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MONOTONICITY PROPERTIES OF THE POWER FUNCTIONS
OF LIKELIHOOD RATIO TESTS FOR NORMAL MEAN
HYPOTHESES CONSTRAINED BY A LINEAR SPACE AND A CONE!

By XiaoMmi Hu AND F. T. WRIGHT

University of South Carolina and University of Missouri-Columbia

Anderson studied the monotonicity of the integral of a symmetric,
unimodal density over translates of a symmetric convex set. Restricting at-
tention to elliptically contoured, unimodal densities, Mukerjee, Robertson
and Wright weakened the assumption of symmetry on the set and obtained
monotonicity properties of power functions, including unbiasedness, for
some likelihood ratio tests in order restricted inference for the variance-
known case. For elliptically contoured, unimodal densities, we weaken the
assumption of convexity to obtain similar results in the case of unknown
variances. The results apply to situations in which the null hypothesis is a
linear space and the alternative is a closed, convex cone.

1. Introduction. The study of the monotonicity of an integral, with a
fixed integrand, over translates of a fixed set is motivated by one of the un-
resolved questions in order restricted statistical inference. The likelihood ratio
test (LRT) for homogeneity of the components of a normal mean vector with the
alternative restricted by quasiordering is one of the most extensively studied
problems in order restricted inference. However, questions about the behav-
ior of the power function of the LRT for the case in which the variances are
unknown have not been answered in general. If the quasiordering is a simple
ordering u; < pg < .-+ < i, then the test has been proved to be unbiased,
and if it is the simple tree ordering p; < p; for j = 2,... %, numerical cal-
culations suggest that the test is unbiased. Robertson, Wright and Dykstra
(1988) summarize these results and ask for “new techniques” to establish the
unbiasedness of the LRT’s in this case. We extend the monotonicity results of
Mukerjee, Robertson and Wright (1986) to some nonconvex sets. Also, we apply
these new results to show that the LRT is unbiased for the case of unknown
variances and hypotheses more general than homogeneity with the alternative
restricted by quasiordering.

Cohen, Kemperman and Sackrowitz (1993) study tests of By = 0 with the
alternative restricted by By > 0, where y is k-dimensional, B is a (k — m)-by-k
matrix with rank & — m. They give sufficient conditions for a test to be unbiased,
consider complete classes and show that the LRT is unbiased if (BB’)~! has
only nonnegative elements. Their results concerning the unbiasedness of the
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LRT include several interesting cases in order restricted inference but, as they
point out, for independent random samples with unknown variance, they do
not include the simple tree ordering or the umbrella ordering, that is, u; < ug
S S h 2 Phe1 2 2 e

In this paper, independent random samples from % normal distributions
with variances known or known up to a multiplicative constant as well as the
analogous multivariate settings are considered. With L a linear space, C a
closed, convex cone, L C C, Hy: 4 € L and Hy: u € C — L, it is shown that
the power functions of the LRT’s of H, versus H; are nondecreasing along each
line segment which starts at a point in L and continues in a direction in C.
Hence, because the power functions are constant on L, the tests are unbi-
ased. The setting considered here, which is quite general, does not require C
to be polyhedral. While it includes testing homogeneity with the alternative
restricted by an arbitrary quasiordering, it also includes testing u = 0 with the
alternative restricted by a circular cone [see Pincus (1975)]. A set of means
{wijy1 < i < r,1 < j < c} satisfies the matrix ordering if p;; < uy for
1<i<k<randl <j <! <ec. If one expresses this order restriction as
Bp > 0 in the natural way with » = 2 and ¢ = 3, B has too many rows to apply
the results in Cohen, Kemperman and Sackrowitz (1993), but the matrix order
is a quasiorder.

Suppose g is unimodal and elliptically contoured and let

ﬂm=L gx)dx,
1

In Section 2, we prove that f( o+ 1) is nonincreasing in ¢ > 0 provided that A,
1o and vy satisfy a suitable condition; see (2.5). This generalizes an earlier result
of Mukerjee, Robertson and Wright (1986), which is a partial generalization of
the inequality due to Anderson (1955). Anderson’s work does not require an el-
liptically contoured g. In Section 3, we apply our result to sets A defined in terms
of projections onto a linear space L and a convex cone C D L; see Theorem 2.
Such sets A appear as acceptance regions of the LRT’s of u € L versus u € C
— L, where p is a normal mean vector and the underlying covariance matrix is
known up to a scale factor. As a consequence, it is shown in Section 4 that such
LRT’s are unbiased.

2. The monotonicity property of integrals. Following Das Gupta,
Eaton, Olkin, Perlman, Savage and Sobel (1972), the function g(x): R* — R
is called unimodal and elliptically contoured if g(x) = A(x'Wx) with A(-) a non-
increasing function on [0, c0) and W a positive definite matrix. For any x and y
in R*, x'Wy defines an inner product. This inner product and the corresponding
norm are denoted by (-,-)w and ||-|w. In this section we consider the behavior
of the integral

@.1) ﬂm=/ g(x)dx
A-p
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as u changes, assuming that g(x) is unimodal and elliptically contoured and
f(w) is differentiable. The directional derivative of f(u) in the direction of v,
at po exists when f(u) is differentiable. Considering this function on the line
1 = ug + tvy, we have a function of ¢, f(ug + tvg). By definition, the directional
derivative at pg can be expressed as

1

d
(2.2) m%ﬂuo +tup)

t=0

LeEMMA 1. Suppose that g, vy € R* with vy # 0,h() is a nonincreasing
function on [0, 00), W is a k-by-k positive definite matrix and A is a set such that

2.3) Flw) = /A h(|lxl1%) dx
- K

is a differentiable function. If
x € A and (x — po, vo)w > 0 imply that
@4 y=x— 2(x — o, Yo)w{vo, uo)ﬁ,luo €A,
then the directional derivative of f(u) in the direction of vy at ug is nonpositive.
PrROOF. Let
D ={x € A: (x—po,vo)w > 0}, E={y = x—2(x— po, vo)w Vo, vo)y vo: x € D}
andF=AN(DUE).SinceD C A,E C AandD n E has Lebesque measure zero,

- 2\ 70 — 2 \ dax.
fur= [ nlietias= [« [+ [ w(i)ds

The directional derivative of f(u) in the direction of v at g is given by (2.2) with

Fluo + tvo) = / +/ +/ h(llx — o — twoll%y) dx.
p JE Jr
We establish the following claims:
@) Jfp+ [z hlx — po — tol%) dx is a symmetric function of ¢.
i) With r() = [, h(|lx — po — tvo|l3) dx, r(t) < () for t > 0.

For the first claim, we make a linear transformation
/Eh(lly — o — twollfy) dy = /Dh(lly(x) — po — two|liy) abs(|J])dx,

where y(x) = x — 2(x — po, vo)w(vo, vo)w vo and J = I — 2uo(W) (v Wrg)~L.
However, abs(]J|) = 1 since J? = I. It is straightforward to show that ||y(x)
— po — tollfy = |lx — o + |}y Thus,

/E h(llx = o — tvoll3y)dx = /D h(lke - o + o) dx
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and the first claim follows immediately. For the second claim, we note that if
x € F, then ||x — po — twollfy = ||x — wolliy + llvollfy — 2¢(x — po, vo)w with 2¢(x
— po,vo)w < 0 for any ¢ > 0. The claim follows because A(-) is nonincreasing.
The lemma is proved by noting that ||| w times (2.2) is

i FO=FO _ L -r-n)

t— 0+ 2t t— 0+ 2t =

Suppose g is a point in R* that satisfies the conditions in Lemma 1. If
all points on the line segment starting at p, in the direction of vy satisfy the
same conditions, then we can establish the monotonicity property for f(u) on
this line. This thought leads to Lemma 2 that gives a sufficient condition for
this desired result.

LEMMA 2. Suppose that g, vy € R* with vy#0; A C R*; and W is a positive
definite matrix. If
x € Aand {x — po,vo)w > 0 imply that

(2.5)
y(S) =X — 2$(x — Mo, VO)W(”O; VO);Vll/O € Afor any s in (01 1]1

then (2.4) holds with ug replaced by uy = g + tvg for any t > 0.

PRrOOF. Suppose that p; = ug + tvg,t > 0;x € A; and (x — p3,vo)w > 0.
Since s can be 1, there is nothing to be proved for ¢ = 0. If (x — p1,v9)w = 0,
then the desired conclusion follows trivially. So we assume that ¢ > 0 an
(x — p1,v0)w > 0, which imply that ¢(vy, vo)w(x — /J,(),l/o>ﬁ,1 € (0,1). Then s =
1- #(vy, I/o)w<x — o, l/());Vl € (0,1), but with this s,

x — 28(x — ko, o)w Vo, Vo) Vo = % — 2(x — 1, vo)w (v, vo) ' Vo,

and hence Lemma 2 is proved. O

REMARK. Let ¢ = c(ug,vp) be the point on the line x + ¢1y,¢ € R, which
is closest to po. The point y in (2.4) is the reflection of x relative to ¢, and y(s) in
(2.5) with 0 < s < 1 are the points between x and y.

The conditions imposed in Lemma 2 are quite general. It is clear that these
conditions hold if the condition of Lemma 1 is true and A is convex, or only
convex in the direction of vy, that is, ax + (1 — a)y € A for any a € [0,1] and
x,y € Awithy —x = byy and b € R. The next theorem establishes the mono-
tonicity property of the integral of a unimodal, elliptically contoured function
over translates of set A. The proof, which is a direct application of Lemmas 1
and 2, is omitted.

THEOREM 1. Suppose that pg, vy € R* with vy#0; h(-) is a nonincreasing
function on [0,00); W is a k-by-k positive definite matrix; and A is a set such
that f(u) given by (2.3) is a differentiable function. If (2.5) holds, then f(u) is
nonincreasing on the line segment u = pg + tvg for t > 0 as t increases.
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3. The monotonicity of probabilities. The projection of a vector x onto a
set D is defined as a vector which minimizes ||x —y||w overy € D and is denoted
by E,(x|D). For a closed, convex cone C,Ew(x|C) exists and is unique. Fur-
thermore, Ey(x | C) = x* if and only if x* € C, (x — x*,x*)w = 0 and (x — x*,y*)w
< 0 for each y € C. For a linear space L,L+ denotes its orthogonal comple-
ment. The polar cone associated with C is the closed, convex cone C? = {x
€ R*: (x,y)w < 0, for each y € C}. For any x € R*,x = Ey(x | C) + Ey(x | CP) and
(Ew(x|CP),Ew(x|C))w = 0.

In this section we consider applications of Theorem 1 to probabilities.

LEMMA 3. Suppose L is a linear space, C is a closed, convex cone, L C C and
A={xeR" |[Bw(x|C) - Bw(x|L)|l}, <a+blx - Bw(x|C) |5},

where a > 0and b > 0. If uy € R*¥, 1y € CN LY, 0940 and (uo,vo)w > 0, then
(2.5) holds.

PROOF. Suppose that (uo, vo)w > 0,19 € C ﬂLl,Uo#O, x € A and (x — po,
vo)w > 0. Fix s in (0,1] and let y denote the vector y(s) = x — 2s(x — puo,
vo)w (o, z/o)v‘Vluo. We need to show that y € A. First, we establish the follow-
ing claims: () [|y|ff < [lx[lf; (D [Ew(y |(CNLYHP)|F > [|Ewlx [(C N LHP)|3;
and (iii) | Ew(y | CP)|| > [Ew(x | CP)||% . Note that

913 = || %1% — 4s(x — 1o, vo)w (vo, vo)w" [(1 — 8)x — pao, vo)w + (ko Vo) w]

and that (x — uo,vo)w > 0, (o, vo)w > 0, s > 0 and 1 — s > 0. Thus, the first
claim is proved. Claims (ii) and (iii) follow from the fact that 2s{x — uo, vo)w
(1/0,1/0)‘7‘,11/0 € CNL' and Lemma 2.2 in Mukerjee, Robertson and Wright
(1986). From the proof of Lemma 3.3 and the first corollary to Theorem 3.6 of
Raubertas, Lee and Nordheim (1986) and from our first two claims, we have that

|1Bw(51C) - Bw(y D) = | Bw(v|Cn L)
2
= Iyl ~ | Bw (] € Lty)]
2
< et - 3o s o)
2
< et - o] )
= ||Ew(x|C) - Ew(x|L) |-
By the definition of A and the third claim, we further have that
| Ew(y1C) - Ew(y|L)||} < a+b|x - Ew(x|C)|5 = a+b||Ew(x|CP)|
< a+b||Ew(y|C?)[[y =a+blly ~ Ew(y|C)|.

Thus, y € A and the proof is complete. O
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In the next lemma we consider the probability P(X + 4 € A), where X has
a unimodal, elliptically contoured density and A is defined as in Lemma 3. Of
course, if X has multivariate normal distribution, then it has such a density.

LEMMA 4. Suppose X has a unimodal, elliptically contoured density and A
is the set defined in Lemma 3. Then the following conclusions hold.

(i) The probability P(X + u € A), as a function of u, is nonincreasing on the
line segment u = ug + tvg for t > 0 as t increases, provided py € L and v €
CnLt.

(ii) Foranyv e LLP(X+pucA)=P(X+u+veA).

Proor. The first conclusion follows immediately from Lemma 3 and Theo-
rem 1.

Because L is a linear space, it is well known that, for v € L, Ey(x £ v |C) =
Ew(x|C)+vand Ey(x + v|L) = Ew(x|L) £ v. Thus,

P(X+p ) =P(|| By (X + 1 C) — Ew(X +#| D)5,
§a+b|lX+u—EW(X+/‘{C)“§V)
= P(|[Ew(X +uxv|C) ~By(X+uxvID)},

<a+b|X+pty—Ey(X+ptv|O))
=P(X+,U,:I:I/GA).

The proof is complete. O
We now present the main result about the monotonicity of probabilities.

THEOREM 2. Suppose that X has unimodal, elliptically contoured density
g(x) = h(x'Wx) with h(-) nonincreasing, L is a linear space, C is a closed, convex
cone, L C C and

A={xeR" |Ew(x|C) - Ew(x|L)[y < a+blx—Bw(x|C)[ly },

where a > 0and b > 0. If uy € L and vy € C, then the probability P(X + j1 € A),
as a function of i, is nonincreasing in't on the line segment u = g + tvy with
t>0.

ProOF. Because pg +tEw(vg | L) € L, we may apply Lemma 4(ii) to obtain

PX+puecA)=PX+ug+tyy €A)
= P(X + o + tEw (vo] L) + tBw(vo| L*) € A)

= P(X +tEw(vo |L*) € A).
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Since Ew(vy | Lt) = vy — Ew(vy | L), vy € C,—Ew(vy |L) € L C C and C is closed
under addition, Ew(vo | L1) € CNL* and by Lemma 4(i) this is a nonincreasing
function of ¢ on ¢ > 0, that is, the probability P(X + 1 € A), as a function of
i, is nonincreasing on the line segment u = pg + tyy with ¢ > 0. The theorem
is proved. O

REMARK. Define A as {x € R*: | Ey(x|C) — Ew(x|L)||}; < a}. Then Lemma
3, Lemma 4 and Theorem 2 also are true with this A. Actually, the condition
of Lemma 1 is satisfied and A is convex. This is the case studied in Mukerjee,
Robertson and Wright (1986).

4. The monotonicity of power functions. Suppose p is a vector of nor-
mal means, L is a linear space, C is a closed, convex cone and L C C. Let
Hy: u € L and Hy: p € C — L, and consider the LRT of H, versus H;. We con-
sider the following two cases.

CasE 1 (Independent random samples). Suppose Y;;, forj=1,2,...,n; and
i = 1,2,...,k, are independent and Y;; ~ N(u;,02). Let u = (p1,p2,. .., 1)
and Y = (Y,,Y,,...,Y;) with Y; the mean of the ith random sample and ¥ =
diag(o?/n1,02/ng, ..., 0% /ny).

CASE 2 (A multivariate random sample). Suppose Y; = (Yy;,Yy;, ..., Y3;),
for j = 1,2,...,n, are independent and identically distributed %-dimensional
normal random vectors with mean u = (u1, yg, ..., u) and covariance matrix
V.Then Y = (Y1,Ys,...,Y), with Y; the mean of Y;; for j = 1,2,...,n, has
covariance ¥ = V/n.

In both cases, set W = =1, When W is known, by a standard argument one
sees that the LRT rejects the null hypothesis for large values of |[Ew(Y |C)
— Ew(Y | L)||%. If A is the acceptance region for the LRT, then from the remark
following Theorem 2 we have that the probability of A is nonincreasing on each
line segment starting at a point in L and continuing in the direction of a vector
in C. Thus, the power is nondecreasing on this line segment. Because the power
is a constant on L, the test is unbiased.

Suppose that W is unknown. For independent random samples, that is,
Case 1, one commonly assumes that cri2 = a;0? with a; known and o2 unknown.
Thus with u; = n;/a;, fori = 1,2,...,k and U = diag(uy,us, . ..,u), & = c2U"1
and W = U/0?. In Case 2, it is commonly assumed that V = 2%, where ¥, is
known and o2 is unknown. Then W = U/o?, where U = nZ;!. In both cases, U

is known and ¢? is unknown. For Cases 1 and 2, respectively, define

k n; n
u; ¥V .\2 _1 v 8%
R= Zn_iZ(Y,.,- -Y,)? and R-= ;Z(Yi -Y)YUY; -Y),
i=1 Jj=1 i=1
and note that the degrees of freedom associated with R are v =ny + ng + --- +
ny — k and v = nk — k, respectively. It can be shown that the LRT rejects the
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null hypothesis for large values of
_Bu(¥10) - Bu(TIL)[,

R+|Y -Ey(Y|0)[;

Thus, the LRT accepts H, with probability

— — R — —
P(||IEw (¥ |C) - Ew(Y L)}, < d=; +d||T - Ew(T1O)[,),

where d is a positive constant, Y and R/o? are independent, ¥ ~ N( Iz W-1)and
R/o? ~ x%. By Theorem 2, condltloned on R, this probability is nonincreasing
on each line segment starting at a point in L and continuing in the direction
of a vector in C. Consequently, the probability of acceptance is nonincreasing
on this line and the power is nondecreasing on this line. By Lemma 4(ii), the
power is constant on L and thus the LRT is unbiased.

The following theorem has been proved.

THEOREM 3. Suppose that Y ~ N(u,02U~1) with U known; R/a ~ X%
and Y and R are independent. Suppose that L is a linear space C is a closed,
convex cone, L C C, Hy: p € L and Hy: i € C — L. Whether o2 is known or not,
the power function of the LRT of Hy versus Hy is nondecreasing on each line
segment starting at a point in L and continuing in the direction of a vector of C.
Furthermore, these tests are unbiased.
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