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Let X = {K): A € A} be a family of sampling distributions for the data x
on a sample space X which is indexed by a parameter A € A, and let F be a
family of priors on A. Then ¥ is said to be conjugate for X if it is closed under
sampling, that is, if the posterior distributions of A given the data x belong
to F for almost all x. In this paper, we set up a framework for the study of
what we term the dual problem: for a given family of priors ¥ (a subfamily of
a general exponential family), find the class of sampling models X for which
F is conjugate. In particular, we show that X must be a general exponential
family dominated by some measure @ on (X, B), where B is the Borel field
on X. It is the class of such measures @ that we investigate in this paper. We
study its geometric features and general structure and apply the results to
some familiar examples.

1. Introduction and background. We begin by stating, in an informal
manner, the problem we address in this paper. A formal and rigorous approach
will be made in subsequent sections. Let X be a family of sampling distributions
for the data x on a sample space X, which is indexed by a parameter A\ € A. A
family JF of prior distributions on A is said to be a conjugate family for X if it
is closed under sampling, that is, if the posterior distributions of A given the
sample observations x belong to F.

In addition to permitting easy calculations of posterior distributions, conju-
gate priors have the intuitively attractive property [Berger (1980), page 70] “of
allowing one to begin with a certain functional form for the prior and end up
with a posterior of the same functional form, but with parameters updated by
the sample information.”

A subject which has been of some interest in this area—and one which has
been discussed frequently in the literature [e.g., Raiffa and Schlaifer (1961),
Chapter 3, and Lindley (1972), pages 22—23]—concerns the following problem:
given a family X of sampling distributions, determine a family of prior distribu-
tions F which is conjugate for X. For the case where X is a natural exponential
family (NEF), Diaconis and Ylvisaker [(1979), Theorem 1] provide an explicit
expression for a conjugate family of prior distributions for X, which turns out
to be a general exponential family (GEF).

In this paper, we set up a framework for the study of what we term a “dual
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problem” to that considered by Diaconis and Ylvisaker (1979): given a GEF ¥ of
prior distributions on A, find all families of sampling distributions X for which
F is conjugate, and determine their structure.

The “dual problem” proposed here can be looked upon as a decoding problem;
that is, roughly speaking, knowing the prior (or, equivalently, the posterior)
family of distributions employed by an individual who is known to use conjugate
priors, we wish to determine some aspects of the structure and form of the
unknown sampling distribution of the phenomenon being studied.

In order to provide some motivation for notions to be introduced in the sequel,
we now briefly exemplify and sketch in a nonrigorous manner, for the special
case where ¥ is a GEF of order 2, some of the ideas we adopt to solve the
dual problem. Rigorous arguments and definitions for the general case will be
presented in subsequent sections.

Let F be family of priors on A which constitutes a GEF of order 2 with den-
sities
(11) exp{91u1(/\) + 02u2(/\) — r(91, 92)}I/(d)\),

where 0 := (61,60,) € D C R? and D is the parameter space of F determined by
v and (u1,u3). In the terminology of Barndorff-Nielsen (1978), 6 and u()\) :=
(1(N), ug(N)) are called the canonical parameter and canonical statistic of F,
respectively. If there exists a sampling model X = {K)(dx): A € A} on X, for
which Fis conjugate, then, for any § € D and almost all x, the posterior density
of A given the data x has the form (1.1) with 6* = (6}, 63) replacing 6, where
6* = h(8,x) € D may depend on both § and x. Consequently, K, (dx) necessarily
has the form

K)(dx) = exp{(O{ = 0)u1(N) + (65 — 62)us(N) + r(67, 63) — r(61, 62) }r(dx),

for some measure r. Under mild conditions, we show (Theorem 3.2) that there
exists a measure @ on X such that, for all § € D and @-almost all x, h(§,x) — 9 :=
h(x) does not depend on # and that K (dx) = exp{h1(x)u1()\) + ho(x)us(\)}Q(dx).
Accordingly, to solve the dual problem, it is sufficient to find all measures @ on
X such that

(1.2) /xexp{hl(x)ul()\) + ha(x)ua(N) }Q(dx) = 1.

The set of all measures @ on X satisfying (1.2) is rather large. Fortunately,
the resulting X = {exp{h;(®)u1(N) + ho(x)uz(V\)}Q(dx): A € A} can be seen to
constitute a GEF which then can be reduced to an NEF on R? by the map
x +— h(x). To obtain a better understanding of the latter statements, we consider,
for example, the case where F is a family of gamma priors. (We shall return to
this example in Section 6.)

ExampPLE 1.1. Here,
F= {exp{@1 log A — 0 + 61 log 6 — log T'(6)}

(1.3)
x A" Mg (\)dA:f € D = R* x R"};
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Fis conjugate for Poisson models of sampling distributions X := X, = {K), ,(dx):
A € R*}, n € N, defined as follows. If x = (x1,...,x,;) and the x;’s are i.i.d. and
follow a Poisson distribution with mean ), then, for n € N,

K, n(dx) := exp{ > xilogh - n)\}Qn(dx),

i=1

where @, (dx) = 1,(dx)/II}. x;! and 7, is the counting measure on Nj. Accord-
ingly, the set of all measures @ satisfying (1.2) will contain, in this example,
the subset {@,(dx),n € N}, or, equivalently, the set of all sampling models for
which ¥ in (1.3) is conjugate will contain the subset {X,,n € N}. Note that,
for n € N, X,, is a GEF. The NEF associated with the GEF X, is composed of
the marginal distributions of the minimal sufficient statistic ¥}_, x;. If we let
q be the image of @, under the map x — ¥7_, x; := ¢, then, for alln € N, q(dt) =
n1(dt)/t!, and the NEF associated with X, is {exp{¢,t — exp(€,)}q(dt), &, :=logn A
€ R}. A substantial reduction is therefore achieved, since the subset {Q,(dx): n
€ N}, whose elements satisfy (1.2), can be looked upon as being represented by
the single measure q.

Accordingly, we let ¢ denote the image of @ by the map x — A(x). Since
h(x) = h(8,x) + 6 and h(8,x) € D for all § € D and @-almost all x, it follows that
h(x) € G := {t € R%: ¢ + D C D} and hence the support of g is contained in G.
(Note that such a G is a closed additive semigroup of R2.) Also, let S denote
the image of A by the map A — u()\). The GEF X is then associated with the
NEF generated by g whose elements have the form exp{hiu; + hous}q(dh),h €
G,u ¢ S. Accordingly, the dual problem can now be reduced to finding the set
H(S, G) of all measures g concentrated on G such that, for allu € S,

(1.4) / exp{hiu; + hous}q(dh) = 1.
R2

One of the key tools for studying (S, G) is linked with the use of the variance
function of an NEF. [The variance function characterizes the NEF within the
class of NEF’s; cf. Morris (1982) and Letac and Mora (1990).] To illustrate this
use, consider a special case of (1.4). Assume, for instance, that g is concentrated
on an affine hyperplane {h € G:h; = ahy — b, a € R, b#0} of R2. For this special
case, (1.4) reduces to

(15) / exp{ hafaua () + 1a(0)] — bus(V) Jq(dlh) = 1.
R

For simplicity, assume that £ := au1()\) + ug()) is one-to-one on A. Let = de-
note the image of A by the map A — aui()\) + ug()\), and let k(&) denote bu(N)
expressed in terms of ¢. If (1.5) is valid, then {exp{h2¢ — k(€)}q(dhs): £ € E}
constitutes an NEF on R, and exp{k(£)} is the Laplace transform of ¢q. (Note
that the canonical parameter and Laplace transform of such an NEF, if it ex-
ists, are functionally related to the canonical statistic u of F.) Does there exist
such a Laplace transform? A positive answer will provide, of course, an element
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of H(S,G), in which case k’'(£) and £”(£),£ € int E will be the mean and vari-
ance, respectively, of the NEF generated by g. Writing m := k/(¢), M := k/'(int )
and V(m) for k"(¢) expressed in terms of m, then the pair (V, M) is the variance
function corresponding to such an NEF. In many instances it would appear that
determining whether (V, M) is a variance function of an NEF is easier than de-
termining whether exp{k(¢)} is a Laplace transform. Indeed, we are fortunate
to have lists of pairs (V, M) which are variance functions on NEF’s on R and
lists of pairs which are not. A list of all variance functions in which V is either
quadratic or cubic can be found in Morris (1982) and Mora (1986) [see also Letac
and Mora (1990)]. Additional lists can be found in Bar-Lev and Bshouty (1989,
1990), Bar-Lev, Bshouty and Enis (1991, 1992) and Jgrgensen (1987). Such
lists include cases in which the variance functions have simple functional form
whereas the corresponding Laplace transform exp{k(£)} cannot be expressed
explicitly in terms of ¢ [in the above special case such a situation occurs when
the equation ¢ = au;()\) + ug()\) cannot be solved for A, although the mapping
X — & is assumed to be one-to-one]. We now illustrate the above special case,
where k1 = ahs — b, for the family of gamma priors given by (1.3).

ExAMPLE 1.2. Here, D = R* x R*, (1(\),us(N) = (log A, —)\),G =D and S is
the set of points on the curve {(log A, —)\), A € R*}. Setting £ = alogX — A, we
consider, for simplicity, two special cases: (i) @ = 0; and (ii) @ < 0.

(i) Wehave £ = =\, 2 = R™,k(¢) = blog(—¢),m = —=b/&; M =R*,if b > 0, and
M =R~,ifb < 0; and V(m) = b~ 1m2. Since V is positive on M, the case b < 0is
excluded. The remaining case (V,M) = (b~—'m?2,R*),b > 0, is, by Morris’ (1982)
classification, the variance function of the gamma NEF composed of gamma
distributions with shape parameter b and (inverse) scale parameter bm~1. The
dominating measure g(dhy) of such an NEF is easily obtained. One then still
has to check, however, that the resulting g belongs to H(S, G).

(ii) We have ¢ = alog A— ) and E = R. Here, A and hence k(£) are not express-
ible in terms of ¢, although the map ) — ¢ is one-to-one. The variance function,
though, has a simple functional form. Since m = &'(¢) = (buy (V) /¢’ = bla— )71,
we find that M = (b/a,0), if b > 0, and M = (0,b/a), if b < 0. Also, V(m) = k"(€)
=bMa — N2 =ab~?m?(m — b/a), hence the case b < 0 is excluded since other-
wise Vis negative. The remaining pair (V, M) = (ab~2m?*(m—-b/a), (b/a,0))isnot
a variance function by the Mora (1986) classification of cubic variance functions.

The family of Poisson sampling distributions for which the gamma family
of priors is conjugate can be delineated in a manner similar to the above by
considering other affine hyperplanes on which g is concentrated. We will realize,
however, in subsequent sections that there is no need to analyze all possible
affine hyperplanes as some of these are equivalent in some sense.

Having illustrated some of the notions and ideas which will be used in the
sequel, we present in Section 2 formal definitions of NEF’s, GEF’s, Markov
kernels and posterior distributions and give a rigorous formulation of the dual
problem. A study of the general structure of the sampling models X for which F
is conjugateis given in Section 3. Section 4 is devoted to a general study of the set
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of measures H(S, G). In particular, we study in Section 3 and 4 the general case
where a subfamily of F is considered as our family of priors. This is equivalent
to considering F restricted to a proper subset of the natural parameter space D.
This, is in turn, may have an effect on the structure of G—the closed additive
semigroup which contains the support of g—and, consequently, on the structure
of H(S, G). Section 5 applies such a study to the case where ¥ is a Diaconis—
Ylvisaker family [see definition in (2.15) below] and related cases. Section 6 is
devoted to some familiar examples. The use of the variance function as a tool,
as described above, is demonstrated in Propositions 5.2 and 5.7 and is applied
in the examples of Section 6.

2. Notation and definitions. We first introduce some notation. We then
recall some definitions of NEF’s, GEF’s, Markov kernels, posterior distributions
and what we term the Diaconis—Ylvisaker family of prior distributions. These
will be needed for the presentation of our results throughout the paper.

We denote by E and V finite-dimensional real linear spaces; by dim E, the
dimension of E; and by E* the linear space dual to E, that is, E* is the linear
space of linear forms on E. The canonical bilinear form on E* x E is denoted
by (8,x) — (0,x). For H C E, int H designates the interior of H. If (4,.A) and
(B, B) are measurable spaces, v a measure defined on (A, A) and ¢: A — B an
A-measurable map, then the measure v(t~1(B*)), B* € B, which is the image
of v by the latter map, is denoted by ¢,v. The support of v is denoted by S(v)
and the closed convex hull of S(v) by conv(S(v)). The Dirac mass on x € E is
denoted by 6.

Let i be a positive measure on E. The Laplace transform L, of 1 and the
effective domain D(u) of L, are define, respectively, by

(2.1 L) := / exp{ (0, x) } u(dx) < oo,
E

and

2.2) D(w) := {6 € E*; L,,(6) < o).

Let ©() := int D(u). Two sets D(u) and ©(u) are convex, and the map
(2.3) ky, =logL,: D(u) — R
is convex on D(y) and real analytic on ©(y). Define

(2.4) M(E) := {Measures p on E: O(u) # ¢}
and

(25) ME):={pe M(E): 1 is not supported on an affine hyperplane of E}.
Let 1 € M(E) and 6 € D(u). Define a probability measure on E by
(2.6) P(6, p)(dx) = exp{(6,x) — k,(0) }u(dx).
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The two sets of probabilities
@7  F:={P06,w): 00w} and F(u):={P@,u):0c D)}

are called the NEF and full NEF (FNEF) generated by i € M(E). For an FNEF
F(u), the effective domain D(p) of L, is also called the natural parameter space.
Consider an NEF F(u). The map k' := 0k, /06: ©(u) — R is injective and called
the mean function of F(u). The i 1mage Mp,) = k,,(©(n)) is called the mean do-

main of F(u). An FNEF F is called regular if D(,u) = O(u) and steep if My, =
int conv(S(u)) [see Barndorff Nielsen (1978), Theorems 8.2 and 9.2].

Having defined NEF’s, GEF’s are defined on an abstract measurable space
(A, A) as follows. Let v be a measure defined on (A, A) and u: A — E a measurable
map for which p = u,v € M(E). Then, for § € D(p),

(2.8) P(6,u,v)(d)) = exp{(6,u(N)) — ku(0)}v(dN)
defines a probability on (A, A). The two sets of probabilities
(2.9) F(u,v):={P@,u,v):0¢c ©(w)} and F(u,v) = {PO,u,v): 0 € D(p)}

are called, respectively, the GEF and the full GEF (FGEF) generated by z and
v. In this case, the NEF F(u) is called the NEF associated with GEF F(u,v).
Note that important properties of GEF’s are actually properties of the associ-
ated NEF’s.

We now recall definitions of some Bayesian concepts. We first define a
Markov kernel.

DEFINITION 2.1.  Let (A, A) and (X, B) be measurable spaces. A Markov ker-
nel X from A to X is amap (A, B) — K,(B) from (A, B) into the interval [0, 1] such
that the following hold: (i) for every A € A, K, () is a probability distribution on
(X, B); (ii) for every B € B, K,(B) is A-measurable.

It is important to note that a Markov kernel X from A to X forms a family
X = {K\: X € A} of probability distributions on (X, B). Now, fix a Markov kernel
X from A to X and let 7 be a probability distribution on (A, .A). Then

(2.10) N(dX, dx) := m(dN)K)\(dx)

is a probability distribution on the product space (A x X, A ® B). Let «y, denote
the image of 7, by the map (\,x) — x, that is, v, = x.7,. Then, under mild
conditions of regularity which will always be met in this paper (such as, A
and X are metric separable spaces equipped with Borel fields), there exists a
Markov kernel J from X to A (note again that J is a family {J, ,: x € X} and
Jx, » depends on 7) such that

(2.11) Nre(dX, dx) = Jy (AN v, (dx).

In Bayesian statistical terminology, X represents the sample space of the data
x € X; A, the parameter space of the mixing parameter \; m, the prior distribution
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of \; X = {K): X € A}, the family of sampling distributions; ~,, the marginal
distribution of x (also called the mixture distribution); and «J, ,, the posterior
distribution (of )\ given the data x).

Consider a family ¥ of prior distributions 7 on (A, .A) and a Markov kernel X
from A to X. Then ¥ is said to be conjugate for X if J, . € 7, for every 7 € F and
~v--almost all x.

The family of priors F we consider throughout the sequel is defined by means
of the following assumption.

AssumpTION 2.1. Let (A, A) and (X, B) be, as above, the parameter space
and sample space, respectively. Also, let F(u,v) be an FGEF generated by a
measure v on (A, A) and a measurable map u: A — E, and let y := u,v. For a
subset D C D(u), closed or open in E*, define a subfamily F of F(u,v) by

(2.12) F:={P(0,u,v):0 € D}.

The dual problem we study in this paper can now be stated as follows. Which
Markov kernels X from A to X [or, equivalently, which families of sampling
distributions X = {K): A € A} defined on (X, B)] are such that ¥ in (2.12) is
conjugate for X? We provide the general structure of such X’s in Theorem 3.2.

Famous examples of conjugate families are presented in Diaconis and
Ylvisaker [(1979, Theorem 2.1]. They begin by considering an NEF X as a given
family of sampling distributions and obtain a family F of conjugate priors for
X. Their result can be stated, in our terminology, as follows. Let F(p) be a given
regular NEF [i.e., ©(p) = D(p)] on some linear space V, and consider a Markov
kernel X from ©(p) to E defined by

(2.13) K)(dx) := exp{(/\,x) - kp()\)}p(dx), A € B(p).

[Hence, the family X of sampling distributions considered in Diaconis and
Ylvisaker (1979) constitutes an NEF F(p) so that A = ©(p).] They showed that,
for any p > 0 and v € Mp,) = k,(0(p)) [i.e., v belongs to the mean domain of
F(p)], there exists a real number A(v,p) such that

(2.14) 7o, p(dN) 1= Av, p)exp{p((/\, v) — k,(\) } Logy(NdA
is a probability distribution. Consequently, the family
(2.15) F = {m p(dN\): v € Mp(,), p > 0}

is a family of conjugate priors for X [= F(p)] in (2.13). We shall call ¥in (2.15) the
Diaconis—Ylvisaker family associated with the NEF F(p). It should be noted,
however, that this family was first discovered and treated by Barndorff-Nielsen
[(1978), pages 131-132]. We now make some remarks concerning the Diaconis—
Ylvisaker family.
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REMARK 2.1.
(i) Note that the set of parameter values on which the Diaconis—Ylvisaker
family is defined is

(2.16) D :={(vp,p) € V x R: v € My, p > 0}.

Accordingly, if v(d)\) = dX is the Lebesgue measure on O(p), u: 8(p) — E :=
VxR, \,—= (A, —k,(\) and p := u,v, then

(2.17) D in (2.16) is contained in D(u),

that is, the FGEF F(u,v), generated by such © and v, contains the Diaconis—
Ylvisaker family as a subfamily. Indeed, Diaconis and Ylvisaker (1979) indi-
cated, in terms of a specific example (see the end of their Section 2), that the set
of all parameter values of the form (pv, p) for which 7, , in (2.14) is a probability
distribution may contain, in addition to D in (2.16), pairs (vp,p) in which p is
negative. This is exactly our statement (2.17), which will be proved in Proposi-
tion 5.5.

(ii) Of course, we tackle the Diaconis—Ylvisaker problem in reverse (the dual
problem). Starting with F in (2.15) as our family of priors, solving for those
sampling models for which ¥ is conjugate, and following our procedure, we will
end up with F(p) [or X in (2.13)] as one of the solutions. Adopting the terminology
of Barndorff-Nielsen (1978), note that the order of the NEF F(p), the sampling
model in (2.13), is 1 less than the order of F in (2.15) associated with it. (The
order of an NEF is the dimension of the space on which it is concentrated. The
order of a GEF is the order of the NEF with which it is associated.)

(iii) Diaconis and Ylvisaker assumed that F(p) is regular. In Theorem 5.4,
we restate, in our terminology, their Theorem 2.1, while relaxing their assump-
tion by only requiring that F(p) is steep. [Such a relaxation of the assumption
has been made previously by Barndorff-Nielsen (1978).] In Proposition 5.5 we
present some properties of the set D in (2.16). In Proposition 5.7 we consider
the case where V = R and present general results on sampling models, concen-
trated on hyperplanes, for which ¥ in (2.15) is conjugate. Proposition 5.7 is then
applied in Section 6 to some familiar examples.

(iv) We henceforth reserve the Greek letter p to denote a measure generating
an NEF F(p) with which the Diaconis family ¥ in (2.15) is associated.

3. Characterizations of sampling models X for which ¥ is conjugate.
We first present a proposition and definition which are required to state the
main result of this section (Theorem 3.2). The introduction section helps to
understand the need for such a proposition and definition and, thereby, the
statement of the theorem.

PRrRoOPOSITION 3.1. Let E be a real finite-dimensional linear space, let E* be
the dual of E, let D be a nonempty subset of E* and let

(3.1) GD):={h € E*: h+D C D}.
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Then the following hold: (i) G(D) is an additive semigroup of E*; (ii) G(D) =
G(h + D) for all h € E*; (iii) EX\G(D) = (E*\D) — D; (iv) G(D) = {0} if D is
bounded; (v) G(D) is closed if D is either open or closed; (vi) if D is an open
convex cone, then G(D) is the closure of D.

PrOOF. Statements (i) and (ii) are obvious. Statement (iii) is easily checked.
Statements (iv) and (v) follow from (iii). To prove (vi), let D be the closure of D.
Then D + D is open and D + D ¢ D = int D, and thus D ¢ G(D). Conversely,
from (iii), we have to prove that E*\D C (E*\D) D. Letting h € E*\D, there
exists an open set U containing 0 such that (h + U) N D = ¢. Since D is a cone,
there exists some u € U N D such that A +u € E*\D. Hence, h € E*\D, and the
other inclusion is proved. O

Let G be a closed additive semigroup of E*, and let S be a closed subset of E.
We define H(S, G) to be the set of all positive measures g on E*, concentrated
on G [i.e., S(g) C G C E*], such that, for all u € S,

(3.2) / exp{ (h, u) }q(dh) = 1
E*

THEOREM 3.2. Assume that Assumption 2.1 holds. Let X be a Markov kernel
from A to X. Then ¥, as defined by (2.12), is conjugate for X iff there exist a
measure @ on (X, B) and a measurable map h:X — G(D) such that q .= h,Q €
H(S(u), G(D)) and such that, for v-almost all \,

(3.3) K\(dx) = exp{ (h(@), u() } Q(dw)

REMARK. We have commented previously that properties of an FGEF are
actually properties of the associated FNEF. Here, X = {K: A € A}, as defined by
(8.3), if it exists, has the form of an FGEF generated by & and @ and associated
with the FNEF F(q). This observation reduces the search for the set of all fami-
lies of sampling distributions X satisfying (3.3) to the smaller set H(S(u), G(D))
[given g, the set of possible pairs (h, Q) is rather large—as has been demon-
strated in Example 1.1]. This is the rationale for our contention: the set of
solutions to the dual problem is essentially parameterized by H(S(w), G(D)).

ProOF OF THEOREM 3.2. («.) Let Z := {u € D(q): ky(u) = 0}. Since q €
H(S(w), G(D)), we have E\Z C E\S(p). Hence, u(E\S(x)) = 0 implies u(E\Z) = 0
and, for v-almost all A, [;. exp{(h, u(\)}q(dh) = 1. Hence K}, defined by (3.3), is
a probability, v-almost all A. Choose 6y € D, and let 7 := P(6y, u,v) be the prior
distribution on (A, A) and let

M(d, da) = exp{ (h(e), u(N) + (8o, u(N) ~ ku(80) }Qxw(dN)

be the probability distribution on the product space (A x X, A ® B). Then, since
h(x) € G(D), the posterior distribution exp{(h(x) + 6y, u(\)) — &, (60 + h(x))}v(dN)
€ ¥F. This implies that 6y + A(x) € D.
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(=.) For € D, let Q4(dx) denote the image of P(6, u, v)(dM\)K)(dx) by the map
(X, x) — x. Since ¥ is conjugate for X, for all § € D, there exists h(8,x) € D such
that x — h(6, x) is B-measurable and

exp{ (h(6, ), 10N)  k, (h(6,)) }(dNQo(d)
(3.4) = exp{(6, u(V) — ku(0) pr(dNKA(d).

Let £ (0,x) := 8 — h(8,x) and g(0,x) = k,(0) — k,(h(6,x)). Then (3.4) implies
that, for v-almost all )\,

(3.5) K(dx) = exp{g(e,x) — (f(6,), u(A)}}Qg(dx).

Since the left-hand side of (3.5) does not depend on 6, one gets, by fixing 6 = 6,
in (3.5), that for v-almost all ),

(3.6) exp{<f(e,x) — F(8o, %), u(A))}ng(dx) = exp{<g(e,x) - g(00,x)>}Q9(dx).

Since the right-hand side of (3.6) does not depend on A, and, by assumption,
1 = u,v € M(E) is not concentrated on an affine hyperplane, we get that f(6,x)
— f(80,%) = 0, Qq,-almost all x. Let h(x) := h(6p,x) — 6o, then h(0,x) = 6 + h(x)
and, from (3.5), for v-almost all A, we get (3.3) with Q(dx) = exp{g(6o, x)}Qg,(dx).
We still have to check that q := h,Q € H(S(u), G(D)). Since K), is a probability,
v-a.e., we have

3.7 / exp{<h, u(A))}q(dh) =1, v-ae

Let u € S(u). Then by (3.7) there exists a sequence (©,)7% 1, un, € S(u), n € N,
such that u, —, _, « v and k,(u,) = 0 for all n € N. From Fatou’s lemma, &, ()
< 0 and u € D(q). Since the subset {(u,y):u € D(q),y > ksw)} C E* x R is
closed [see Barndorff-Nielsen (1978), Theorem 7.1], there exists y, > kq(u,) =
0 such that (u,,¥n) —n— oo W, ke(W)). Since y, —n— oo kq(u), kq(u) cannot be
negative, and hence k,(x) = 0. Thus, we proved that [ exp{(h,u)}q(dh) = 1, for
al u € S(u). Since h(6,x) = § + h(x) and h(6,x) € D for all € D and @-almost all
x, we get h(x) € G(D), @-almost all x. This implies that ¢(E*\G) =0. O

4. A general study of H(S,G). We have realized that H(S, G) is the ba-
sic object to describe all solutions of the dual problem. This section is devoted
to some useful remarks concerning its structure. We assume throughout this
section that G is a closed additive semigroup of E* and that S C E is not con-
centrated on some hyperplane of E, that is, int conv(S)#®. [Any such S can
serve as the support of some measure u € M(E).] The following proposition
shows that we may assume, without loss of generality, that S is contained in
the boundary of conv(S).

PROPOSITION 4.1. If intconv(S) NS # @, then H(S,G) contains only the
Dirac mass 6.
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PrOOF. Assume there exists y € int conv(S) NS and let dim E = d. Then,
by the Caratheodory theorem [see Phelps (1966), page 10], there exist sj € 85,
J=0,...,d, affinely independent [i.e., (s; — so);i=1 are linearly independent], and
Aj>0,j=0,...,d satisfying ¢_; A; = 1, such that y = £%_, A;s;. Accordingly,
if ¢ € H(S,G), then 0 = k(X7 Ajs)) = £ Ajkg(s). Hence, we are in the
situation where an equality holds in the Hélder’s inequality. Thus, there exist
a; € R,i =1,...,d, such that, for g-almost all &, (h,s¢) = (h,s;) + a;, for i =
1,...,d. This, along with the fact that (s; — so)}i=1 is a basis of E, implies that
a1 =---=aq =0, and therefore g = ;. O

The following result, a corollary to Proposition 4.1, is useful for showing that
there are no interesting elements of (S, G) in some linear subspaces. Such a
corollary will be applied in Example 6.1 and the proof of Theorem 5.1.

COROLLARY 4.2. Let E; be a linear subspace of E with dim E; < dim E, and
assume that S is such that, for any projection p1 of E onto Eq, int p1(S)# @. If q €
H(S, @) is concentrated on some linear subspace E; of E* with dim E} = dim E,
then q = 6.

ProoF. Let Ej be a supplementary space of Ef in E*. Define, fori =0, 1,
E;:={uckE:(hu)=0,Vh € E_;},

and let p; be the projection of E onto E; parallel to E,. Since (h,u) = (h,p;(w)),
for all (h,u) € E7 x E, it follows that, for allu € S, fE; exp{(h,p1(w))}q(dh) = 1.

Since int p1(S) # @, then, by applying Proposition 4.1 to E7, weobtaing = §y. O
In the next proposition we gather some elementary properties of (S, G).

__ProposiTION 4.3. (i) The set of measures H(S, Q) is convex; (il) H(S,G) C
M(E*); and (iii) H(S, G) is closed under convolution.

Proor. Part (i) is obvious. (ii) Let ¢ € H(S,G). Then, by the definition
of 3, S C D(q) and int conv(S) C ©(g). By assumption, int conv(S) # ®; hence
O(q) # D, and therefore, by (2.4), g € M(E*). (iii) Recall that if u; € M(E), i = 1,2,
such that ©(u;) N O(ug) # @, then the convolution of u; and usy is the element
p1 * po € M(E) defined by ky, « i, = k,,, +k,,. Now, if, ¢; € H(S,G), for i = 1,2,
then ©(g;) D int conv(S) # @. Therefore, ©(g1) N O(g2)# P and q; * g5 is well
defined. Moreover, since G is an additive semigroup and &g, . 4,(z) = 0 for all
u € 8, it follows that g, * g2(E*\G) = 0, and hence ¢, * g2 € H(S,G). O

We remark also that if 0 € S, then H(S, G) is a set of probabilities. In such
a case, H(S, G) can be equipped with the topology of convergence of laws. How-
ever, H(S, G) is not necessarily stochastically bounded, preventing H(S, G) from
being compact. If 0 ¢ S, we can easily translate back so that S will contain 0.
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We finally introduce a concept of equivalence between pairs (S, G) which
saves some trivialities. This concept is demonstrated in Example 4.1 and ap-
plied in Examples 6.1-6.3. Let E and E’ be two linear spaces with dim £ =
dim E’; let S and S’ be closed subsets of E and E’, not concentrated on affine
hyperplanes; and let G and G’ be additive closed semigroups of E* and (E’)*,
respectively. We shall say that (S, G) and (S’, G’) are equivalent if there exists
a linear isomorphism ¢: E — E’ such that o(S) = S’ and ‘p(G’) = G, where
¢y is the transposed map (E')* — E* of . In this case, if ¢’ € H(S’,G’), then
toxq' € H(S, @), since, for all u € S,

/exp{(h,u)}(t<p*q’)(dh)=/ exp{(tcp(h’),u>}q’(dh)
G (el
= /G / exp{(h',cp(u))}q’(dh’) =1

Clearly, ¢’ — fp * ¢’ is an affine bijection between the two convex sets H(S’, G)
and H(S, G). If (S, G) and (S’, G’) are built from families ¥ and ¥’ of type (2.12),
we shall say (with some abuse) that ¥ and ' are equivalent, and the search
for sampling models X for which J or ¥ is conjugate is intrinsically the same
problem. An excellent example of such an equivalence is provided by two types
of Dirichlet families described in the following example.

ExAMPLE 4.1 (Dirichlet families of first and second kind). Denoting B(a,,
c,ag) = H?:o I‘(ai)/I‘(E‘f=0 a;),a; >0,i=0,...,d, and introducing the simplex

d
Td2={A:()\l,...,)\d)e(O,I)dIZ)\i<1},
i=1
we consider two kinds of Dirichlet families:
d a-1/ 4 . d d\
F={[1-) ) 2T 1y D =——
((-5)" (sl

ai>0,i=0,...',d},

d “wd o, 1%, dx,
¥ = {(1'*;)‘3) (H)‘jl 1>1(0,oo)d(>\')B(a6( dJ - J)

li ! li
Eiﬂai,al,...,ad)

d
a;>0,j=1,...,d, Y a <a6}.
j=1
Here, E = E' = R%+1,

d
G = [0, 0)?, G' = {(a{),...,afi): a;>0,j=1,...,d, Za} <a6};
j=1
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S is the hypersurface in R? *! which is the image of T; by the map (\1, . .., \g) —
(log(1—-x2 1 X), log Ay, ..., log Ay); S’ is the image of (0, c0)? by the map (\, .. .,
A= (—log(1 + ¥4 . \), log AL ..., log A)); and H(S, G) and H(S’, G') are equiv-

i=1"Y
alent through the linear map : R4*! — R2*1,(xo, ..., x4) — (xf, . ..,x)), defined
by x4 = xo,x; = x; —x0,j = 1,...,d, with a transposed map ‘¢: (ay, ...,a}) —
(ag, ... ,aq), defined by ag =ay — 3¢, a/, a; = a,j=1,...,d.

It should be noted that ¥ and 3’ above have a close relationship with two
Diaconis-Ylvisaker families [see (2.15)], which are associated with the negative
binomial NEF (in R?) and multinomial NEF as follows. Consider in R? the
canonical basis ey, ...,eq, with e; = (0,...,0,1,0,...,0), where 1 is in the j-th
position. Consider also the measure a = §,, +- - - +6,,, the two measures in R%: p
=¥, and p’ = §p + a, and the two NEF’s F(p) and F(p'). For such NEF’s we
have O(p) = {6 € R?: s() := £¢_, exp(;) < 1}, ©(p') = R, k,(6) = —log(1 — s(6))
and k,/(6) = log(1 + s()). The Diaconis—Ylvisaker families associated with the
NEF’s F(p) and F(p'), are, respectively, given by

d
F1 = {A(v,p)exp{p ((9,0) +log (1 —s(0))> }19(,,)(.9)Hd9,~: v e (0,000, p > 0},

i=1

d
F = {A'(v,p)exp{p(<e,v) ~log (1 +s(0))) }19(,,/)(6)Hd0i: veTq,p> 0}.

i=1

[Here, A(v,p) and A'(v, p) are suitable normalizing constants easily expressed
in terms of the gamma function.] The image of F] by exp: (63, ...,64) — (A, ...,
) = (e%,. .. e%)isexactly . The image of ¥ by exp is strictly smaller than F,
but the D of exp # is only a translate of the D of . Thus, from Proposition 3.1(ii),
F and F; share the same G and their H(S, G) coincide. To recapitulate, ¥ and
F1, ' and F] are conjugate for the same families and the four are equivalent.

The natural thing now would be to give a complete description of H(S, G)
by looking, for instance, at extreme points of 3(S, G) and hoping to represent
any element as a suitable mixing of these extreme points. However, except for
the trivial case of Example 4.3, we are not able to catch all extreme points of
H(S, G).

We conclude this section with two rather academic examples. The more in-
teresting ones result from Diaconis—Ylvisaker families and will be further con-
sidered in Section 6.

EXAMPLE 4.2 (¥ is the Fisher-von Mises family). Let E be an Euclidean
space with dim E = d > 1; let S be the unit sphere; let v be the uniform measure
on S; and let ¥ = F(v), the familiar NEF called the Fisher—von Mises family.
Here, A = E, u(\) = X\, D(v) = E* = D = G, E* is identified with E, since E is
Euclidean; and H(S, E) is the set of positive measures q on E such that

@1 /E exp{(h,u)}qdh) =1, |luf=1.
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It is easy to exhibit elements of H(S, G). If r > 0, define
4.2) Ay(r) = / exp{r(h,u)}v(dh), llull = 1.
s

Clearly, Ag(r) does not depend on u, since v is invariant under rotations of E.
Define v, to be the image of v by the dilation A — rh, and denote q, := (Ao(r))~1v;,.
Then, clearly, ¢, € H(S,G). In fact, g, is, for any r > 0, an extreme point of
H(S, G). For brevity, we prove the latter statement for r = 1. Suppose that there
exist ¢ and, and ¢’ € H(S,G) and X € (0,1) such that ¢; := Ag + (1 — A\)q’. Then q
and ¢’ are concentrated on S. We now use the following proposition to show that
g1 is an extreme point. (We have not found a clear proof of such a proposition
and we sketch one in the Appendix.)

PROPOSITION 4.4. Let £ be a signed measure on the unit sphere S of a Eu-
clidian space such that [gexp{(h,u)}t(dh) =0, for allu € S. Then ¢ = 0.

ExaMPLE 4.2 (Continued). For the case £ = g1 — g, this proposition yields
Jsexp{(h,u)}l(dh) =1 —-1=0,forallu € S, and ¢q; = ¢ = ¢'. Hence, q; is
extreme. Taking mixtures of {g,: r > 0} provides elements of H(S,G) which
are invariant under rotation [Eaton (1981) is a good reference for this classical
fact]. However, it is probably not true that all elements of H(S, G) are invariant
under rotation, although we have not worked out an explicit example for d > 2.
For d = 1, note that [; exp{h}q(dh) = [, exp{—h}q(dh) = 1 does not imply that
q is symmetric. For example, g = %6_ log2 + 3—95610g3 is not symmetric. Hence, the
set of extreme points of H(S, G), defined by (4.1), is probably not exhausted by
{gr: r > 0}.

ExXAMPLE 4.3 (S is concentrated on the vertices of a simplex). Suppose that
S = {eg,e1, .- ,eq}, where d = dim E and (e; — eo)?_ is a basis of E. Without loss
of generality we assume that e; = 0 and, for simplicity, we take D = G = E*.
A family ¥, of the form (2.12), which corresponds to the latter situation stems
from a multinomial trial withd + 1 cells 0,1,...,d and corresponding positive
probabilities py, . ..,pq, satisfying E}izo pj = 1. Here, A = {0,...,d}; v can be
taken as the uniform measure on A; u: A — E is defined by u(j) = ¢;; and ¥ can
be written as

d
(4.3) F= { Z‘SJ exp[(O,ej) — k(o)]: 6 e E*},

Jj=0

or, equivalently, as F = {2}1=on é;: Z}i:opj =1,p;>0,j=0,...,d}. [Note that
the assumption that ey = 0 implies that all elements of H(S, G) are probabili-
ties]. Let ¢ € H(S, G); let q: = p*q be the image of ¢ by the map ¢: E* — R%; h +—
(exp{(h,e;) })?_,; and let p(H(S, @) denote the set of probabilities g on (0, c0)?
which are the solutions of the moment problem: f(o, oyt i qldxq,...,zdxg) =1,1

=1,2,...,d. Since g — p+q is an affine bijection, the searches for extreme points
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of H(S, G) and p(H(S, G)) are equivalent. This statement enables us to find all
extreme points of H(S, G), and this is the only example in the present paper
in which we are successful. To achieve this goal, we consider, forj=0,1,...,d,
the family C; of subsets T' = {to,t1,...,¢} C (0, oo)? such that @) to,tq,... ot
are affinely independent and (ii) T' contains the point (1,1,...,1) € R¢ in
its relative open convex hull; that is, for any j = 0,1,...,d, there exists a
unique sequence (Ao, A1,...,A;), A; € (0,1], ¢ = 0,...,j such that Ei:o)‘i =1
and 2{=0Aiti = (1,1,...,1). For T € C;, we let gr:= ¥/_, \;6;, (note that, for
J =0,gr = éa,. 1. Clearly, gr € ¢(H(S,G)) is an extreme point. Moreover,
the set of extreme points of p(H(S, G)) [and thereby of H(S,G)] is exhausted
by the set of measures of the form gr. The latter statement follows by the
following proposition.

PROPOSITION 4.5.

(i) For every q € o(H(S, Q)), there exist measures o on C; such that

d
(4.4) 7=), / qroy(dT).
j=0"G

(ii) The set of sampling models for which the multinomial family F, defined
by (4.3), is conjugate is the set of NEF ’s F(q), where q is defined by (4.4).

Part (ii) of this proposition follows from part (i). We are not giving a proof of
part (i) as it is rather tedious (induction on d) and uninteresting. We shall just
briefly comment on it ford = 1. If T' = {a, b} € C;, witha < 1 < b (say), we have
qr = [(b-1)/(b — a)lé, + [(1 — a)/(b — a)]ép, and Proposition 4.5 states that if
q is a probability on R* such that [;° xg(dx) = 1, there exists a measure o; on
(0,1) x (1, 0) such that

a=a({1})al+/

(0,1) x (1, 00)

ba + 61,) ay(da,db).

b-1 1-a)
((b—a) T b-a)

Here, a; is by no means unique. Let

ro= / (x — 1)5(dx) = / (1 - £)5(dx) > 0;
(1, 00) ‘

0, 1)
then a possible choice for o; is
ay(da,db) = r=1(b — a)l(, 1y(@)lq, o0)(B)q(da)g(db).

5. Elements of H(S, G) concentrated on affine manifolds. Aswe have
seen in Example 4.2, characterizing all extreme points of H(S, G) may be too
hard a task. In this section, we will show that H(S, G) can contain a remarkable
set of measures g which are supported on small affine manifolds contained in
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E*. Such g generate exponential families (the sampling models) admitting F in
(2.12) as a conjugate family. These ¢ will also provide extreme points of H(S, G).

More specifically, we will examine the case where S is an analytic manifold
on E with dim S < dimE. Such a case is frequently met in the literature. The
case dimS = dim E — 1 occurs when ¥ is the Diaconis—Ylvisaker family in
(2.15) (see Remark 2.1) associated with an NEF F(p) on a linear space V with
dimV = dim S. The case dimS = 1 (i.e., when S is a curve or a skew curve if
dim E > 2) occurs also. For instance, consider the “hypergeometric” family. For
fixed z € (—o0, 1), define

5o /\b—l(l _ /\)c—b—l(l _ /\z)‘“
- B(b,c — b)F(a, b;c;z)

1(0’ 1)(A)d/\: a>0, b> 0},

where B is the beta Eulerian function and F is the hypergeometric function.
Here, u()\) = (log A, log(1 — ), log(1 — A\z)) and S is the image of A = (0, 1) under
u. A similar example is provided by the family of generalized inverse Gaussian
distributions [see (5.7)].

For such an S, we shall examine in Theorem 5.1 elements ¢ € H(S, G) which
are concentrated on affine manifolds in E* with dimensions equaling dim S.
Specializations of Theorem 5.1 for the case dim S = 1 are made in Proposition 5.2
and Theorem 5.3, and for the case dim S = dim E —1 in Theorem 5.4. Throughout
this section we shall assume that S satisfies the following assumption.

AssuMPTION 5.1. (i) The manifold S is a closed subset of E. Let Ey @ E; be
any direct decomposition of E with dim E; = dim S, and let p; be a projection of
E onto E; parallel to Ey. Then int p;(S) # @. (ii) The manifold S has the induced
topology from E; that is, for any s € S there exist an open set U C S containing
s, an open set W C R4™5S and an analytic injection f: W — E such that f(W) = U
and the rank of the differential f’ is dim S for all w € W.

Part (i) of this assumption implies that S is not contained in some affine
hyperplane of E and it is not concentrated, for instance, on the surface of a
cylinder. Part (ii) corresponds to the definition of a regular analytic manifold [see
Lelong-Ferrand (1963), page 108] and avoids certain pathologies (like double
points for curves).

.Before presenting Theorem 5.1, we impose two additional assumptions which
are needed there. One concerns the properties of the linear spaces considered.
The second relates to the properties of S and the family of priors being used.

ASSUMPTION 5.2.

(i) The space E is a real linear space with dim E = d, and E* is its dual.

(ii) The space Ej is a fixed linear subspace of E*, E} is a supplementary
subspace of E7, (i.e., E* = Ej @ E}), so that if e} € Efj, then e} € E} is an affine
manifold of E*.

(iii) The spaces E, and E; are the respective orthogonal spaces of E} and E}
in E, defined by E, _; = {u € E: (h,u)=0,Vh € E}},i=0,1.

(iv) Fori = 0,1, p; is the projection of E onto E; parallel to E; _;.
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REMARK. Note that the dual of E7 is identified with E, as follows: if (A, u1)
€ E} x Ey,(h1,uy); is defined as (h,u), for u € E such that p;(u) = u;. This
definition does not depend on the particular chosen u, since p1(u) = p1(u’) = u;
implies that u — u’ € E,.

ASSUMPTION 5.3.

(i) The manifold S is an analytic manifold contained in E and satisfies As-
sumption 5.1.

(ii) Themap u: A — S, A — u()\)is an onto map defined by u;(\) = p;(u(N\)),i =
0,1, v is a measure on (A, A) such that y := u,v € M(E),D C D(u),G := G(D)is a
closed additive semigroup in E* and ¥ is a family of priors on (A, A), a subfamily
of F(u, v), defined in Assumption 2.1.

(iii) dim S = dimE7, where E7 is defined in Assumption 5.2.

We now state our next theorem, whose proof is relegated to the Appendix.

THEOREM 5.1. Let Assumptions 5.2 and 5.3 hold.

(a) Assume that q € H(S,G) is concentrated on e}y + E}, where ef € Ey\{0}
is fixed. Let q1 denote the image in E7 of q by the translation map E* — E*,h —
h —eg.

(i) Then q is unique and is an extreme point of H(S,G). Furthermore, q; €
M(E?) is determined by the relationship

(5.1) kg, (u1(N) = —(eg, u(N)) forall X € A.
(ii) Define
(5.2) K(@h) := exp{ (b, ur(V), + (e, (V) fq1(dh).

Then F is conjugate for X = {K): A € A}.

(b) Conversely, let V be a real linear space; § € M(V); let F(6) := {P(0,6): 6 €
O©(6)} be the NEF generated by &; and let 6: A — ©(6), A — 6()\), be a map such
that 6.v is not concentrated on an affine hyperplane of V*. If F is conjugate for
{P(B(N), 6): X € A}, then dimV = dim S and there exist an injective linear map
¢: V — E,e} € E* and a measure q concentrated on ej + E} = ej +p(V) such that
0 P(B(N), 6) = K, for all \ € A, where K), is defined by (5.2).

In Proposition 5.2 we specialize Theorem 5.1 to the most important case
where S is a curve; that is, dimS = 1 and A is an interval (see Example 1.2
and the examples presented in Section 6). Recall that in this case dim E} = 1.
Our best tool to study the existence of a measure q; satisfying (5.1) and then to
compute it is the variance function of the NEF F(q;) (see relevant references in
the paragraph preceding Example 1.2). Theoretically, this tool is also available
for the case where dim S > 1, but the study of variance functions of NEF’s in the
multivariate case is presently in its infancy. We recall here that the variance
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function of an NEF F(u) in R is the positive function on the mean domain
Mg, =k, (6(p)) of F(p), defined by

(5.3) Vi (EL,(9)) = /R (x — E.,(8))°P(6, w)(dx) = kL(6).

To specialize Theorem 5.1 for the case dim S = 1, we continue to assume that
Assumptions 5.1, 5.2 and 5.3 hold and that dim E} = 1. Here, if e is a basis of
Ej = {te]: t € R}, we define

(5.4) 6:(N) = (ef,u;(V), i=0,1,

In the next proposition we use the notation of Theorem 5.1. In particular, we
let ¢ € H(S, G) be concentrated on e} + ET and let q; be the image of g by the
translation map E* — E*,h — h —ej.

PROPOSITION 5.2. Let Assumptions 5.2 and 5.3 hold; let dim E} = 1; and let
A C R be an open interval such that 6;, i = 0,1, defined by (5.4), are analytic
on A.

(i) Let qo be the image of q1 by ET — R, te] — to. Then kg (61(N\) = —0o(N),
YAeA
(il) The map A — —64(N)/0;(N):= m(\) is analytic on A = {X € A: 6:(\) €
O(qo0)}. _
(iii) The variance function of F(qy) is given on M := m(A) by

(55) Vg, (m) = [6508/N) — 8,085 N] / (6,0) = kL (6:1(0).

PRrROOF. (i) This is a reformulation of (5.1).

(ii) It follows from (i) that 6;(A) C D(qy). Since D(qo)\©(qo) has at most two
points, A is open. Taking derivatives of both sides of the relation in (i) and
observing that m(\) = k; (61())) is analytic as a composition of two analytic
functions, proves (ii).

(iii) This is obtained by using (A.2) in the Appendix and differentiating both
sides of the relation k; (6;(\)) = —6;(\)/6;(\) with respect to A. O

We now apply Proposition 5.2 to a frequently occurring situation. We assume
that the curve S in E, with dim E = d, is parametrized by the open interval A
and the map u: A — E such that there exists a continuous function T: A — R* for
which T'(\)u/()\) is a polynomial in A with degree less than d; that is, for any basis
(f1,...,fq) of E, there exist real polynomials P;,...,P; with degree less than d
such that T(\u/()) = £ ; Pj(Vf;. Note that, since S is not concentrated in an
affine hyperplane, the polynomials Py, ..., P, must be independent. Therefore,
it is always possible to choose a basis (f1,...,fy) such that P;(\) = X\¢~/ j =
1,...,d. For instance, if E = R?, consider the family of beta distributions of the
first kind:

(5.6) {[B@,) A1 - NP~ M, 1(MdA: @ > 0, > 0},
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Here, A =(0,1) and u()\) = (log A,log(1 — \)). Since u/(\) = (A7, —(1 — M)™1), we
are in the above situation with T(\) = A(1 — )). Another example, for E = R3,
stems from the family of generalized inverse Gaussian distributions:

(5.7) {A@,b,0\*~texp {a) — A }1r(MdXi a < 0,¢ < 0.

Here, A = R*,u(A) = (\,log A, —A~1),2’/(\) = (1,A71,A72) and T()\) = A2 The
hypergeometric family, introduced in the beginning of this section, provides
another example with T(\) = A(1 — A)(1 — Az). We have also found in Morlat
[(1956), Sections 2.4 and 2.6] two more examples of such a type: one corresponds
to T()\) = A and is due to Etienne Halphen; the other corresponds to 7'()\) = A3
and is due to M. Larcher.

Suppose we are in the realm of Proposition 5.2. Then Vg, (m())), defined by
(5.5), is expressed there in terms of \. For practical considerations we have to ex-
press it in terms of m, the mean function of F(q,), and then check, being helped
by the dictionary of variance functions of NEF’s on R, whether the resulting
pair Vg, (m), M) is a variance function of some NEF. If it is, then q is a legit-
imate measure. For expressing V() in terms of m, we consider the following
technique, which is applicable to various examples (such as those in Section 6).
Assume that T(\)u’()) is a polynomial in ) of degree less than dim E. Ifej and e}
are independent, as in Proposition 5.2, we define two real polynomials P;(}\) :=
(ef, T(Wu'(N), i = 0,1. Then 6/(N), i = 0,1, m()\) and Vp,)(m(})) of Proposition
5.2 can be expressed as 6/(\) = P;(\)/T()\),i = 0,1, m(\) = —Po(\)/P1()\) and

(5.8) Virtgo (mOV) = [PLOIPo(N) — PyOP1(V] T/ (PiV) .

Hence, for computing Vi, (m), we solve the equation Py()\) + mP;()\) = 0 for A
in terms of m and substitute the solution in the right-hand side of (5.8). Such a
procedure works nicely for the two cases described in the next theorem.

THEOREM 5.3. Consider the above notation and assumptions.

(i) If dim E = 2 and T()\) is a polynomial of degree less than or equal to 3,
then Vi, (m) is a polynomial with degree less than or equal to 3.

(ii) If dim E = 3 and T()\) is a polynomial with degree less than or equal to
4, then

(5.9) Vp(qo)(Yn) = P(m)A(m) + Q(m) V A(m)y

where P, @ and A are polynomials in m with degrees less than or equal to 1, 2
and 2, respectively.

Proor. (i) Taking E = R? and letting P;(\) = a; + b;\, i = 0,1, then agb; —
a1bo#0, since e and e} are independent. The solution for X in terms of m is
A = —(ag + aym)/(by + bym), and hence, by (5.8),

_ (b() + blm)3 T —(a() + alm)
(aobl — a1b0)2 bo + blm '

Virgy(m) =
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Since T'(\) is a polynomial of degree less than or equal to 3, the desired re-
sult follows.
(ii) This part is proved in the Appendix. O

COMMENTS.

(i) Good examples satisfying the premises of this theorem are given in (5.6)
and (5.7). Applications of this theorem appear in Examples 6.1-6.3.

(ii) In part (i) of the theorem, the resulting Vg, (m) is a polynomial with
degree less than or equal to 3. Hence, one may use the classification of cu-
bic variance functions appearing in Mora (1986) or Letac and Mora (1990) to
check whether (Vg(,)(m), M) is a variance function. In part (ii) of the theorem,
Vr(go)(m) has the form (5.9). A list of functions of such a form which are variance
functions and which are not can be found in Bar-Lev, Bshouty and Enis (1991),
Letac (1992) and Seshadri (1991).

The remainder of this section is devoted to applications of Theorem 5.1 to
the case where 7 is the Diaconis-Ylvisaker family [defined in (2.14) and (2.15)]
associated with an NEF F(p), p € M(V). (Remark 2.1 might be helpful in this
respect.) Theorem 5.4 restates, in our terminology, Theorem 2.1 of Diaconis
and Ylvisaker (1979). Proposition 5.5. presents some properties of the param-
eter set D, in (2.16), of F and its respective closed additive semigroup G. In
Proposition 5.6 we apply Theorem 5.1 to find elements of the corresponding set
H(S, G) which are concentrated on affine hyperplanes (subsets of D). The latter
proposition is specialized in Proposition 5.7 to the case V = R. In particular,
we present there relations existing among the variance function of the NEF
F(p) and the variance functions of the NEF’s generated by elements of H(S, G).
A practical procedure for applying Proposition 5.7 is presented at the end of
this section. Section 6 is devoted then to applications of such a procedure to
familiar examples.

We first make an assumption, which we assume to hold throughout the se-
quel, and present a definition.

ASSUMPTION 5.4.

(i) Let V be a finite-dimensional real linear space, let V* be the dual of V
and let p € M(V) [see definition of M in (2.5)]. We assume that the NEF F(p),
generated by p, is steep, that is, M, = int conv(S(p)).

(ii) Let A be a convex subset of ©(p); let u be the map A — E, A — (A, —k,(A));
v(\) = 14(\)dX; p = u,v; let F be the Diaconis—Ylvisaker family generated by
u and v and associated with F(p); and let D be the parameter set of ¥ defined
in (2.16).

(iii) Let S be the closure of the graph in E = V x R of the function from A to
R defined by A — —k,()\), and let G := {h € V* xR: h+ D C D}.

DEFINITION 5.4. Let p € M(V). The Jgrgensen set of p, or of F(p), is defined
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to be the set of all positive p such that there exists p, € M(V) with ©(p,) = ©(p)
and k,, = pk,,.

A reference to the Jgrgensen set can be found in Jgrgensen (1986, 1987). If
p is in the Jgrgensen set of F(p), then the log-Laplace transform of p, and the
NEF F(p,) are given, respectively, by pk, and {exp{6x — pk,(6)}p,(dx): 6 € ©(p)
= ©(pp)}. Naturally, the Jgrgensen set is, by convolution, an additive semi-
group and contains the set of all positive integers. Note that the Diaconis—
Ylvisaker family &, defined in Assumption 5.4, will not change if we replace
p by some p, with p in the Jgrgensen set. The latter statement implies that
no generality is lost, for instance, by considering the Diaconis—Ylvisaker fam-
ily associated with the Bernoulli NEF generated by p; := 6y + 6, rather than
the Diaconis—Ylvisaker family associated with the binomial NEF generated by
Pn = X o(%)6;, since k,, = nk,,.

THEOREM 5.4 [Diaconis and Ylvisaker (1979), Theorem 2.1]. Let v, be the
measure defined by v,(d6) = exp{—pk,(6)}1o()(8)db,p > 0. Then, under As-
sumption 5.4, v, € M(V*) and ©(v,,) = pMF,).

PropPOSITION 5.5. Under Assumption 5.4, i) D C D(u) and (i) G is the
closure of D.

PROOF. (i) Let (pv, v) € D. Then [, exp{p((), v) — k,(A\)}dA < fe(p) < oo.
(ii) Since F(p) is steep, then My, is convex and D is an open convex cone,
and Proposition 3.1(vi) applies. O

We now apply Theorem 5.1 to F of Assumption 5.4. We distinguish between
two kinds of affine hyperplanes in E* = V x R which deserve separate treat-
ments: (a) hyperplanes which are not parallel to the line {0} x R, and (b) others.
We omit the proof of the next proposition as it is analogous to that of Proposi-
tion 5.2.

PROPOSITION 5.6. Suppose that Assumption 5.4 holds.

(a) Let g € H(S, G) be concentrated on the hyperplane {(v,p): p = (Ao, V) +po},
where (0,0) # (A\g,po) € E := V*XR. Let q; denote the image of q by the projection
of the hyperplane on V: (v,p) — v. Then

(5.10) kg, (A = Xoko(N) = pok,(N).
(b) Let g € H(S, Q) be concentrated on the hyperplane {(v,p): (\o,v) +1 =0},

where \g#0. Let V; := {v: (A\g,v) = 0} and let qq be the image of q in V1 x R by
(v,p) — (v —vg,p). Then, forall ) € A,

(5.11) Egu (A + (A, vo) Ao, —kp(N) = — (), vg).
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We now specialize Proposition 5.6 to the case V = R, getting more information
than in Proposition 5.2.

PROPOSITION 5.7.  Let Assumption 5.4 hold with V = R, and let A be an open
interval contained in ©(p).

(a) Let g € H(S, Q) be concentrated on the line
(5.12) {wprp=Xw+po},  (A0,p0)#(0,0),

and let q; be the image of q by (v,p) — v. (1) If A\g = 0, then py belongs to
the Jgrger..e set of p. (ii) If \g#0, then \j 1 ¢ k,(A). Moreover, the variance
functions of ¥'(q1) and F(p) satisfy

(5.13) Vrg(m) = py 2(po + Aom)* Vi) (m/(po + Aom)),

on M, the image of A by A+ m(}) = pok/,(A)/(1 — Aok, (N)).

(b) Let q € H(S, @) be concentrated on the half-line {(v,p): v = v, p > 0},
v9#0. Then, for all A € A, —ky,(—k,(N)) = voX and 0 ¢ k},(A). Moreover, the
variance functions of F(q.1) and F(p) satisfy

(5.14) VF(ql)(m) = v62m3VF(p)(vo/m)
on M, the image of A by A — m()\) := vo/k,(N).

ProoF. (i) This follows from (5.10). (ii) Introducing the map : A - R, A —
6(N) := X — Xok,()), and taking derivatives in (5.10), we get

(5.15) kL (600)6'(V) = pok!,(M).

Hence, A — kg (6())) is analytic on A, as a composition of two analytic functions.

Also, letting H(x) := pox/(1 — Aox), we get from (5.15) that kg (6(\) = H(k[,(V);
hence, k;,(A) does not contain Ay 1. The remainder is obvious.
The proof of part (b) is similar. O

A practical procedure for applying Proposition 5.7 is described by the follow-
ing steps. This procedure is applied in the examples of the next section.

1. Consider a given p € M(R). Find ©(p), &, = log L, (the log-Laplace transform
of p) and (Vg(,), MF(,)) [the variance function of F(p)]. Use these in (2.14) and
construct the Diaconis—Ylvisaker family F associated with F(p) by

(5.16) F= {A(v, P)exp{pvd — pk ()} e, @) db: p > 0, v € MF(,,)}

Such an ¥ is taken to be the family of priors.
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2. To search for the elements g; of the H(S, @) corresponding to ¥ in (5.16),
which are concentrated on lines, use Proposition 5.7. In particular, use (5.13)
and (5.14), which relate the variance function of F(q,) with the given vari-
ance function of F(p). Since Vz(,) depends on )¢ and vy, such relations will
enable one to determine which values of Ay and v, are such that Vg, is a
genuine variance function, and thereby whether q; € H(S, G).

3. For practical convenience, one might use the equivalence between families
in the sense of Section 4, and thus, by making a suitable transformation,
replace F by an equivalent family F'. If such a replacement is made, then
apply steps 1 and 2 to ¥’ (see Examples 6.1 and 6.2).

6. Examples: Diaconis-Ylvisaker families associated with NEF’s in
the Morris class. In this section, we apply the procedure described above
to the Diaconis—Ylvisaker families in (5.16) associated with all NEF’s in the
Morris class [more specifically, the F(p)’s in the above procedure are taken to
be the NEF’s in the Morris class], and we determine explicitly the extreme
points of the corresponding H(S, G) which are concentrated on lines of the form
{(,p): p = AU + po}. Recall that Morris (1982) classified all NEF’s in R having
polynomial variance functions with degree less than or equal to 2. His classi-
fication shows that there are exactly six types of NEF’s namely, the binomial,
negative binomial, Poisson, gamma, normal and hyperbolic cosine NEF’s. How-
ever, we need not examine all six types of such NEF’s, but only four types,
since the phenomenon of equivalence (Section 4) reduces the number of really
distinct H(S, G). Specifically, if ¥, and F, are the Diaconis—Ylvisaker families
associated with the Poisson and gamma NEF’s (respectively, binomial and neg-
ative binomial NEF’s), then the problem of studying their corresponding sets
of measures H(S1, G1) and H(S,, G») is the same, because one can be obtained
from the other by a suitable affine bijection (see the paragraph after the proof
of Proposition 4.3). Further explanation is given in Example 6.1.

In studying the following examples we utilize such an equivalence, as well
as Corollary 4.2, Theorem 5.3 and, in particular, Proposition 5.7. For simplicity,
we do not compute in these examples the normalizing constant A(v, p) appear-
ing in (5.16). We give complete details in Example 6.1 and skip most of such
details in the other examples. We also consider in Examples 6.1, 6.3 and 6.4 the
phenomenon of truncation of F. Details are provided therein.

ExAMPLE 6.1 (The Diaconis—Ylvisaker family associated with binomial and
negative binomial NEF’s). Let F(p) be the Bernoulli NEF. It is generated by
p = 8o + 61 € M(R). Here, k,(0) = log(1 +e°), ©(p) = R and (V(,), Mp(,)) = (m —
m2, (0, 1)). From (5.16), the Diaconis—Ylvisaker family associated with F(p) is

%1 = {A©, plexp{pvd — plog(1 +e))} do: v € (0,1), p > 0}

By a change of a variable to A = e%, one gets an equivalent family

6.1) 7 = {A@w,p) NP1 /(1+ AP ]1r- (N dX: v € (0, 1), p > 0},
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TABLE 1
The set of extreme points of H(S, G), corresponding to F in (6.1) which are concentrated on the line

{(w,p): p = Ao +po}

Line q € H(S,G) (Vi) Mrp(g)) NEF’s Name
) {(w,p):p=po}, Po €N 2?20 (pio) & (m(1 —m/py), (0, py)) Binomial

(2) {,p): p=v+pg}, po >0 2}’:0;%%)5;' (m1 +m/py), RY) Negative binomial
3) {(v,p): v=0} 8o — “Degenerate”

@) {w,p):v =1y}, vg > 0 a;ozggo%%?gai (m(m/vg — 1), (g, 0)) Translation of

negative binomial

which, by writing @ = vp and p = a + b, is the family of beta distributions of
the second kind. (Another change of variable will lead to the beta family of
the first kind, which is also equivalent to ¥; or ¥.) Similarly, starting with
p =37 (%) 6, n €N, which generates the binomial NEF, or with p = 22 §T(r
+ 0)/[0(r)ll,r > 0, which generates the negative binomial NEF [see Morris
(1982), Table 1], we will end up, after a suitable change of variable, with F in
(6.1). Accordingly, we can claim that F covers the Diaconis—Ylvisaker families
associated with the binomial and negative binomial NEF’s. Moreover, by apply-
ing Theorem 5.3(1) with A = R*, u(\) = (log A\, —log(1 + \)), and T'(\) = A(1 + \),
we can conclude that the variance functions corresponding to the solution mea-
sures of our problem are polynomials with degree less than or equal to 3, and
therefore their corresponding NEF’s are in the Morris-Mora class.

We now show that the set of all extreme points of H(S, G), with G = {(v,p):
0 <v < p} and S = u(R™), which are concentrated on lines, include only four
elements presented in Table 1. Naturally, p will be included in this set.

To show that these are the only extreme points on lines, we proceed as follows.
Apply Proposition 5.7 to p = 8 + 61, compute (Vg,), Mr(,)) and construct F as in
(6.1). Assume that g € H(S, G) is concentrated on the line p = A\ov + p,. Since,
Ay le¢ M, 7(p) = (0, 1), Ao cannot be greater than 1. If \¢ < 1, then the intersection
of the line p = Agv + po with G has compact support, and therefore the support
of g1 of Proposition 5.7(a) must be bounded. Since Vg, = m — m?, (5.13) yields

Vign(m) = m(1+ om/po) (1 + (Ao — Vm/py) and M = (0,p0/(1 — py)).

If Ao < 1 and A #0, then V) is a third-degree polynomial corresponding to an
NEF with bounded support. By the Mora (1986) classification of cubic variance
functions, or by Bar-Lev and Bshouty [(1989), Theorem 2.1], there exists no such
variance function. Hence, Ao = 0 or A\¢ = 1. The case Ao = 0 gives Vgy,)(m) =
m(1 —m/py) and M = (0, po). By the Morris classification, py must be a positive
integer and the latter variance function is then that of the binomial NEF. Hence,
(1) of Table 1 follows. The case Ay = 1 gives Vg, )(m) = m(1+m/po) and M = R*.
By Morris’ classification, the latter variance function is that of the negative
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binomial NEF. Hence, (2) of Table 1 follows. We now apply Proposition 5.7(b).
If g is concentrated on {(v,p): v = vy}, then vy > 0, since this line must have a
nonempty intersection with G. If v = 0, then, by Corollary 4.2, ¢ = 6,. Hence,
(3) of Table 1 follows. If vg > 0, (5.11) gives Vp(,)(m) = m(m /vy — 1) and M =
(vg, 00). Let Fy be the image of F(q;) by the translation map x — x — vg. Then
Vg,(m) = m(1 + m/vy) on R*, which is the variance function of the negative
binomial NEF. Hence, (4) of Table 1 follows. This completes the demonstration.

REMARK 6.1. We illustrate here the phenomenon of truncation for the
family of priors & in (6.1). Consider

b= 5[ () fisvn]s

Then O(p) = (—oco, —log4), k,(8) = log[1 — (1 — 4e%)1/2] /2¢°, Vg, (m) = m(m +
1)(2m + 1) and Mp(,) = R*. Such an F(p) is a special case of the Takacs NEF’s
having cubic variance functions presented in Letac (1986) and Mora (1986) [see
also Letac and Mora (1990)] under the name of fluctuation families. Except
for such a special case, no other measures generating the Takacs NEF’s have
explicit Laplace transforms. The Diaconis—Ylvisaker family associated with
F(p)is

F= {A(v, pler [(1 —a- 4e9))1/2/2e0]p1(_00,_10g4)(9)do: p>0,v> o}.

The change of variable to A = (1 — (1 — 4e%)1/2)/2 shows that F is equivalent to
F = {A'(w,p)A?" "1 = N)PCD =11 — 2019, 1/2 (N dX: p > 0, v > 0}.

Consider the maps u: (0,1) — R2 and A — (log \,log(1 — \)) and define y := u,v.
The NEF which is associated with F is F(u). Such an NEF is concentrated on
the same S as the NEF generated by beta distributions of the first kind given
in (5.6). No wonder that ¥’ is also a conjugate family for the Bernoulli NEF
although it is not a Diaconis—Ylvisaker family. Thus, the study made on the
family of beta distributions of the second kind in (6.1), which is equivalent
to the family of beta distributions of,the first kind, provides extreme points
(those in Table 1) for the H(S’,G’) corresponding to such an F'. Careful anal-
ysis of Proposition 5.7 will provide other extreme points to H(S’, G’). Such ex-
treme points generate NEF’s in the Morris—Mora class, since here, the T'(\) of
Theorem 5.3 is a polynomial in .

ExAMPLE 6.2 (The Diaconis—Ylvisaker family associated with Poisson and
gamma NEF’s). For p = ¥2,6;/i!, F(p) is the Poisson NEF for which ©(p) =
R, k,(0) = ° and (Vp(,), MF(,)) = (m,R*). The Diaconis—Ylvisaker family (5.16)
associated with F(p) is F; = {(A(v,p) exp{fvp —pe®}df: v > 0, p > 0}. A change
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TABLE 2
The set of extreme points of H(S, G) corresponding to F in (6.2) which are concentrated on lines

Line q € #(S,6) (Vrg) Mpq)) NEF’s Name
1) {(w,p): p=po}, o >0 Y7208/i! (m,R*) Poisson
(2) {(,p):v=vy >0 hvo—11p. dh (m2/vg, R¥) Gamma with shape

parameter vg

of variable to ) = e? leads to an equivalent family
(6.2) F={A@w,p)X? le™P*: v > 0, p > 0},

which is the family of gamma distributions. [For p(dx) = x*~ 11+ (x)dx, F(p) is
the gamma NEF. Its associated Diaconis—Ylvisaker family can easily be shown
to be equivalent to F.] Here, u()\) = (log A, —)\) and A = R*. This case is covered
by Theorem 5.3(i) since T'(\) = )\ and dim E = 2. Hence, the variance functions
of the solution measures are polynomials of degree less than or equal to 3. The
set of extreme points of the corresponding 3((S, G), with G = (0, c0)?, which are
concentrated on lines is presented in Table 2.

Indeed, by applying Proposition 5.7(a) we realize that the case Ay > 0 is im-
possible, since k/,(6(p)) = R* cannot contain A, ! Noting that g is concentrated
on G = (0, 00)?, the case )\ < 0 implies that q has a compact support. However,
(5.13) yields Vig,)(m) = m(1 + Agm /po)? and M = (0, po/(1 — Xo)), which is not a
variance function by the Mora classification. Hence, the case A\ < 0 is impossi-
ble. This leaves us with the case Ay = 0 and py > 0, which yields (1) of Table 2.
Considering the line {(v,p): v = vo}, vo > 0, and utilizing (5.14) of Proposition
5.7(b) yields Vg,y(m) = m? /vy and M = R*, which corresponds to (2) in Table 2.

EXAMPLE 6.3 (The Diaconis—Ylvisaker family associated with the normal
NEF). Let p be the N(0,1) law. Then F(p) is the family of N(¢, 1) laws. Here,
O(p) =R, k() = 62/2 and (VE(p), M) = (1, R). The Diaconis—Ylvisaker family
in (5.16) can be rewritten as F = {(p/27)'/2 exp{—p(6 — v)?/2}: v € R,p > 0},
which is the family of N(8, p) laws. Here A = O(p) = R, u(\) = (=A2/2, ) and, by
Theorem 5.3, T'(\) = 1. Hence, the variance functions of the solution measures
must be polynomials of degree less than or equal to 3. An analysis analogous
to those used in previous examples shows that there is only one extreme point,
corresponding to the case )\ = 0, which is concentrated on the line {(v,p): p =
pPo},po > 0. The corresponding variance function is (pg 1 R), which is that of
the NEF composed of N(6, py 1) laws. We make two remarks concerning such a
small set of extreme points.

(i) Generally speaking, for F, a Diaconis—Ylvisaker family, one can raise the
following question. Is it true that all extreme points of H(S, G) are concentrated
on lines? This is not true for this particular case of the family ¥ of normal
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laws. For this case, the statement in the latter question is equivalent to the
following one. Assume that (X,Y) is a random variable on R x R* such that,
for all u € R, E[exp{uXY — u%Y2/2}] = 1. Then X and Y are independent and
the distribution of X is N(0,1). A counterexample to the latter statement is
easily obtained, however, by considering a standard Brownian motion B on R
and defining VY = inf{¢; |B(¢)| = 1} and X = B(vY).

(ii) Consider the truncated normal family

F = {A(v,p)exp{ev —pt?/2}1g(0)db: v € R, p > o},

where A(v, p) is a normalizing constant. Then Proposition 5.7 still applies with
A =R*. Here, k,,(A) = R* and Proposition 5.7(a) provides a larger set of extreme
points, namely, to the previous case where Ao = 0, one adds the case A\ < 0,
for which Vg,)(m) = p(')‘z(po + Aom)? and M = (0, —py/Xo)- In this case F(q;)
is the image of an inverse Gaussian family having variance function (m3, R*)
[see Jgrgensen (1987)], by the map x — (x — pg)/Ao. Proposition 5.7(b) provides
an extreme point which corresponds to a scale transformation of the inverse
Gaussian NEF, since (5.10) becomes Vg, (m) = v;>m® and M = R*.

ExAMPLE 6.4 (The Diaconis—Ylvisaker family associated with the hyperbo-
lic-cosine NEF). To cover the last type in the Morris class, consider p(dx) =
(coshmx/2)"1dx. Here, O(p) = (-7/2, 7/2), k() = —logcos 8, (Vp(,), Mp(,)) =
(m?2+1,R), D = (0,00)2 and F = {A(v,p)e®” /(cos )’ df: v € R, p > 0}. As in
the normal case, Proposition 5.7 provides only one set of extreme points corre-
sponding to Ao = 0. However, as in Example 6.3, if we consider the truncated
family ¥ = {A'(v,p)[e?? /(cos OP11g+(6)d0: v € R,p > 0}, the resulting set of
extreme points is larger and its study is left to the reader. Note, however, that
since here we are in the realm of Theorem 5.3 with dim E = 2 and T(\) = A2 +1,
such extreme points are in the Morris—Mora class; in particular, a “strict arc-
sine” family appears as an NEF corresponding to one of these extreme points
[see Letac and Mora (1990) and Mora (1986)].

7. Conclusions. We make some comments on the nature of difficulties
that one may face in trying to extend and apply the results of this paper, and
those of Section 5, in particular, to the case of Diaconis—Ylvisaker families
associated with multivariate NEF’s F(p), p € M(R"), say. Such difficulties occur,
for instance, when F(p) is the family of Wishart distributions, or when ¥ is the
family of Dirichlet distributions. If we try to apply Proposition 5.5, we are led
to characterizations of ¢ by variance functions in several dimensions, for which
the results are very sparse.

Similarly, if we consider the case where S is concentrated on a skew curve
(as in Proposition 5.2 or Theorem 5.3), we get variance functions outside of the
familiar frame of the Morris—Mora class. A good theory of variance functions of
the form PA + Q+/A, as in Theorem 5.3, is desirable. This will enable use to solve
some tantalizing cases, such as the hypergeometric family or the generalized
inverse Gaussian family.
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APPENDIX

PROOF OF PROPOSITION 4.4. Let 8 and r be nonnegative. Define the Bessel
function I5(r) = £2° ((r/2)°* 2 [n!T'(n + B + 1)1, and let

(A.1) A =T(d/2) (r/2) " yrap 1),  neN,

where d is the dimension of the Euclidean space. For n = 0, (A.1) coincides
with (4.2). Let E,, denote the finite-dimensional subspace of C*(S), the space of
eigenfunctions of the Laplacian Ag of the sphere, associated with the eigenvalue
—n(n+k—2) [see Seeley (1966)]. For v being the uniform measure on S, let L2(v)
be the orthogonal direct sum @®3° (E,. Then it is known [e.g., Letac (1985),
Proposition 6] that if Z is a signed measure on S and if g,, defined on [0, c0) x S
by ge(r,u) = [gexp{r(h, u)}{(du), then there exists a sequence (C,) , of real
numbers and a sequence (e, ()32, , of functions on S such thate,(u) € E,,, for all
ues, £2,CA,n)7 < oo, for all r > 0,and g,(r,u) = 0CnAn(r)e,(u), in the
L%(v) sense. Suppose now that go(1,u) =0, forallu € S. From the orthogonality
of (E,)5% o, we get C,A,(1) = 0, for all n € Ny. Since A,(1) #0, we get C,, = 0 and
ge(r, u) =0, for all (r,u) € [0, o] x S. However, g¢(r,u) is the Laplace transform
of ¢ expressed in polar coordinates, that is, L,(r, u) = g,(r, u). Hence L,(6) = 0
for all 6 in the Euclidean space and /= 0. O

ProOF OoF THEOREM 5.1. (a) First note that taking e} = 0 yields ¢ = &
(Corollary 4.2). To avoid trivialities, we assumed e} #0. We now prove (i) and
(ii).

() If hy € E7, then (e + hy, uo(\) + u1(N) = (hq, u1(N)) + (e}, uo()\)) so that
I = [pexp{(h,u(})}q(dh) = exp{(ef, uo(\))}Lq,(u1()\)), where L, is the Laplace
transform of q;. This implies (5.1). Since int p1(S) # ¢ [Assumption 5.1(1)], q; is
determined by (5.1) from the uniqueness property of Laplace transforms. Hence,
q is unique. It is also extreme, since if ¢ = a¢’ + (1 — a)q”, a € (0,1),q’,q" €
3((S, G), then ¢’ and q" are also concentrated on e +E}, and g = ¢’ = ¢” from the
uniqueness property. To see that g; € M(E}), assume to the contrary that q; is
concentrated on an affine hyperplane of E; of dimension smaller than dim S. To
avoid new notation, suppose, for now, thatdim E} = m < d; = dimS and thatq €
M(E?). We show that we get a contradiction. Note that the case £ = 0is excluded;
if not, we would have that g = be;, and exp{(eo, u)} =1, for all u € S, so that
e; = 0. However, the latter case was excluded in the hypotheses of the theorem.
Let u; € int p1(S) and s € S be such that p;(s) = u;. Consider the analytic map
f: W — S mentioned in Assumption 5.1(ii), where W is a small open ball in
R% . Then kq,(p1(f(w))) = —(eg, f(w)). Taking suitable coordinates, we get, with
obvious notation, that kg, (fi(w), ..., n(m)) = —(@m+1fm+1W) + - -+ + agfaw)),
where the rank of the matrix (9fj/0w;)i, j = 1, ..., d; is ds, and then taking
the differential with respect to w, we get

8kQ1 ! d /
Z J6, 1)+ > affw)=0

Jj=1 Jj=m+1
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Since g1 € M(E}), there exists w € W such that (9kg, /06,)7_ ; is not (0)7"_,, the
zero vector. Hence, the rank of ( fi )‘Ji.s , is not d;, a contradiction.

(ii) This is an immediate conseqlience of (56.1) and Theorem 3.2.
(b) Let ( , )y denote the canonical bilinear form on V* x V and ( , ) that on
E* xE, asusual. From Theorem 3.2, there exist amap h: V — E* and a measure

Q on V such that, for v-almost all A,
A2 exp{(ht), uN) Q) = exp{ (90N, x)y, — k56N }8(d).

Hence, @ and é are equivalent measures. Denote by L%(§) the space of equiva-
lence classes of measurable functions on V with the relation fy ~ f5,if f1 — fo =
0, é6-a.e. Consider (), x) := (h(x), u(N)) — (0N, x)y +ks(6(N)). Then, by (A.2), the
map A — f(), -), A — L%J¥), is constant v-a.e and there exists \g € A such that,
for v ® §-almost all (A, x),

(A3)  (h@),u() — u(A)) + ks (BON) — ks(60r)) = (6N — 8(X0),x)y-

By an assumption, there exist \j,...,A\s € A such that (u();)) — (u()\o))‘}=1 is
a basis in E and (A.3) holds for A € {\1,...,As}. There exists ej € E such
that, for j = 1,2,...,d, — (e}, u(X;) — u(Xg)) = ks(6();)) — ks(6(Xo)). Define the
linear map ¢: V — E, by (p(x), u(X;) — u(Xg)) = (6(A;) — 0(Xo),x)v,j =1,...,d.
Therefore, (A.3) implies that h(x) = ej + ¢(x), 6-a.e. Since, for v-almost all A,
(p(x), u(N) — u(Xg)) = (BN — 8(Xg), x)v, we get, ‘pw(A) — ulXg)) = 6(X) — 8(Xo),
v-a.e., where ‘p: E — V* denotes the transpose of ¢. The latter relation along
with the assumption made on u,v and §,v imply that ‘o(E) = V*. Hence, the
rank of ¢ is dim V and ¢ is injective. Proving that dim V = dg can be conducted
in a manner analogous to that used to prove that q; € M(E}) in part (a). We
omit this proof for brevity. O

PrOOF OF THEOREM 5.3(i). For dim E = 3, the computations are more
complicated and we borrow some ideas from Letac (1992). Let P;(\) := a;\2+b; A+
¢;,i =0,1,A(m) := ag+aym,B(@m) := by +bym, C(m) := co+c1m, Ay := boc1 —cobi,
B := coa1 — age1, Cq1 = agby — boay. Note that here we have chosen a basis
(f1,f2.f3) of E such that T(\)u'(\) = A2f; + Afz + f3. If we put on E the oriented
Euclidean structure admitting (f1,f2,f3) as a positive orthonormal basis, then
the vectors a;f1 + b;f> +c¢;fs, i = 0,1, must be independent, and A;f1 + B1f> + Cif3
is their cross product. This implies that

(A.4) AA+B1B+C1C=0 forall m.

Letting A := B2 —4AC, D; := B2 - A;C; and T(\) = toA* + 8103 + 80 A2 + 21 A +2_o,
we get from (5.8) that

_ _ -1
(A.5) Vpgy(m) = C1A+2B; — A (t2X2 +tih +tg+ £ AT H £ 72).

(al)\ + bl + 01/\_1)
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Since A(m)A\% + B(m)\ + C(m) = 0 on A, we easily conclude that A(m) is the
square of a first-degree polynomial if and only D, = 0, and this is equivalent to
requiring that Py and P; have a common root. For brevity, we assume D; #0.
[The calculations required for the case D; = 0 are easy to carry out by using
(5.9) and (A.5), since A is a Mébius function of m.] 5

Denote by M the image of A by A — Po(A)/P1(\). Then, M is open, which
implies that A > 0 on M. Fix ¢ in {—1, 1} and two open intervals M; C M and
A; C A such that A(m) = (—B + ey/A)/2A defines a bijective mapping from M,
to A;. We will prove that (5.9) holds for all m € M;. The fact that Vi, is real
analytic on M will enable us to extend (5.9) to all m € M. Using the relation
A1 = (=B +¢ev/A)/2C, a tedious computation gives

(A.6) aid+ b1 +c1A 7! = (C1C — A1A +B1VA) /2AC.

By using (5.8), we observe that (C;C —A;A)? — B2A = 4ACD;, and hence we get
from (A.6) that

(A7) (@A +b1+e1A" ) ! = (C1C - A1A + eB1VA) /2D,
Noting that

Cl)\—2B1+A1)\_1_PiP0—P6P1__ / /
al)\+b1+cl)\—1 - P1 - (P0+mPO)

and that (P + mP'1)2 — A =(2A)X+B)?2 — A =4A(A)? + B\ + C) = 0, it follows
that —(P}) + mP}) = ev/A. Using the latter result, squaring (A.7) and employing
the resulting equation in (A.5) yields

Vrgo(m) = (4D3) ™' [~2B1(CC1 — AADA + ((CCy - AA* + BiA)eVA]
X (8222 +t1) + 2o + 1AL+ E_p2 7).

Note that the coefficient of ¢; is already of the required form. We still have to
prove that the coefficients of ¢, ¢,¢_; and £_5 have the form PA + QVA, where
P and @ are polynomials with degree less than or equal to 1 and 2, respectively.
We prove this for ¢; and ¢5. (The proof for ¢_; and ¢_5 can be obtained analogously
by exchanging A with C and ¢ with —¢.) Since such a proofis a problem of formal
algebra, we assume thatA;,B;,C; # 0 and translate the expressions in terms of
polynomials in @ := AA,/B; and ¢ := CCy/B;. We get from (A.4) that —-B =a +c,
A =(a +¢)? — 4rac and A = Ay(a + ¢ + ev/A)/2B;, where r := B2/A,C;. Since the
coefficient of ¢ is (—2(c — @)A + ((c — @)? + A)ev/A)B2/4D?, the coefficient of ¢,
will be, after multiplication by A;B,/8D?,

a”l (—2(0 —a)A+(c—al+ A)e\/Z) (a+c+2VA)
=4(a —re)A + 4(a2 +ac(l —3r)+ rcz)E\/Z,
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which has the desired form. Similarly, the coefficient, of £, will be, after multi-
plication by A%/4D?

a™! ((a —re)A + (a® +ac(l - 3r) + rcz)E\/Z) (a+c+evVA)
=2(a+c(1-2r)A+ (a2 +2ac(1— 2r) +c*(1—2r + 2r2))\/z,

which also have the desired form. This completes the proof. O
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