. The
proof of Theorem 2 consists of two parts. We will use the observation that if
the length of the longest matching region found by the algorithm with % in-
del regions and at most [/ indels per indel region is less than ¢, then there are
no clusters of matching regions of type (¢;k,0) (i.e., W = 0). This together with
Theorem 1 and a boundary estimate constitutes one half of the proof. The anal-
ysis of the algorithm will provide us with estimates needed for the second half
of the proof. These estimates will take care of the error introduced by compar-
ing the length of the longest matching region found by the algorithm and the
length of the longest matching region when we consider all matching regions.

REMARK. In both theorems we considered matching regions for which &,
the number of indel regions, and [, the maximum number of letters allowed to
be inserted, are fixed. If we are merely interested in showing that W can be
approximated by a Poisson-distributed random variable, then, when [ is fixed
(a biologically reasonable assumption), we can let & = o(¢). However, in this case
our estimates on A(m,n;t) are no longer good enough. If we insist on knowing
the asymptotic behavior of A\(m, n;t), then we can let k grow like log ¢ (for fixed 1)
and (1.5) still holds. We will not show,this last fact since a growth rate of log ¢
is too small to be useful.

The paper is organized as follows. The proofs of Theorems 1 and 2 are based
on the Chen—Stein method, which is reviewed in Section 2(a). To employ this
method, one establishes bounds on the first two moments of W. This is done in
Section 2(b). Section 3 is devoted to the proof of Theorem 1 and to some of the
estimates needed in the proof of Theorem 2. The main work here involves the
study of the geometric structure of the clusters. The algorithm on which our
results are based is described in detail in Section 4. In that section we will also
show that for m and n both large, the algorithm finds the longest alignment(s)
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between sequences with probability close to 1. This allows us to finish the proof
of Theorem 2, which is also done in Section 4.

2. Basic estimates. The proof of Theorem 1 is based on the Chen—Stein
method. This method allows us to establish the Poisson approximation of W if
we can show that the first two moments of W are well behaved. In this section
we will first briefly explain the method, then give bounds on the moments of
W and, finally, show that we can choose relative growth rates for m, n, and ¢ so
that )\ will stay bounded away from zero and infinity.

(a) The Chen—Stein method for Poisson approximation. In this subsection,
we will briefly review the Chen—Stein method for establishing Poisson approx-
imation for dependent events. The method was developed by Chen [6] and is
based on earlier work by Stein [18]. It is reviewed in [19]. It was generalized
to a multivariable context in [2]. We follow [2] and [4] in our presentation of
the setup.

Let J be an arbitrary index set. For a € J, let X, be a random variable
taking values in {0,1} with 0 < P(X, = 1) < 1. (Think of the X,’s as indicator
functions for a certain event.) We wish to establish a Poisson approximation for
the number of times this event occurs. For this, let

(2.1) W=> X, and A=EW,
a€d

where we assume that )\ € (0, o). For each a € J, we choose a neighborhood set
C, such that the Xj’s, 3¢ C,, do not depend too strongly on X,,. The following
three quantities are the key to establishing the Poisson approximation via the
Chen-Stein method:

bi=Y_ > EX,EXj,

a€JdJ BEC,
2.2) bz = Z Z E(XaXﬂ),
: acdatBeC,
by= Y E|E[Xu - EXa|o(Xp: f €T~ Ca)],
a€d

where 0(X3: 8 € J — C,) is the o-algebra generated by the Xj3’s which are
outside of C,. If by, by and b3z are all small, then W will be approximately
Poisson distributed with parameter A\ = EW. The quantity b; measures the
neighborhood size. The influence of X, on the occurrences of the Xpz’s for 5
€ C, is measured by by, and b3 quantifies the dependence between occurrences
outside C, and the event X,,. In many applications (such as ours), C, can be
chosen so that X, is independent of Xz for 3¢ C,, which implies that b3 = 0.
Note that by —b; = EW?2 — X\ — A2 with A = EW. Therefore, in cases where b3 = 0,
checking that the quantities in (2.2) are small is the same as showing that the
first two moments of W are well behaved.
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Let Z be a Poisson random variable with EZ = EW = ). The approximation
is phrased in terms of the total variation distance between the distributions of
W, L(W), and Z, L(Z), which we denote by

(2.3) I&(W) — L(Z)|| =2 sup |[P(W € A) — P(Z € A)),
A€EN,

where Ny = {0, 1,2,...}. The estimates of the Chen—Stein method are contained
in the following lemma, which was presented in [4].

LEMMA 2.4. Let W be the number of occurrences of dependent events, and
let Z be a Poisson random variable with EZ = EW = \. Then

|E(W) — L(2)|| < 2(by + by + b3)
and

IP(W =0)—e | < (LAXT1)(by + b + b3).

Thus, to establish the Poisson approximation, one has to show that the quan-
tities b1, by and b3 are small.

(b) Bounds on by,bs and bz. As explained in the previous subsection, in
order to employ the Chen—Stein method successfully, one has to establish good
bounds on the quantities b, b3 and b3, defined in (2.2). This is the subject of
this subsection.

Using the same notation as in the previous subsection, the index set J =
{1,2,...,m} x {1,2,...,n} and X,, is the indicator function of the event that «
is the starting point of a cluster of matching regions of type (¢; 2,1) as defined
in Section 1. We will next define the neighborhood set C,,. For (Z, j) € J, let

(2.5) Cuj={G,J)ed: li—i| < @E+kD)or |j—j| < E+kD);

that is, C,, consists of a horizontal and a vertical strip, each of width 2(¢ + ki)
— 1. We denote the horizontal strip by C* and the vertical strip by C. Both are
centered at a. Denote the intersection of the two strips by D, that is,

Dy, =C¢ 5NC

(2.6)
={@,j)ed: |i—i| < (t+kl)and |j—j| <@t +EkD}.

Since matching regions of type (¢; k,1) which start outside of C,, will not have
any letters of the sequences A or B in common with a matching region of type
(¢;k,1) starting in «, the choice of C,, implies that X,, will be independent of X,
for 8 ¢ C,, and hence b3 = 0.

We start with estimating b,. Clearly,

EXj < max EX, and |C,| <2(t+FkD(m +n).
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This together with A = ¥, ¢ JEX,, implies

bi=Y Y EX.EXp<(maxEX,)|C.l Y EX,
@.7) a€JpeC. aed aeJ
= 2)(¢ + k) + n)( max EX..).

The final estimate on max,, ¢ s EX,, will have to wait until the end of Section 3.

The following lemma will be used to find an estimate for b3. Recall that
p = P(A, = Bj), Cy = P(A2 = BllAl = Bl), Cp = P(32 = A1|A1 = Bl), and
K = max, ¢ s K(a).

LEMMA 2.8. Let a € J. Then there exist 6, = (loge,)/(logp) > 0, §, =
(logcp)/(logp) > 0 and 6 > 0, such that, for t sufficiently large,

(2.9a) E(X,Xp) < K2pa+6) -8k
forall g € C°, — D, and

(2.9b) E(X,Xj5) < K2p"1+0) -8k
forall € Ct —D,, and

(2.9¢) E(X,X;) < K%p'1+9,
forall 8 € D,,.

Proor. First note that the event {X, = 1; X3 = 1} is contained in the event
{there exists a pair (i, /) such that U n U’ = ¢ and U n U’ occurs}. (If

fff" N lA/'jﬂ # @, then the two matching regions would belong to the same cluster
and therefore X, X3 = 0.) Therefore,

E(X,Xp) = P(X,=1;X5=1)
(2.10) < > PUrnUY).
U nl)f;," =9

To compute P(U N Ujﬂ ), we will treat the two cases where 8 € D, and 3

€ Co — D, separately. Suppose first that § € C, — D,,. (In this case, U N UJ.B =@
holds automatically.) If 8 is in the vertical (respectively, horizontal) strip, we
count the number of pairs of sites in the two matching regions which share
letters from the B (respectively, A) sequence. Since we only need an upper
bound on P(U# N Ujﬂ ), we can exclude the boundary sites of indel regions from
our considerations, that is, we can exclude the first site after the last matching
pair of each matching subregion (on the same diagonal) and the first site of
each matching subregion. (We can include the first site of the first matching
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subregion.) There are 2k such sites. They may or may not share letters with
sites from the other matching region. Hence there are at most 8% sites which
we exclude. Suppose that, among the sites we do not exclude, there are t — s
matching pairs in each matching region which share letters. Then there are a
total of at least 2(s — 4k) matching pairs in both matching regions which do
not share any letters with any other matching pairs. The 2(s — 4k) matching
pairs and the ¢ — s pairs of matching pairs are independent. With ¢, = P(A,
= Bl |A1 = Bl)andch = P(A1 = Bz ‘Al = Bl),ithHOWS thatP(A1 =A2 = Bl) =Cyp
and P(A; = By = By) = ¢;p. Since ﬁf‘ and ﬁjﬁ are two fixed candidates for a

matching, it is easy to evaluate P(U* N Uj[j ): each of the ¢ — s pairs which share
a letter, match with probability c,p (respectively, c;p); each of the remaining
pairs which we did not exclude match with probability p, irrespective of whether
B is in the vertical (respectively, horizontal) strip. Therefore, if 5 € CY, — D,,,

(2.11) P(U#N Ujﬂ) < p2e— 4R, )t >,

(If 3 € C! — D,, replace c, by c,. We will only show the calculation for 8
€ C? — D,.) To estimate (2.11), note that

1 —%lo 1
t gp'

1 8 1 2s 1 s
. i — o 7y > —_— — B
(2.12) . log P(U N U;) > log o * = logp . log op

Note that s/t € [0, 1] and that
1 s 1 1
(2.138) log op + (2 logl—) —log E)

is linear in s /¢, taking the value log(1/c,p) for s = 0 and 21og(1/p) for s = ¢. Since
both values are positive, we can conclude that (2.13) is at least min(log(1/c,p),
21og(1/p)). Therefore, we can find a 6, = ((logc,)/(logp) A 1) > 0, which is
independent of s so that

2.14) PUNUP) < exp{( — #(1+6,) +8k) log (l/p)} _ pl+0) - 8k

Since ¢, > p, it follows that (logc,)/(logp) < 1 and hence 6, = (logc,)/(logp).
Substituting (2.14) back into (2.10) shows that

E(XaXﬁ) < K(a)K(IB)pt(i+0")—8k < K2pt(1+6")_8k,

which is (2.9a) for 3 € C? — D, [(2.9b) follows from the same argument once c,
is replaced by c].

If 3 € D,, we can use an argument which was developed in [5]. The same ar-
gument was also deployed in [4] for the corresponding estimate in their setting.

(The situation here is somewhat more complicated than that in [4].) Let U
and Ujﬁ be the two candidates under consideration. When 3 € D, then the two
matching regions might actually share sites, in which case they are contained
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in the same cluster which implies that X, X3 = 0. We can therefore assume
that U N l/}'jﬂ # @ as we did in (2.10). We will now describe the additional com-
plication which did not arise in [4]: In addition to two matching pairs having
just one letter (either from A or B) in common but otherwise being independent
of the other sites in the two matching regions, there might be a sequence of
sites x1,y1,%2,¥2, ... contained in U U Ujﬂ (going back and forth between the
two matching regions) in which x; and y; share a letter, y; and x, share a let-
ter, x and y, share a letter and so on. We can think of this sequence of sites
as an accordion. (This notation was introduced in [4].) Whenever we refer to
such sites, we will say that these sites are contained in an accordion. Further-
more, we require that accordions are maximal in the sense that an accordion
always contains the maximal possible number of sites. The difference between
our setting and [4] is that in their situation the accordions were independent,
whereas here the accordions may be connected through sites from indel regions.
Therefore, the accordions here are not necessarily independent. A little thought
reveals that the only sites that can connect accordions are the mismatches that
end matching subregions. Since each matching region of type (¢; 2,!) has k indel
regions, there are a total of 2k such sites that can connect accordions. We will
call accordions that are connected in such a way ¢rees. An accordion is said to be
of length r if it consists of r sites (contained in the matching regions) going back
and forth between the two matching regions. (An accordion of length 1 consists
of just one matching pair which—because of our maximality condition—does
not share any letters with any of the other sites contained in the two matching
regions under consideration.) In [4], an energy argument was used to obtain
the estimate. We will first illustrate the argument and show how to modify it
in the following example. (We encourage the reader to draw a picture.) Let

U = {(1,1),2,2),(3,3),(4,5),(5,6),6,7),(7,8),(8,9),(9,10)},
where the mismatch is at (4, 4), and let
fff ={(1,4),(2,5),(3,6),(4,7),(5,8),(9,9),(10,10),(11,11), (12, 12)},

where the mismatch is at (6, 9). Then both matching regions are of type (9; 1,
3). It contains two accordions of length 1 each, one accordion of length 5 and
one tree. To reduce our situation to the one in [4], we use the following trick:
by disregarding the two mismatches in the tree, the tree decomposes into three
(now independent) accordions. Denote by W(a, B) the energy of the two matching
regions, which is defined as
Wa, 8) = (Iay =B1}) + (LA =Bu))

+(I(By =g} + Lias=B5) + I(Bo=45) + 145 =Bs} + I (By=47})

+(Igy=a0) +Iay=B4y) + (B, # a4))

+(I(By=40) + (ay =B} + IiB;=a) + Lia,=By)

+1i8,=4}) + (Lias # Bo))

+ (I{As =By} +I(By-a5) + I{As =By} + I{BIO =A10}) :



SEQUENCE COMPARISONS 1615

Terms enclosed in parentheses are referred to as groups. The first two groups
correspond to the two accordions of length 1, respectively; the third group cor-
responds to the accordion of length 5; the fourth, sixth and eighth groups corre-
spond to the three accordions the tree is made of; the fifth and seventh group are
the two mismatches from the two indel regions. We denote the expression in the
ith group by W; and let H(c, 8) = W(a, 8) — (B, #4,) +1{as #B,})- Then, forn € R,
the partition function (or Laplace transform) of W(«, 8) can be bounded by

E exp[nW(e, B)] < exp(2n)E exp [nH(a, B)]

8
(2.15) <exp@2y) [[ Eexp(Wy).
il

Here we used that after “removing” the two mismatches the remaining accor-
dions are independent. The right-hand side of (2.15) can now be estimated using
Lemma 3 in [4]. Turning back to the general case where each matching region
is of type (¢; k,1) and using the same notation as in the above example,

E exp[nW(e, )] < exp(2nk)E exp[nH(c, §)].
We can now bound P(Ug* N U?), namely (as in [4]),
exp(2¢tn)P (U N Ujﬂ ) < Eexp[nW(e, B)] < exp(2nk)E exp[nH(a, §)].

In Lemma 3 in [4] it was shown that, for some 7, € R, there exists 6, with
26 > log(1/p) so that

exp(—2¢n)E exp [nH(a, B)] < exp(—2t6p).
(Our 6, here is I(1) in [4].) Therefore, there exists a 6 > 0 so that
P(UXN UJB) < exp(—t (260 — 2770k/t]) < pt+o)
for ¢ sufficiently large, from which our claim (2.9c) follows. O

We can now use Lemma 2.8 to estimate by. With K = max,, ¢ s K(),

b2 = Z Z E(XaXﬁ)

(2.16) aeJa#‘BeCa ‘
<20+ kl)szn{mpt(1+9") —8 npt(l“'gh) -8k Lot + kl)pt(1+9)} )
Therefore, combining (2.7) and (2.16), and recalling that b3 = 0,
by + by + b3

2.17) < 2t + kl){szn [mpt(1+0.,)—8k + npt(1+9;,)—8k + 20t + kl)pt(l"'e)]

+,\(m+n)(glg§EXa)}.



1616 C. NEUHAUSER

3. Proof of Theorem 1. This section is devoted to proving Theorem 1. The
main part is to establish upper and lower bounds on A = EW = ¥, c JEX,, the
expected value of the number of clusters of matching regions of type (¢; 2, ) found
by the algorithm when aligning two sequences of length m and n, respectively.
This is the key part in establishing the Poisson approximation via the Chen—
Stein method and requires a detailed analysis of the geometric structure of the
clusters. The previous subsection showed that in order to employ the Chen—
Stein method for Poisson approximation successfully, we need to find relative
growth rates for m,n and ¢ so that A € (0,00) and at the same time the right-
hand side of (2.17) goes to 0 as m, n and ¢ (properly scaled) go to co. The following
proposition establishes bounds on A = A(m, n; t).

PROPOSITION 3.1. There are constants Cy, vy > 0 so that

(m — 2@+ kD) (n — 2(¢ + kD)) (1 Cyt=) < E\;(m,n;.t) <1
mn (m,n;t)

where G(m, n;t) = mn(1 — p)(*,1) pt ~*[S; e gravi(2 — i — v)I%.
Recall that Ya = I{Uix U‘”UUIL(!(a)} and Vij = I{Y,-j=1 and Z; _q;_1=0}" Let

J = {1+@+kD,....m—@E+kD} x {1+ @ +EkD,...,n — (¢ +kD}.
The proof of Proposition 3.1 is based on the following fact: if o € J',

P(X,=1)PV,=1)
PV,=1)PY,=1
We will estimate the three factors on the right-hand side of (3.2) separately,

starting with P(Y, = 1). We will see that the asymptotic behavior of EX,, is
mainly determined by the asymptotic behavior of EY,,. Since

(3.2) EX,=P(X,=1)= P(Y, =1).

(3.3) EY,=P(Y,=1)=P(UuUsU-- -UUgy)

we can use the first two Bonferroni inequalities to estimate (3.3):
K(a) K(a)

(3.4) S P(UM) - P(UrNUY) <EY, < Y P(Uf).
Jj=1 i<j j=1

Note that, for o € J', P(U}*) does not depend on a. Furthermore, for a € J’,
K = K(a) = maxge s K(B), that is, K(a) takes on its maximum for o € J' and is
constant there. We will first estimate the upper bound in (3.4) for a € J'. This
is the content of the next lemma.

LEMMA 3.5. Ifa € dJ', then

K f1 k
ZP(U}") =< ; )lkpt_k[z.uil/i(2—l’i‘#i)] .

icE
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Proor. We wish to point out that we only count those matching regions
that can be found by our algorithm. We begin with an exact computation of K.
Since a matching region of type (¢; &, ) consists of 2 indel regions, there are (‘;1)
ways of choosing sites which will be the starting points of the indel regions. For
each indel region, we have to decide whether we insert letters into the A or B
sequence. Suppose m of the indel regions insert letters into the A sequence. This
can be done in ( ,’:l) ways. Once it is specified for each indel region where to insert
letters, there are [ sites (for each indel region) one can choose from which can
serve as starting points of the next subregion. There are a total of ¢ matching
pairs, 2 of which are starting points of subregions other than the first subregion.
These starting points have to be treated separately. Recall that our algorithm is
such that an endpoint (7, ) has the property that (i + 1, j + 1) is not a matching
pair. This means that ( + 1, + 1) and the starting point of the subsequent
matching subregion share a letter of one of the two sequences. Therefore,

Sre) =35 () (e (Sppeaw) (g

m=0 icE i€E

k
t—1
=< B )lkpt_k[Zth@—%—m)} : 0

icE

It follows from the proof of Lemma 3.5 that if o ¢J/, then

K(a) k
(3.6) ZP (%) ( )l’” k[Zu,vxz )] :

i€EE

since in this case we have fewer terms to sum over. (It may be that some or
all of the possible candidates of matching regions cannot be realized since we
simply run out of letters.)

For the lower bound in (3.4) we need an upper bound on ¥;  ; P(U¥ N U7).
This is more complicated and requires a detailed analysis of the geometrlc
structure of matching regions that start at the same point. As we will see, we
only need to do this for o € J'.

LEMMA 3.7. If a € J’, then there are constants C1,v; > 0 so that

K
Y P(UFNUX) <Cyt™ ) P(UR).

i<j Jj=1

Proor. Fix U"‘ and U . Since both sets U"‘ and U ® have the same starting
point but i # j, it follows that U AN U i N0 Where “A” denotes the symmetric
difference between the two sets. Denote by A;j = U°‘ A U &, Suppose |U°‘ N Aj
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=r; and |U% N Ayj| = ry. Since |Ug 0 A =t —r;, [UX N A
N AY;| = U N Af|, it follows that r; =y = r.

The following observations are important: ﬁi"‘ and U® have the same start-
ing point, therefore, they share at least the first matching subregion. The
two matching regions can only get “separated” (i.e., stop sharing sites) at an
indel region since we only consider matching regions that can be found by the
algorithm. Likewise, once they are separated, they can only “recombine” (i.e.,
start sharing sites again) at locations at which at least one of the two matching
regions has an indel region. Furthermore, since i # j, there is at least one sub-
region in each of the two matching regions which is not shared. Therefore, each
of the matching regions must have at least one indel region whose distance to
an adjacent indel region is at most r. We will split the estimate into two parts,
one for r > ¢72, the other for r < ¢7 for some 0 < 5 < 1/2.

o)l =t — 1y and (O

(i) Let r > ¢7 and let § > 0 as in Lemma 2.8. Then the same argument as
in the proof of (2.9¢) yields

(8.8) P(Uf‘ n UJ{I) < C(k’l)(p1+g)t"2pt—t'vz’

where C(k,!) depends only on £ and [ and takes care of the indel regions. Here,
we do not have to be as careful as in the proof of Lemma 2.8. We can simply
combine all the terms that take care of the indel regions into the quantity
C(k,1). The value of C(k,l) may change from line to line. We denote by ¥ the
sum over all those pairs (i, j) where r > ¢72. From Lemma 3.5 we can conclude
that 3;,P(U) > C(k,)Kp*. This together with (3.8) shows that

2, PUZNUR)

3.9) > P(U?)

K2( 1+e)t“’2pt—t‘fz

Kpt
1+6

¢
< C(k, Dt (p > ) = C(k,Dt*p® ™.

< Ck, D)

Here we used that K < C(k,1)t*.

(ii) Let r < ¢72. Both matching regions have % indel regions. They share
parts or all of some of the matching subregions as mentioned earlier. Since
matching regions that are found by the algorithm can only get separated at
indel regions, they have also some of the indel regions in common, that is, some
of the mismatches are contained in both matching regions. Suppose they have
k — m of the indel regions in common, where 1 < m < k — 1. We first choose
the locations of those 2 — m indel regions. We only have to do this for one of the
matching regions since each indel region has a corresponding indel region at the
same location in the other matching region. There are (/) ) ways of choosing
these locations. The locations of each of the remaining 2m indel regions (m for
each matching region) have to be chosen within #”2 of one of the other indel
regions (otherwise, r > ¢72), that is, each of them has to be within m¢ 2 of one of
the previously chosen 2 — m indel regions. Since cp < p, it suffices to compute
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the probabilities for matching pairs for only one of the two matching regions.
We denote by ¥ the sum over all those pairs (i, j) where r < ¢72. Then

k-1
Y "PUFNUR) <Y C(k,l)<,: -1 )(k — m)2m(2me )t~ b
i< m=1 —-m
k-1
< Clk,Dp* =%y~ K2k =m(Qm)Pm2vem

m=1
k-1

< C(k,l)pt_ktk Z (2k2t72_1/2)2m_

m=1

If 0 < v < 1/2, then, for ¢ large, 0 < 2k2t72~1/2 < 1, and the sum can be
bounded by 4k*#272 ~1/(1 — 4k4¢2" ~ 1), Therefore,

" - o _ _
iy POPNUP) _ g 2t e S -
(3.10) >, P(UR) thpt = 1— aki2n -
4k~ 1
< Ok D a1

Combining (3.9) and (3.10), we see that for v, € (0,1/2),
S x 4k42n -1 o
ZP(Ui NU) < Clk,D) [tkp“ *+ rm-—l} ZP(UJ- )
1<y J
< Cy™m ) P(UP),
J

for some 0 < C1,71 < 00. O

Combining Lemmas 3.5 and 3.7 allows us to compute the bounds in (3.4) for
a € J' and therefore give bounds on the third factor on the right-hand side
of (3.2).

We will now estimate the first and the second factor on the right-hand side
of (3.2) in the following two lemmas.

LEMMA 3.11. Let oo € J'. Then

P(V,=1)

P(Ya=1)_1_

PROOF. Leta=(,j) € J'. Since {V, =1} C {Y, =1},

P(V,=1)

m=P(Va=1|Ya=l)
=P

(mismatchat G — 1,/ — 1)) = 1 - p. ]
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LEMMA 3.12. Let o € J'. Then there are constants Cz,v3 > 0, so that

P(X,=1) <1

_ -3 a7/ .
1-Cst SPV.=D S

ProoF. Note that since {X, = 1} C {V, = 1}, the upper bound is immedi-
ate. For the lower bound, we write

P(X,=1)
P(V,=1)

We will give an upper bound on P(X, = 0|V, = 1). On {V, = 1}, {X, = 0}
occurs if and only if there is a § < a with Y3 = 1 such that the matching regions
starting in o and 3 are in the same cluster. (The relation “<” was defined in the
Introduction.) We will first consider the case in which 8 and « are such that, for
~4 € (0,1/2), the first ¢ sites in the first matching subregion of the matching
region starting at 3 do not share any letters with sites in the matching region
starting at «. Denote this event by F;. Denote the matching region starting at

aby ﬁf‘ and the one starting at 3 by ﬁ'jﬁ. Then

(3.13) SP(Xo=1|Va=1)=1-P(X,=0|V,=1).

(3.14) P(U¥NUS NFy) < Ck,Dp**™.

The constant C(k,!) takes care of the indel regions and boundary effects and
may change from line to line. To compute P(X, = 0; Vo = 1), note that there
are at most K2 pairs of candidates (U and Ujﬁ ). Therefore,

(3.15) P(X,=0; Vo, =1) <K*P(UrNU?).
To estimate P(V, = 1), we make use of Lemmas 3.5 and 3.7. Since by
Lemma 3.11, P(V, =1) = (1 — p)P(Y,, = 1), it follows that
K

(3.16) P(Vo=1)>1-p)(1-Cyt™™) ) P(U).

j=1
From the proof of Lemma 3.5 we can conclude that
(3.17) P(UR) 2 Ck,)pt and K < C(k, Dt
Therefore, combining (3.14)—(3.17),

P(X,=0;V,=1;F)) K2pt+t™
<
(3.18) PV, =1 = C(k’l)a —p)1 — Cit-)Kp?
' C(k, )¢t -

S A-pd=Cpm)P

We will now investigate the case in which o and 3 are such that less than
t" sites in the first matching subregion of the matching region starting at 3
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do not share any letters with sites in the matching region starting at «. This
event is F$. In this case, almost all sites in the two matching regions either will
be contained in both matching regions or will share a letter with a site from
the other matching region. We will use a similar argument as in the proof of

Lemma 3.7. Let Fy = {|l7f‘ A ﬁjﬁ| — 2t > ¢}, for some 5 € (0,1/2), where
“A\” denotes the symmetric difference. That is, on F§ N Fy, there are at least ¢
sites in each matching region that are not in fff‘ N f/'jﬁ but share letters. Then,
as before in Lemma 2.8 or Lemma 3.7, there exists a 6§ > 0 so that

t7s

P(Uf N U NF§NF,) < Clk,Dp'~*™ (p™*7)

(3.19) :
= C(kal)ptpet 5'

Using (8.15)—(3.17) and (3.19) shows that

P(X, =0; Vo =1; F{ N Fy) K2ptptt™
<
(3.20) P(Ve=1) < Ck Dy - ok
: C(k, Dt s

T @A -pd-Cytm)

On F{ N F§, the two matching regions have to share some matching sub-

regions. Suppose they share m such subregions. Then there are (t;ll) ways of

choosing the locations of the corresponding indel regions. Since they do not
necessarily share parts of the first matching subregion, there are 2% ways of
choosing the two locations of the first two indel regions. The remaining 2 —
m — 1 indel regions are within distance (mz %) of the other indel regions. Then,

P(X,=0; V=1, F{NF3)

k-1
< C(k,l)z (t':l:l)t?yskk—m—1(2mt'y5)2(k—m—l)pt
m=1

k-1
(3.21) < C(k, Dptt2s Z (e 2my"

m=1
=275k

t1-2% -1

th

tl—2’Y5 —-1

< C(k, Dp't?*rs

= C(k,l)p*

Here, we made use of the fact that 5 € (0, 1/2). Therefore, using (3.17) again,

P(X,=0;V, =1, F{NF})
PV,=1)

(3.22)
p'tt

e T o=y e gy
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Combining (3.18), (3.20) and (3.22) shows that there are constants C3,y3 > 0
so that

(3.23) P(X,=0|Vy=1) <Cst™™,
and Lemma 3.12 follows. O
We can now proceed with the proof of Proposition 3.1.

Proor oF ProprosiTION 3.1. It follows from (3.4) and Lemma 3.7 that if
aed,

K K
(1-Cyt™™) ZP Yo < > P(UY)

Jj= Jj=1

and hence, together with Lemmas 3.11 and 3.12, (3.2) can be bounded by

=

(1-p)(1—-Cit™™)(1-Cst™) Y " P(Up)
(3.24) X /=1
<EX, <(1-p)) P(Uy)
j=1
aslongasa € J'.Ifa ¢ J', then EX, < (1 -p)P(ULU---U Ug (), which can
be bounded by (3.6). Note that |J| = mn and |J'| = (m — 2(¢ + k]))(n — 2( + kl)).

These two observations, together with (3.24) and Ypc s EXp < A = S5 sEX;,
show that

Alm,n;t) = Z EXg
pBeJ

(3.25) i1 k
< —p)mn( L )lkpt_k [Z pivi(2 — i — Vi)]
icE
and
K
Am,n;t) > Y EXp> Y (I'—p)(1—Cot™™) ZP

BeJ BedJ’

(3.26) = (m — 2(¢ + kD)) (n — 2@ +kD)(1 - p)( — Cot™™)
k
X (t ; l)lkpt_k [Z wivi(2 — p; — Vi):l ,
i€E

for arbitrary constants Cy, v, > 0. Combining (3.25) and (8.26) proves Proposi-
tion 3.1. O



SEQUENCE COMPARISONS 1623

We are now ready to finish the proof of Theorem 1. First note that, by using
Lemma 3.5, (3.6) and the observation following (3.24), we have

k
max EX, < (1 —p)(t ; l)l’“p‘"e [Z pivi(2 — p; — v,-)J .

€dJ
¢ i€E

Therefore, (2.17) can be bounded by

by +by+b3z <20t+ kl){K2mn [mpt(1+‘9")_8k +nptA+o0 -8k 4 o +kl)pt(1+9)]

(3.27) +Am +n)1 - p)(t ; l)lkp‘—k
k
X [Z wivi(2 — py — Vi)] }
i€E

To finish the proof of Theorem 1, we still have to show that we can choose
relative growth rates of m, n and ¢ so that the right-hand side of (3.27) goes to
0 and at the same time ) stays bounded away from 0 and oco. This is similar to
what was done in [4]. We consider the case where m, n — oo with

logm
log(mn)

logn

(3.28) Toglr)

—p>0 and

—1—-p>0,

that is, n ~ (mn)? and m ~ (mn)!~*. (The symbol ~ means that the logarithms
of the two quantities are asymptotic.) From Proposition 3.1 we can conclude
that

(3.29) A\ ~ mnt*pt
and the estimate in (3.27) shows that
(3.30) by + by + by ~ mnt?**+ 1 [mp+ 0¥ 4 pp1+00%]
If we choose m, n and ¢ so that )\ € (0, c0), then
by + by + b3 ~ t1+k [mpg"t + npe”t] ~ gLtk [(mn)1 —ppit 4 (mn)”pe"t]
= pl+k [()\t_"’)a"(mn)1 == 0% 4 (N (mn)P 0"] .

To ensure that this goes to 0 as m, n — oo, we therefore need that 1 —p—6, <0
and p — 6, < 0. Therefore, if

(3.31) 6, +0, = 28, logay
logp  logp

K

that is, 8, > 1 — 6,, we can find p € (1 — 6,,6,) and therefore relative growth
rates for m and n so that X € (0, oo) and by + by + b3 — 0 as m,n (and thus #)
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tend to O faster than some negative power of mn. This is exactly condition (1.3).
(It is not surprising that this is the same condition as in [4].)

We will now explain why the claim in the remark at the end of Section 1 is
true. Let

Aj={i-r,...,i=-1}x{j-r,...,j =1},
M;; = {the matching region starting at (i, j) shares less than s letters with
any other matching region},

N;; = {G —1,j - 1)is a mismatch; A! ; contains no matches; Uij occurs}.

We claim that when & < s < r < ¢, then N, " M[; C {X;; = 1}. Clearly, if

{G -1, j—1)is a mismatch; U}’ occurs}, then {V;; = 1}. We choose k,s and r so
that any matching region with index smaller than (z, j) that belongs to the same
cluster as the matching region starting at (Z, ) cannot intersect any matching
region starting at (Z, j). If there was a matching region with a smaller index
than (i, j) that belonged to the same cluster as the matching region starting
at (Z, j), the matching region starting at (¢, j) would have to share more than s
letters with other matching regions. Therefore, for £ < s <« r < ¢t and [ fixed,
there are positive constants C(l), ¢; and c; with ¢3 < 1 so that

P(X;; = 1) > P(N;n M;;) > P(N];) — P ((M,))

k
_ _ r otk _ _ _ t—s,(1-0)s
> (1 - p)max [sa(1 - v)]'p [;(2 e Va)] Cp'~°p

2 C(l )pt+c1t“2,
and hence
AXm, n; t) > (m —2(t+ kl)) (n —2(t+ kl))(l —p)C(l)p“cltcz.

Using this lower bound it is easy to see that under (1.3) for [ fixed and % = o(2),
by + by + bz — 0; m and n are scaled as before.

4. Proof of Theorem 2 and the algorithm. In this section we will prove
a distributional result that will enable' us to compute the P-values mentioned
in the Introduction. Let S, = S,(m,n;k,[) be the largest number of matching
pairs in any matching region between two sequences of lengths m and n found
by the algorithm (hence the subscript “a”), where the matching region has %
indel regions and each indel region has at most [ indels. The subregions do
not contain any mismatches. If W denotes the number of clusters of matching
regions of type (¢; k,1), then {W # 0} C {S, > ¢}. The two sets are not quite the
same because of boundary effects. These boundary effects occur if Y, = 1 for
some o = (I, j) with i < t+klor j < t+klbut V, =0 and hence X, = 0 and if
there is no other § € J so that X3 = 1 and the matching region starting in « is
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contained in the cluster starting in 3. Therefore,

|P(W=0)-P(S, <t) = |P(W=0)—P(Y,=0forallacJ)|
(4.1) < Y P(Ya=1),

a€dJ

where 0J = {(i, j): i < t+kl orj < t+kl}. This together with Lemma 2.4 can be
used to show

|P(Sa <8) = <|P(Sy <) —P(W=0)|+|P(W=0)—e|

(4.2) < Y P(Ya=1)+(by+by+by)
a €0
<m+n)t+kDP(Y, = 1)+ (by + by + b3).

Combining (3.3), (3.4) and Lemma 3.5, the right-hand side of (4.2) is less than
or equal to

k
(4.3) (m+n)t+kl) (t ; 1) lkpt—* [Z wivi(2 — vy — ui)] + (b + by + b3).
icE

It follows from Proposition 3.1 that the first term in (4.3) can be bounded by

Xm +n)it +kl)
(1 = Cot—)(1 —p)(m —2(¢ + kl)) (n -2+ kl)) '

This together with (3.27) and Proposition 3.1 shows that
|P(S, <t)—e?|

(4.4)

< Xm +n)it + kD)
T (1 =Cyt—m)1 ~p)(m — 2(t + kD)) (n —2(t + k)

+ 2t +kl){mnK2 [mp‘(“e”)_sk +nptA+o =8k 4 o4 4 kl)p‘(“o)]

k
+A(m +n)(1 —p)(t ; 1>lkpt_k [2(2 — i — ui)] }

i€EE

< c, [)\m +n
mn

+ mnt2k+ 1 (mpt(1+0,,) + npt(1+0h))]

for large enough m, n and ¢ and some arbitrary constant C; > 0. The choice
of the relative growth rates for m, n and ¢ at the end of Section 3 then implies
that there are constants C, v > 0 so that

|P(S, <) —e~*| < Clmn)™.

We will now give a detailed description of the algorithm on which our anal-
ysis is based, and we show that, for m and n large, it will provide us with an
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optimal alignment with probability close to 1. The algorithm can be called a
greedy algorithm. It is not efficient, but it is easy to describe. A future paper
will describe a more efficient algorithm that is easy to implement and uses
techniques such as dynamic programming and hashing.

The algorithm which we now describe will not necessarily provide us with the
best alignment but it will do so with probability approaching 1 as the lengths of
the sequences go to infinity. The algorithm will check each site for whether or
not a matching region of type (¢; &,1) starts at that particular site. Let o = (i, )
for some 1 <i<mand1l <j<n IfZ, =0, stop and start with another
site. Otherwise, find r; = min, >1Z;,, j.r = 0. The set of sites {(i, /), G + 1,
+1),...,G+ry—1,j+r; — 1)} forms the first matching subregion. To connect
this to another matching subregion, determine the set

Fy={G",j):Zy y=1where(',j)=G+ri +s,j+r1)or
G+ry,j+r)for1 <s<l}.

If F, = @, stop and check another site in the dot matrix. Otherwise, for each
@, j") € Fy, find rg s = min, >1Zj 4, jr 4, = 0 for 1 < s < |Fy|; that is, the sets
{@,),G¢ +1,j/+1),...,@" +res — 1,/ + rg s — 1)} for each (/,j') € F; and
1 < s < |F4|, form the second matching subregions which are connected by
indel regions with at most / indels. We can continue this until we find & + 1
matching subregions linked together by indel regions, where each indel region
has at most ! indels. Now we have to check the resulting matching regions
for their lengths. If there is one matching region of type (¢;%,1), we say that
Y, = 1. We have to repeat this procedure for all sites o € J. After having
determined the status of all Y, in the dot matrix, we can check the status of
the V,’s and subsequentially the status of all the X,’s. The algorithm is called
greedy since it goes along diagonal lines until the first time it sees a mismatch
and then switches to another diagonal line. This way we might miss some
alignments, that is, there might be more than one way to connect two given
matching subregions at a particular indel-link. For instance, if we wish to align
AAGGGGCT and AAGGCT, the greedy algorithm would find

AAGGGGCT

AAGG --CT
whereas the following alignment, which the algorithm misses,
AAGGGGCT
AAG-G-CT
would be possible as well. Alignment (4.6) can be obtained from (4.5) by simply
rearranging letters in the indel region. It is therefore basically the same align-
ment as the one in (4.5) and should not be counted as a separate alignment. We
will argue that when m and n are large, most alignments the algorithm misses
are such that they can be obtained by simply rearranging letters in indel re-

gions of the matching regions found by the algorithm. So it will be enough to
count only those matching regions our algorithm can find.

(4.5)

(4.6)
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We will show that when we fix 2 and [ and let m, n and # (properly scaled)
go to infinity, then, loosely speaking, a typical matching region will be of the
following form: (i) adjacent indel regions are “far apart,” and (ii) there is very
little “overlap” where subregions are pieced together. We will make this rigorous
in the following.

(i) For a matching region of type (¢;%,1), there are (",; 1) ways of choosing
starting points for the % indel regions. We will show that in most of the resulting
types, adjacent indel regions are at least ¢ 7 units apart, where ¢ € (0, 1). The
number of ways of choosing starting points for the & indel regions such that all
adjacent indel regions are at least ¢ units apart is at least

(=1t —2—2t7)(t -3 —4¢%)--- (¢ -k —2(k — 1))
k! )

An upper bound on the number of ways where at least one pair of indel regions
is at most ¢ units apart is therefore

(4.7

<t— 1) @ -DE-2-2t7)t —3-4t7) - (¢t —k — 2(k — 1)t™)

k k!
¢— Dk (t—k— 20— 1)t
S TR I
-1 t—k— 2%k — 1w\
wy =T ll—( 2 )}
_@-DE[ () k—1+mk—1ﬁ%)k
Y U t—1
(t — 1* k(R — 1)(1 + 2¢7)
<
- k! t—-1 ’

where we used (1 — x)* > 1 — nx in the last step. We can now bound the
probability of finding a matching region of type (¢; %,1) somewhere, in which at
least one pair of adjacent indel regions is at most ¢ units apart. Using the
same argument as in the proof of Lemma 3.5, this is less than or equal to

k

t—1Fk(E—1)(1+2t7

(4.9) mn( 7 Y K t)i 1+ )lkpt'k [ Z wivi(2 — p; — l/i):| .
: ! i€E

In Theorem 1 we showed that relative growth rates for m and n can be chosen
so that

k
t—1
(4.10) mn( B )lkp"k L;Euil/i@ - — I/i)]

converges to a constant which is bounded away from 0 and co. Therefore, since
the additional term [k(E — 1)(1 + 2¢™)] /(¢ — 1) in (4.9) tends to 0 as ¢ — oo, the
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bound in (4.9) tends to 0 as ¢ — oo; that is, with probability approaching 1 as
m,n,t — oo, indel regions are at least ¢ units apart. The rate of convergence
is of order ¢ 7 — 1 which is of order (log(mn))” ~ 1.

(ii) We will now show that there is not too much “overlap” between adjacent
subregions. By this we mean the following: The greedy algorithm goes along a
diagonal line until it hits a mismatch; it then switches to one of the neighboring
diagonal lines to continue. The next subregion, however, might have started
earlier, that is, the previous subregion and this next subregion may share letters
in either of the two sequences. We will argue that this overlap is typically
substantially smaller than ¢ 7, for some ~y; € (0, 1), as m and n (and thus ¢,) tend
to infinity. The probability that the overlap is bigger than ¢ in any matching
region of type (¢; k,[) is less than or equal to

k
C(k, hmn (t B 1) thpt=k-t" (le)”7 [Z pi vi2 — pi — Vi)]
(4.11) icE \
= C(k, )mn (t k 1) lept=h {Z pivi(2 — py — Vi)] p*",

i€E

for some 6 > 0. Using again that (4.10) converges to a constant which is bounded
away from 0 and infinity, and that p®” — 0 as ¢ — oo, this shows that the
right-hand side of (4.11) tends to 0 as m and n (and thus ¢) tend to infinity. The
rate of convergence is of order O(p® "), which is much faster than the rate of
convergence obtained in (i).

If we choose 77 < 76, then, with probability close to 1, all indel regions will be
isolated in the sense that none of the sites in different indel regions will share
letters from either of the sequences. Therefore, a detailed knowledge of the
structure of the indel regions is not necessary. Our greedy algorithm will find
with probability at least 1 —C(log(mn))~", for some vy, C > 0, local alignments of
the type specified. It will produce those local alignments in which & is minimized
for fixed I. Many algorithms that are currently used operate under a similar
assumption, that is, they would rank (4.5) at least as high as (4.6). This is based
on the (biological) assumption that it is at least as likely to have a deletion of,
say, five nucleotides at a time at a particular location as to have five independent
single deletions (see, e.g., [21]).

We can now finish the proof of Theorem 2. With the notation introduced
earlier, .

IP(S<t)—e | <|P(S <t)—P(S, <t)|+|P(S, <t)—e|.

Note that |P(S < t) — P(S, < t)| can be bounded by the probability that the
algorithm fails to find the largest matching region. This probability, however,
is at most C(log(mn))~" for some ~,C > 0.
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