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NONPARAMETRIC ESTIMATION OF COMMON REGRESSORS
FOR SIMILAR CURVE DATA!

By Avrois KNEIP

Université Catholique de Louvain

The paper is concerned with data from a collection of different, but
related, regression curves (m;)j-1,. v, N > 1. In statistical practice,
analysis of such data is most frequently based on low-dimensional linear
models. It is then assumed that each regression curve m; is a linear com-
bination of a small number L < N of common functions g1, ...,gz. For
example, if all m/’s are straight lines, this holds with L = 2, g; = 1 and
g2(x) = x. In this paper the assumption of a prespecified model is dropped.
A nonparametric method is presented which allows estimation of the small-
est L and corresponding functions gy, . .., gz, from the data. The procedure
combines smoothing techniques with ideas related to principal component
analysis. An asymptotic theory is presented which yields detailed insight
into properties of the resulting estimators. An application to household ex-
penditure data illustrates the approach.

1. Introduction. Most work in regression theory refers to a single sample
(Y;,X)), i = 1,...,n. Very often, however, statisticians have to deal with more
than one single regression in practice. Many studies are initiated to investigate
typical features of some regression relationship under different experimental
conditions, for different individuals and so on. Examples are psychophysio-
logical studies of EEG curves for different individuals. Further examples are
economic studies where household expenditures on certain commodities versus
total expenditures are to be analyzed for different time periods with differing
prices. Such studies contain observations Y;;,j = 1,...,N, for N different, but
related, subjects (individuals, experimental units, etc.). The data can frequently
be represented within the following setup:

There are n-N data points (Y;,X;),i=1,...,n, j=1,...,N. Observations Y;;
and design points X; € J C R?,d € N, are connected by a regression relationship:

(1.1) Yij=mj(Xi)+e,~j, i=1,...,n,j= 1,...,N,

where ¢;; denotes an unknown zero-mean error term, and where the m;: J — R
are unknown smooth regression functions.

In statistical practice, analysis of this type of regression data is most fre-
quently based on parametric models. The simplest and best interpretable para-
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metric models are linear ones. It is then assumed that the regression functions
m; can be described by a linear combination of a number L < N of functions
£1,-.-,8L- In other words,

L
(1.2) mi(X)=> 6 -g(X), i=1,...,n,j=1,...,N,

r=1
for unknown real parameters 6y,,...,60y, and smooth, real-valued functions

gr,r = 1,...,L. In the following g1,g9,... will be called basis functions. The
smallest L such that (1.2) holds for some appropriate basis functions will be
called the dimension of the model and will be denoted by L.

Such linear models are usually postulated with prespecified L < N and
prespecified basis functions. Frequently a somewhat different notation is used,
and the model is written in the equivalent form Y =G-§ j + ¢, where G
:=(g(X;));,» and where Y ;, 6; and ¢; are the vectors of observations, parameters
and error terms of the jth individual. Prespecified linear models are widely
used in regression analysis. However, very often the field of application does not
provide sufficiently accurate prior knowledge, and model selection relies on trial
and error. Then this approach encounters the problem of misspecification. They
might lead to seriously deficient models which generate misleading results.

In this paper we drop the assumption that L and g, ...,g; are specified a
priori. Let us consider the resulting situation:

1. Relation (1.2) is always fulfilled with L = N, g1 := mq,...,gn := my. It thus
does not impose any restriction to ask for the components of some model of
the form (1.2) which is able to describe the N regression functions.

2. A high-dimensional (Ly ~ N,Ly ~ n) model is of no use. On the other hand,
the availability of a low-dimensional (Ly <« N,n) model (1.2) is highly desir-
able. It then provides a large reduction of dimensionality, and any further
statistical analysis will benefit from the model. Furthermore, it will also be
of interest in the field of application, since analyzing g1, ..., g1, will lead to
insight into common structural properties of m;, ..., my.

3. There are connections between the mechanisms generating the different re-
gression curves. In many applications one will thus expect relations between
the regression curves which might, at least approximately, be well described
by a low-dimensional model (1.2). In many cases the hypothesis that a low-
dimensional model (1.2) holds will thus be a reasonable starting point for
statistical analysis. ‘

These considerations motivate the approach presented in this paper. In the
following it is only assumed that prior knowledge leads to the hypothesis that
some model of the form (1.2) holds with Ly < N, n. A method is then developed
which uses the data themselves to estimate Ly and appropriate basis functions
81y---,8Ly-

The prgcedure combines smoothing techniques with ideas related to principal
component analysis. Based on the hypothesis of a low-dimensional model, esti-
mation of dimensionality relies on a goodness-of-fit criterion. Estimates of the
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values of basis functions at the design points are simultaneously obtained. The
procedure for estimating Ly is related to work by Lewbel (1991) and Li (1991),
who in different contexts use similar ideas to estimate the rank of a matrix.

A detailed asymptotic theory is presented. It is shown that the method is
a useful tool to “test” the appropriateness of a low-dimensional model and to
identify its components. In particular, our procedure implies asymptotically
consistent tests of specific hypothesis such as, say, Ly < 5 or Ly < 10. If N,n
> Ly, the method will reveal the true dimension with high probability.

In Section 2 assumptions on the error terms are made precise, and normaliz-
ing conditions on basis functions and parameters are given. The most important
requirement on the error term is var(e;;) = 1, which is generalized in later sec-
tions. Section 3 contains a methodological discussion. An asymptotic theory
for the resulting estimators is given in Section 4. In Section 5 the situation is
considered that variances of the error terms are unknown and/or not equal to 1.
The idea is then to transform the data, using estimated variances. In Section 6
a successful application of the method is presented. The data to be analyzed
are family expenditures on various commodities (food, housing, fuel, etc.) in
different years. The methodology introduced in this paper leads to the conclu-
sion that the data can be appropriately modelled by a polynomial in log(X) of
degree 4.

2. Basic settings. Before starting a methodological discussion, some basic
features of the model have to be made more precise.

2.1. The error term. Inevitably, the desired procedure has to distinguish
between deterministic components inherent in the data, that is, the basis func-
tions, and between random fluctuations generated by noise. It is thus essential
to clarify assumptions on the error terms.

ASSUMPTION 1.

(a) The ¢;j’s are independent random variables with Ee;; = 0.

(b) var(e;j)=1,i=1,...,n,j=1,...,N.

(c) There exist some Do, Dj < oo such that Eej; < Do and Ee}; < D for
all i, j.

Assumption 1(b) is, of course, very restrictive. In a few applications it will be
satisfied automatically. Then one has to transform the data, using estimated
variances. Details are deferred to Section 5.

2.2. Normalization. LetY ;:=(Yy;,...,Y,;) andm ;:=(mj(Xy),...,mi(X,)).
Similarly, setg = (g/(Xy),...,8-(X,)) and 8;:=(01,...,0;L,)". In the following
81> 8p, will sometimes be called basis vectors.

When considering (1.2) more closely, it is easily seen that the components
of the model are not uniquely determined. Let A denote an arbitrary regular

Lo x Lo matrix, and set (8%,...,6%, ) = 8] :== A!- ¢, and (g}(X)), ... ,81,(X)
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= (81(Xy),...,81,(X;)) - A for all i, j. We then obtain

Ly
miX) = 0;g:(X;)
r=1
= (g1X)), ... ,81,(X)) -A-A1 -4,

Ly
r=1

This unidentifiability can be eliminated by suitable normalizing conditions.
One possible set of such normalizing conditions, imposing no restriction, are
as follows:

(1) (l/n) Z:ngr(){;)gs(}(z) = 67‘37
(ii) EJN ) e,,e,s =0ifr #s;
(iii) Zj 1 ,1 EN 19122 22 ZJN:leszo > 0.

Here, 6, = 1if r = 5, and 6,; = 0 otherwise. Evidently, the normalization
given by (i)—(iii) depends on n,N and on the particular design. As n —
it is, however, easily seen that under suitable conditions on the design (i) is
asymptotically equivalent to selecting orthonormal functions (with respect to
some Lo-norm).

It should be noted that (i) implies that n=1/ 251, . L, aTe orthonormal
vectors. Condition (iii) establishes some ordering of the basis functions. We use
“g1” to denote the function with the on-average largest influence on modelling
the mj’s, “go” to denote the one with the on-average second-largest influence
and so on. The above normalization is well suited for estimation.

Let us consider existence and uniqueness of a basis and of parameters sat-
isfying (i)—(iii). First note that under these conditions model (1.2) implies

(2.1) j=1 LOFI N
1 2
= NZ% g.8,
r=1 Jj=1
It follows that(l/N)EJN 1n Jl,(l/N)ZN 1né 12, . are the largest, second-largest,
. eigenvalues of M, and that n~/%g , n‘l/ g, are the corresponding

orthonormal eigenvectors.

The image space of M is span{m,,...,my}, and (1.2) yields rank(M) = L,
and span{m,,...,my} = span{gl, 8 Lo}' It is thus immediately seen that it
is always possible to identify an appropriate basis by requiring that n~1/ 2g
n~%g ,...,n"%g g,, are orthonormal eignvectors for the largest, second-
largest, .. Loth-largest eigenvalues of M. By (2.1) this is identical to the nor-
malization given by (i)—(iii). Furthermore, we can infer from well-known results
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of linear algebra that, if “>” instead of only “>” holds in (i), g,,...,& Lo and
the parameters are uniquely determined up to sign changes. Clearly, one might
replace g and 6 by —g and —6;, without invalidating (i)-(iii). This might be
eliminated, too, by an approprlate additional normalizing condition. However,
sign differences are of no importance in the present context. In the following,
any comparison of g, with a corresponding estimate will implicitly assume that
&, is equipped with an “appropriate” sign.

3. The estimation procedure. Let A be an arbitrary symmetric & x &
matrix, 2 € N. In the sequel, we will use A\;(A) > \y(A) > -+ > \,(A) to denote
the eigenvalues of A, and 71(A) ~ 2(A) Y k(A) will denote corresponding or-
thonormal eigenvectors. We will require that ~¥1(A) > 0, where ~,1(A) denotes
the first component of y (A).

3.1. A first approach. Consider the matrix M defined by (2.1). An analysis
of eigenvalues and eigenvectors of M leads to the identification of components
of model (1.2). In particular, rank(M) = Lo and A, .1(M) = --- = X\(M) = 0.
Unfortunately we do not know the true regression functions, and we cannot
compute M.

A straightforward idea is to use the observations instead: Determine the nxn
matrix M := (1/N)%; bR e Y Then analyze its eigenvalues A\ (M) > \(M) >

. > A\(M) and the corresponding scaled eigenvectors nl/ 211(217! ),n1/2y 2(]171 ),
1/2., (M
nl/ L(M)'A
Note that EM = M + I, where I denotes the identity matrix. This motivates
us to consider M, Ao(M), ... and nl/zll(M),nl/zlz(M), ... as estimates of
/N5 nbf +1,1/N%Y 1n0122 +1,...and g ,g,,

There is another, even more important motivation for using nl/ fy (M) as
an estimate of g . The question of determining functional values of approprl-
ate basis functions at the design points is closely connected with the following
problem. For given L < N determine vectors v;,...,v; € R" in such a way
that linear combinations of these vectors provide a “lJest” possible approxi-
mation to Y;,...,Y . Selecting nl/zfyl(M), .. ,n1/2fyL(M) is optimal in a least
squares sense: B h

2

Z )\,(M )= — min

19, , 9L ER
r=L+1 7 I

Y; Zﬁjr 7, (M)

2

Y, Z Ojr Ly

3.1) 2

min
U GR"NZ Yj1,..., 9 ER 9

holds for all L < N. Relation (3.1) is rather well known; it was first established
by Rao (1958).
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Does this open a way to solve the problem stated in the Introduction? Since
7, (M) will “adapt” to noise, (3.1) leads us to expect that

(3.2) Z A(M) < Ry, := NZ min

reLotl 19j1,...,19jL0€]R

Loy
Y- g,
r=1

In fact, this can be rigorously proved (see Theorem 1). It follows from standard
results of linear regression theory that N - Ry, follows a x? distribution with
N(n — L) degrees of freedom, if the error terms are normally distributed. This
might be used to establish a procedure for estimating L.

Unfortunately, there are serious problems invalidating this approach to a
large extent. The observations Y ; are very noisy estimates of m ;. Consequently,

11(1\2 ), v Z(M ), ... will inherit a strong dependence on the error terms, unless N

is extremely large. The scaled eigenvectors n! fyr(IlAl ) will thus in general be
very bad estimates ofg . Furthermore, we will have to expect that “<” instead of
only “<” holds in (3.2).

REMARK 1. The principal idea of using eigenvectors of the M-matrix for
determining components of a model of the form (1.2) is quite familiar to applied
statisticians. Usually thisis considered as an application of principal component
analysis (PCA) with an additional interpretation of the v (M) in a modelling
sense, as motivated by (3.1). References are, for example, "Rao (1958), Berkey
and Kent (1983), Mocks (1986) or Glaser and Ruchkin [(1976), Chapter 7]. It
has to be emphasized that this is not exactly the point of view adopted in the
present paper. Clearly, the main ideas leading to the above approach go back to
PCA, but the basic issue of estimating (deterministic) functional components
from noisy data has no interpretation in a PCA context.

3.2. A refinement. The above approach did not make any use of the smooth-
ness of the mj’s. Since smoothing reduces noise, it provides a tool to refine this
procedure in order to make things work.

We will consider linear smoothers. These are smoothing procedures with the
property that estimates i ; of the m ; are obtained by multiplying a “smoother
matrix” W, with the vectors Y of observatlons that is, m; := W}, - Y ;. Further-
more, we will confine ourselves to the case that W is a symmetrlc projection
matrix with rank(W) = h.

A detailed discussion of smoothing procedures and their respective smoother
matrices can be found in Buja, Hastie and Tibshirani (1989). Quite generally,
projection matrices W}, arise if smoothing is based on a least squares approx-

imation by & prespecified functions vy, ..., vs;. Then, if the vectors vy, ...,v, of
functional values at X, ..., X, € J C R? are independent, estimates m jofm;
are obtained by

(3.3) =Wy Y, =Vi(ViVi) V4 X,
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where V}, denotes the n x A matrix (X)), . If d = 1, well-known and fre-
quently applied examples of this approach are least squares approximations by
polynomials of degree 2 — 1, by harmonic polynomials of degree A — 1 or by cubic
B-splines based on a prespecified sequence of 2 — 2 knots [cf. de Boor (1978)].
Any one of these methods is suitable for approximating smooth functions. If
Ly < N,n and if the m; and g, are smooth, then

(3.4) h>Lo, m;:=Wy -m;~m, Wh-grwgr

will hold for some 2 < N,n. If, for example, the m/’s are four times contin-
uously differentiable, it follows from well-known theorems of approximation
theory that [;(mi(X) — my (X))*dX = O(h~8), where 7, ; denotes the best
approximation of m; by polynomials of degree k. For cubic B-splines, similar
relations have been derived by de Boor (1978). For theoretical results charac-
terizing a large class of projection-type smoothing methods, one might consult
Cox (1988).
Under (3.4), equations (1.1) and (1.2) lead to

3.5) A‘=Wh.m‘+Wh.6.='ﬁ‘+E’.’

(3.6) Zejr(Wh g )_Z Zré

which holds for all j. Model (3.6) will be called the projected model. Here, we use
“g,” and “01,” to denote the normalized basis and parameters satisfying condi-
tions (i)-(iii) of Section 2.2 for the projected model (usually the vectors Wy, g,
will not be exactly orthogonal, and thus g g.7Wh g,)

However, if (3.4) holds, all components s of the progected model will be approx-
imately equal to those of the true model. In particular, g ~ W, - ~ g,
We thus might concentrate on estimating the components of the prOJected

model. This means that we have to analyze the elgenvalues (1/N )EN 1n¢92

and eigenvectors n~1/2g, of the matrix Mj, := (1/N 5L mm.
These considerations motivate the basic steps of our ﬁnal approach:

1. Perform a data smoothing. For any j = 1,...,N determine an estimate m ;i
=Wy - Y; of m;, where W}, denotes the smoother matrix associated with an
appropriate smoothing procedure. W, has to be a symmetric, n x n projection
matrix with rank(W3) =h < n. ) R

2. Compute the largest A eigenvalues )\; := MMp) > - > )\h = )\h(Mh) and
corresponding eigenvectors 11(]17;,), Cy h(Mh) of the matrix Mh = (1/N)
E}i i) Jﬁ;
REMARK 2. Following (3.3), let Ty := V,(V; V)12, Clearly, W, = T'sT}.

It is now easﬂy seen that /\,(JlAlh) =0,r = h+1,...,n, while the largest h

eigenvalues of Mh = WhMWh and A =T MFh are equal. For any r, Ty, - Y, A)

is a normalized eigenvector of Mh for )\,(Mh) It will thus be computatlonally
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simpler to determine eigenvalues and eigenvectors of A, which is onlyanh x h
and not an n x n matrix.
Note that EA = ', My, + I, where I, denotes the A x A identity matrix.

We thus might consider \;(My) = \(R), \o(M) = Xp(R), ... and nV/?y (M),
n1/2y (My),... as estimates of (1/N)SN 1n8% + 1,(1/N)SN n6% + 1,... and
gl, g e If h < n, these estimates will no longer suffer from the drawbacks
invalidating the original approach: passing over from Y ; to mm; is connected
with a drastic reduction of noise. It holds that n = E|¢;|2 > E||¢,||3 = A.

3.3. Dimensionality. Let us now consider the problem of dimensionality.
For the projected model, relations similar to (3.1) and (3.2) can be showrl to
hold. However, there are some important differences: (a) The term N - Ry,
defined by replacing Y ; by m; and g, by gr in (8.2), follows a x? distribution
with N - (h — Ly) degrees of freedom. As a consequence of the central limit
theorem this is approximately true even for nonnormally distributed errors
terms, if A < n. (b) If A < N, “<” in (3.2) might be replaced by “~.”

Rigorous proofs are deferred to the next section. It should be noted that (a)
and (b) rely heavily on the fact that W;, is a projection matrix. They fail to be
true if this is not the case, as, for example, when using smoothing splines or
kernel estimators for smoothing.

Together with the hypothesis of a low-dimensional model, the above consid-
erations motivate the following approach to estimate the dimension of model
(1.2):

3. Determine an estimate Zo of Ly by selecting the smallest L,0 < L < h,
such that

h

(3.7 N. Z A < Co,N.(h L)
r=L+1

where, for a > 0, C, n. - 1) is the respective critical value of a x? distribu-
tion with NV - (h — L) degrees of freedom. If such an L < h does not exist, set
LO :=h.

Here, the idea is to test whether, for L = 0, 1,2, 3, ..., an L-dimensional model
is in accordance with the data. The hypotheses of a low-dimensional model
allows us to choose the smallest L which is not rejected. This is closely related
to procedures proposed by Li (1991) and Lewbel (1991) in different contexts.

Of course, the above dimension estimates depend on the selection of the
smoother matrix Wj,. In many situations it will not be essential whether to
choose, for example, polynomials or B-splines for smoothing. However, the de-
gree of the polynomial or the number of knots will be important.

What happens if we select an inadequate A? First note that (3.5) and (3.6)
hold for any possible W;,. However, if A is too large, we have to expect that

v Lo +1°r < RL,, as outlined in Section 3.1. In this case our critical values will
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be too large. If, on the other hand, A is too small, we might obtain (1/N )Z}‘L lné;zr

< (1/N)EL 1n62 [note that necessarily (1/N)%Y lnefr < (1/N)xL nb2]. Even
worse, if h < Lo, the matrix M; = (1/N)EJ m Wlll possess less than L
nonzero eigenvalues. We see that any unfavorable choice of A has one single
consequence: it increases the probability of selecting too few components.

These considerations show that in practice it will be most promising not just
to rely on one h but to apply the method repeatedly, based on several different
choices of h. For example, one might select four different smoothing parame-
ters h1 < hg < h3 < hy. Parameter h, should be small, while A4 should be large
enough to guarantee a negligible bias. Selection might be based on expecta-
tions about dimensionality and on assumptions about the degree of smooth-
ness. Alternatively, an average smoothing parameter hA* obtained by cross-
validation, Mallows’ C;, or related methods may serve as a guideline, choosing
hi < h*, hg < h*, hg > h* and hy > h*. One then might do the following:

3a. Compute different estimates io by using h=hy, h=ho, h =hz and h = hy.
Afterwards, one might do the following:

3b. Use the maximal EO as final estimate of L.

Clearly, this will increase our actual level of significance, but this effect will
be tolerable if we do not rely on too many A’s. Furthermore, to some extent it
will be balanced by the fact that the probability of selecting too few components
increases if h is too large or too small. If the subspaces spanned by Wy, , Wy, ...
are nested, it is also possible to compute corrections.

REMARK 3. There are alternative ways for determining dimension esti-

mates. For example, such estimates might be obtained by Mallows’ C, [Mallows
(1973)], that is, by minimizing

Z min
N 117 o JLGR

2

+ 2L
2

Y, Zﬂ,r v, (M)

r=1

over L. Asymptotic properties of the resulting estimator Lj can easily be de-
rived from the results of Section 4. This method, or related ones, will be of
particular interest if our primary goal is not model building, but only a “best”
approximation of the regression functions in terms of (1.2).

3.4. Basis functions. Estimates of basis functions can be obtained from the
eigenvectors of the M} matrix:

4. Forr= ., Lo, estimate g byg :=n'/?y (M;,).

In order thatg ~ g , it is required that the biasn~'?|lg —g [la ~n “12|g,
- Wig |2 1is small. We see that bias is more critical here than when determin-

ing LO, where it is sufficient that (1/N )EN 1n02 is “not much” smaller than
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(1/N )2 anf On the other hand, variances of the estimators decrease with
both N and h/n (see Section 4). In connection with step 3a, final estimates of
basis functions should thus be determined by relying on a comparably large A.

The above approach is not the only way of obtaining estimates of suitable
basis functions. In a PCA context, Rice and Silverman (1991) propose a way to
obtain a smooth nonparametric estimate of the eigenvector for the largest eigen-
value of a covariance matrix. Their method might be adapted to the present
situation. A further alternatlve is as follows.

For any r, we have g g, = 2 0 1(Ss,nWhg for some 61, ..., 6, € R. Suppose that
W, is such that (3.4) holds and that rank(M 1) = L. Then the & are uniquely
determined, and it is easily verified that if 01, are the parameters of the projected
model (3.6), then

Loy
mX) =) 6rn(X),  i=1...m,

r=1

holds forj = 1,...,N, where ¢.(X;) := f" 165r85(X;) for r = ., L.

The 1, .. ,‘PLO thus establish another basis for model (1 2) Instead of the
g s we might decide to estimate the ,’s. This can be done by the following
procedure which provides an alternative to step 4 above:

4a. For all j,r compute an estimate @}, of 6 by @}, i=n"1 er(ﬁh)’ -
4b. For all i,r determine @‘(Xi) =(n /NX,.)z}ﬁlé}, Y.

4c. Separately for each r, smooth @‘(Xl), cee @‘(Xn) to obtain final estimates
wr(Xl)a .. )’l/)r(Xn) of 1/)r(X1), sy "pr(Xn)

Based on (3.5) and (3.6), 61, . . 0. 1., in step 4a are the least squares estimates
of 911, ,OJL when replacing the g g, by their estimates n! fy (M ). It should be

noted that the estlmated parameters automatically satisfy Ej 10,r0,s =0,r#s.

Moreover, 2 101, =N /n. Itis then easily seen that, for all , the preliminary
estimates 1/11(X ) ,wio(Xi) minimize

Lo . 2
Z (Yy Zer vzr>

Jj=1

over all v;, € R. This motivates step 4b. The smoothing step 4c is straightfor-
ward.
In step 4a we will expect good parameter estimates for small 4 (compare the
theoretical results in Section 4). Since we rely on the projected model, the values
n=1/2||g _—g | are of minor importance. Basically, bias problems only arise in
step 4c, "but there we may do a different amount of smoothing for different
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components. This is an important difference to our original step 4. In fact, one
might choose a smoothing parameter by cross-validation.

Since the parameters @}, are constant over X;, i = 1,...,n, it quite obviously
makes sense to minimize a cross-validation function. We will not go into further
details of steps 4a—4c, for this would resAult in overloading the present paper.

Given Ly, the idea of analyzing the M} matrix to obtain estimates of basis
functions is closely related to the “self-modeling nonlinear regression” approach
which has been proposed by Kneip and Gasser (1988) in a more general context.
This follows from (3.1). Some more details can be found in Kneip (1987).

4. Theoretical results. In this section we will investigate the above ap-
proach from a theoretical point of view. In addition to finite sample results, some
asymptotic theory is given. Based on (1.1), (1.2) and Assumption 1, asymptotics
rely on sampling more and more observations by adding more and more curves
(N — o0) and/or by adding more and more design points (n — oo). We will
generally allow that Ly and A increase with the sample size. More precisely, we
implicitly assume sequences Ng < N; < Ny < ---and ng < ny < --- of values
for N,n, and corresponding sequences Ly o < Lo 1 < ---and hg < by < --- for
Ly, h. All asymptotic results refer to limits (¢ — oo) of tuples (Ny,ny, Lo 1, hg).
Hereby, for example, “N — 0o” means that lim, N, — oo while, “Lg is fixed”
requires Lo o = Lo 1 = ---. Statements like “n > h > Ly” refer to all tuples
(g, hp, Lo, ), “Lo > @” means Lo , > a for all £; and “N/n = O(1)” is equivalent
to Np/n;, = O(1) as k — oo.

4.1. Analysis of Mh.

ASSUMPTION 2. There exists a D1 < oo such that, for all n,

max (W), <Dy - h

r,s=1,...,n n

Assumption 2 will be satisfied for practically all reasonable choices of a
smoother matrix Wj. Theorem 1 now provides a justification of (3.2) and claim
(a) of Section 3.3. It provides finite sample results, except for assertion (iii),
‘which relies on n — oo (h,N fixed).

THEOREM 1. In addition to the above assumptions suppose that h > L.
Furthermore, assume that the linear subspace spanned by Wy, - - Wy g Lo

has dimension Ly. We then obtain

~ L N
5 Ar < Ntr(z (I— o 5r£r> Whﬁjﬁ}) =: RLo'
r=Lo+1 j=1 =1

Moreover,
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(i) ERy, = h — Lo, var(Ry,) < 2(h — Lo)/N + (Do — 3)D1h(h — L)/(Nn).
(ii) Ifthe e arei.i.d. N(0,1) distributed, then N - R L, follows a x2 distribution
with N - (h — L) degrees of freedom.
(iii) Asn — oo, N - I~?L0 follows a x? distribution with N - (h — Lg) degrees of
freedom asymptotically.

Here, I denotes the identity matrix. A proof of the theorem is contained in
the Appendix.
For further work we have to impose some regularity conditions on the 6.

AsSsuMPTION 3. There exist constants Dy > 0 and D3 > 0 such that, for all
nva LOv

1 1
2 2
¥ Yot~ % o
j=1 j=1
4.1) / N
D, L 62 /) 1,...,L
> 2.Nznﬁ forallr,s € {1,...,Lo}, r#s,
j=1
1 N
(4.2) ¥ 2", 2 Da.

Condition (4.1) is technical in nature. The values of (1/N )ZN 1n62 have to

decrease quite rapidly as r increases. Condition (4.2) claims that ( 1/N )X} 1n62 Lo
does not converge to 0 as the sample size increases. It should be noted that
components which are really “essential” for modelling a regression function m;

have to satisfy nefr > 1. This is easy to see: for L < L, let @1, .. .,@L denote
the least squares estimates of the parameters 6j;,...,60;, when &8, are
known. Then

2 L+1

L
255 m: —zeﬂg
2

It should be noted that (4.2) is basically weaker than the conditions which
are usually imposed for analyzing asymptotic properties of parametric models.
If a model of the form (1.2) holds for some fixed Ly € N, then one will typically
assume that for each L € {1,...,Ly} there exists a ¢; > 0 such that

N

1 L-1 L 4 N
Z; =2 08| =D F 20
r=0 2 r=L Jj=1

Here 6o = 0 and g, = 0. Hence, in this case n = O(1/N )k \n9%) for all L =
.,Lg, and the (1/N )ZJI‘L anJZ become large as n increases. One may note

E|\m if and only if n8 L+1>1

>E‘
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that, whenever ¢; > 0, at least some of these values will be of order n. In a more
general context the following proposition can be derived.

PROPOSITION 1. Let N/n = O(1). Assume that there exists a density f such
that, as n — oo, (1/N)3!_v(X;) — [;u(X)f(X)dX holds for any continuous
function v: J — R.

Then, for any fixed r < Ly, there exists a d, > 0 such that (1/N )EJN 1n912r >d,
holds for all n,N sufficiently large.

A proof can be found in the Appendix.
Theorem 2 quantifies the difference between parameters and basis vectors
of the true model and of the projected model. For r = .,Lg set Biasy, , :=

n-1/2 lg, —Wr-g,l2-

THEOREM 2. Suppose that Zf“’: Biasy » < D3 /8 holds in addition to Assump-
tions 1-3. Then the following holds for any r € {1,...,Ly}:

. 1Y 1 | 5 1 ¥
@ JTTE :nej‘i_ﬁ E nf2| < 1 JV§ nf}, - Bias;, ,;
j=1 Jj=1 Jj=1
- 4
. -2, _ =
(ii) n~%g —&rll2 < D, Biasy,, ;.

A proof is given in the Appendix. Assertion (i) implies that the relative dif-
ference between the average squared true and projected parameters is small, if
Biasy, , is not too large. In fact we see that a moderate bias will be sufficient to
guarantee that (1/N )EJN 1nd;. 2 and (1/N )EJN 1n92 are of the same order of mag-
nitude. Based on our smoothness assumptions on the g,’s, one will thus expect
that for a reasonable choice of the smoothing procedure Assumption 3 carries
over to the following assumption.

AsSUMPTION 4. There exist constants Dy > 0 and D5 > 0 such that, for all
n,N, (4.1) and (4.2) hold when replacing 6, 6;s, 6L, by 6, 013, 91L0 and Do, D3 by
'D4aD5

It should be noted that Assumptlon 3 and Theorem 2 imply that Assumption
4 holds if Er 1Biasy » < Dy /8. Moreover, a result similar to Proposition 1 can
be derived.

PROPOSITION 2. In addition to the assumptions of Proposition 1 suppose
that, as n — oo, (1/n)|m; — Wy - mj||3 — 0 holds for any j.

Then, for any fixed r < Lg, there exists a d > 0 such that (1/N )EN 1n92 > d
holds for all n,N sufficiently large.
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A proof can be found in the Appendix. The following theorem yields results
about the asymptotic behavior of eigenvalues and eigenvectors of Mj,.

THEOREM 3. In addition to Assumptions 1-4 suppose that n,h,Lq satisfy
n>h>Ly h?/N - 0asN — co.
Then, as N — oo, the following hold:

R 1 N _ 1 N B 1/2
6] Ar=1 N,Z n;. + 0, ((mznef’,) , r=1,..,Lg
Jj=1 Jj=1
.. - h1/2
(ii) n—1/2“§, —§r||2 = OP ) r= 1’ s 3L0;
N2 ((1yN) 5 1n02)
X»—1-(1/N né?

(i) (/) Ez1n8 = Op(AN™/%);

r=1,...,Lo (1/N) ZJ 1n02

h

. = h(h — Ly)
(lV) RLo — Z /\ Op(———N—O)

r=Lo+1

The proof is based on general results in the perturbation theory for finite-
dimensional spaces and is given in the Appendix. Note that the dimension of
the matrix M,, is allowed to increase with the sample size, which introduces a
major complication.

4.2. Dimensionality. Let us consider the problem of estimating L,. First
suppose that a low-dimensional model of the form (1.2) holds. We can then
derive the following result.

PROPOSITION 3. Suppose that Assumptions 1 and 2 hold together with the
assumptions of Proposition 2. Assume Ly € N is fixed and h?(h — Ly)/N —
0,h/n — 0 as N,n — oo. Then, if o denotes a level of significance used to
determine critical values Cqo N - Ly) in (8.7), we obtain

(4.3) P(Lo#Lo) > a asN,n — oo.

A proof can be found in the Appendix. It should be noted that Proposition
3 does not rely on Assumptions 3 and 4. Proposition 2 implies that condition
(4.2) is automatically fulfilled, while (4.1) is not really required. If Assumption
4 holds, Theorem 3 also allows us to establish (4.3) in the case that L increases
with n, N not too fast. Asn — cowe mayleta — Oinsuch awaythatCy n¢ —1)—

N(h — L) = o(N) for all L < h. Under the conditions of Theorem 3, Eo is then a
consistent estimator of L.
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However, (4.3) does not generalize to really high-dimensional models (L,
~ min{N,n}). A closer look at the approximations given in Theorems 1 and
3 shows that quite accurate dimension estimates can only be expected if L,
is considerably smaller than n and N/2. Otherwise an & > L has to be large
compared to n,N. Then our critical values will no longer be appropriate.

This is not a disappointing result. As outlined in the Introduction, we will
usually be interested in low-dimensional models only. However, our procedure
yields a useful tool to check whether the data can be appropriately fitted by a
low-dimensional model, say, Ly < Ly = 5. If this is true, Proposition 3 applies.
What happens if Lo > Lg?

PROPOSITION 4. Let L € N be a fixed constant with Ly > L§. Suppose that
Assumptions 1 and 2 hold together with the assumptions of Proposition 2.
Furthermore, assume that h2/N — 0 as n,N — co. Then

P(Ly>Ly)—1 asN,n — oco.

A proof can be found in the Appendix. We can conclude that our procedure
basically provides an asymptotically consistent test of a hypothesis likAe, say,
Ly < Lj := 5. Even more, if this hypothesis is true, then asymptotically L, will
reveal the true dimension with high probability. The method is quite powerful.
We can infer from the theoretical results that we may detect components with
(1/N)3; N 1012,, O(1/n). In fact, (4.3) even holds if the Lyth component does not

improve the average model fit, that is, if B\, E|jm; 2L° 0;rg |13 > %L E|lm; -

b)) JL°1_ 1p. irg ||2, where 01, denote the least squares estimators of §;. (compare the
discussion following Assumption 3).

Recall that in Section 3.3 we proposed to rely on steps 3a and 3b to deal with
the problem of smoothing-parameter selection. The above theorems and propo-
sitions incorporate some conditions on A which should be taken into account
when selecting hq,hs, h3, hy. Our theory then leads to an important conclu-
sion: final dimension estimates Lo are reliable only if Lo is very small compared

to N,n.

4.3. Basis functions. Let us now consider the problem of estimating basis
functions. Under Assumptions 3 and 4 we can infer from Theorems 2 and 3 that

h
n"lg, —&,l5 = Op | Bias; , + =
== N((1/N) 5% n82)

holds for r = ., Lo. Obviously, the smaller (1/N )EN 1n92 is, the higher the
variability of the estlmates

The above relation allows us to derive optimal rates of convergence in dif-
ferent contexts. For example, consider components with (1/N )EN lnez >c-n
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for some ¢ < oco. Let us assume that Bias, , = O(h™") for some v € N. Under
some regularity conditions on the design this holds for least squares approxi-
mation by polynomials, provided that d = 1 and that g, is v times continuously
differentiable. Then A = O((Nn)Y/?¥+V) and (Nn)/@+D = O(h) lead to

(4.4) n"llg, —grllé = OP((Nn)_2"/(2"+D),

which is much faster than the best obtainable rates for individual estimates
[cf. Stone (1982)]. Rates of convergence obviously deteriorate if (1/N)x

i 02 =o(n).

5. Adjusting variances. As outlined in Section 2.1, in most applications
our basic assumption var(e;;) = 1 will not be satisfied automatically.

5.1. Homoscedastic errors. Assume that there exist data Y;; satisfying Y;;
= m;(X;) + ¢;;, where the ¢;; fulfill Assumption 1 except that var(e;;) = ajz #1.

The theory developed in the previous sections applies to Y;; := Y;;/0j, € =
€j/0j and my(X;)/o; =: mi(X;) = ¥, ,0;;8-(X;). According to our methodology,
eigenvalues and eigenvectors of M n=(1/N )X] WhY Y JWh provide estimates
of Loandg , g, .-

However, in practice we can only determine estimates 2 of the 02. Ford = 1,
variance estimators with very favorable asymptotic properties have been pro-
posed, for example, by Rice (1984), Gasser, Sroka and Jennen-Steinmetz (1986)
and Hall, Kay and Titterington (1990). What we then actually do when applying
the procedure of Section 3.2 is to analyze

N ' N 2
P 1 Y /Y, i W
Mh-=NZWh(5;>(§“.>Wh- Za— Y YW
i1

J

and its eigenvalues X; > > ,\; and eigenvectors 11(MZ)’ .. ,lr(M;). Let g’;
2y, M 92
The questlon arlses whether the differences between eigenvalues and eigen-
vectors of M, 1, and M » invalidate the theoretical justification of our method. This
is not the case, as is shown by Theorem 4. The theorem is based on Assumptions
1-4. Furthermore, the following additional assumption is required.

ASSUMPTION 5.

(a) There exist constants D} < 0o,Dg > 0 such that D} > csz > Dg for all N
andallj=1,...,N.

(b) There is a constant D7 < oo such that |0jr| < D7 forall j,r.

(¢) For all n,N the estimators a 2 of o2 oi are obtained as 02 = max{Q(Y ),Dg}
(Dg > Dg > 0), where

UY) =D > waYi, Yy,

i=1lk=1
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for some wj;, € R. Furthermore, there exist constants Dg,D1y < oo such that the
following hold: (1) ¥} _;|wit| < Dg - 1/n and ¥} _q|wei| < Dg-1/n,i=1,...,n;
(2) |[EQ(Y ) - aj2| <Dyy-1/nforalln,Nandj=1,...,N.

Assumption 5(c) establishes conditions on the variance estimator. The struc-
tural form required for Q(-) holds for each of the estimators cited above. In the
present paper these estimators are slightly modified by introducing a lower
bound Dg. This has been done for technical convenience. It does not impose
a real restriction for practical applications. All estimators cited satisfy condi-
tion 1 of Assumption 5(c), and condition 2 of Assumption 5(c) holds if each m;
is sufficiently smooth. For example, the results of Gasser, Sroka and Jennen-
Steinmetz (1986) imply that under some regularity conditions on the design
|[EQY ;) - 02| = O(n~2) holds for their estimator, provided m; is twice continu-
ously d1fferent1able

The following theorem is based on the asymptotic setup used to establish
Theorem 3. The only exception is that it is now required that both N,n — oo.

THEOREM 4. In addition to Assumptions 1-5 suppose thatn > h > Lgy, h?/N
— 0and h?/n — 0as N,n — oo.
Then, as N,n — oo, the following hold:

N

RN 1 =
@D A= 1+1—\-72n«9]2,
j=1

+0p

(1w S () Sn) "
n * N7z !

(ii) n g -2l

h1/2 h1/2
NY2((1N) T no2)

= Op

X —1-(1/N) N ne?
(iii) max | — CRYELL: =op(h(N-1/2+n-1));
r=1,...,Lg (1/N)Z 92
h
. ~ 3ol h(h —Lo) . (h—Ly)
(IV) ;+1/\,. _RLO = Op( N + n+(Nn)1/2>'
r=Lo

We see that now it is important that both N and n are large compared to

*

h. Then we can conclude from Theorem 4 that the differences between A}, gr
and Xs, gr will not have a substantial influence on our procedure to estimate
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components of an appropriate model. Propositions 3 and 4 generalize to the
present situation. There is, however, a small difference in the optimal rates of
convergence of the estimates of the g : instead of (4.4) we obtain n-! g, —g’;“g =

O((Nn + n2)=2v/@v+1),

5.2. Heteroscedastic errors. Suppose that there exist data Y;; satisfying
Y;; = mi(X;) + ¢;;, where the ¢;; satisfy Assumption 1 except that var(e;;) =
2(X )# 1. Let us assume that the functions 02( ) are smooth. To avoid a lengthy
treatment we will not consider this s1tuat10n in great detail. Only some impor-
tant aspects are presented.

Some additional conceptual work is necessary. Thus let us assume for the mo-
ment that we know the true variances ajz(Xi). The difficulty in dealing with het-
eroscedastic variances is that a model for the functions m;(-)/o;(-) does not nec-
essarily lead to a model for the functions m;. This is only true if the variances can
be decomposed there exists a function s(-) and N constants @, ...,y such that

2(X )= O'J -s(X;)?. Without restriction we may require that (1/n)2 S(X)? =1,
Wthh leads to

5 1
(5.1) o =~ Zaf(Xi),
o¥(X)
(5.2) s(X,)? = NZ =

One then can determine transformed data Y;; by multiplying by 1/(7;s( X;)). A
model m;(X;) = ©X . 9;,g,(X;) for the original data implies

m(X) <9 g(X)
(5.3) XD = =%y Za, o) Ze,,gr(X)

Using the transformed observations, our methodology leads to estimates EO and
g, =(g/(Xy),...,8(X,)) of Ly and the g , and

(5.4) g.(X) =s(X;) - g/(X)), i=1,...,n,

provide estimates of the g.(X;). '

Now, let us consider the general case that variances do not allow the above de-
composition. But even then one might use (5.1) and (5.2) to determine constants
Fff and a function s. After transforming the data by multiplying by 1/(7; s(X;)),
one then might estimate the components of model (5.3). When analyzing the
resulting Mj-matrix it turns out that the assertions of Theorem 3 hold un-
changed. Although the transformed error terms do not satisfy Assumption 1(b),
we still obtain (1/N )Zf‘i 1E€i2j = 1 for all ;. When passing through the proofs it
is easily seen that this is all that is actually needed to establish Theorem 3.
We can thus expect that (5.4) yields reasonable estimates of underlying basis
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functions. However, Ry, will no longer follow a x%, _ ., distribution. This evi-
dently requires an adjustment of the critical values to be used for determining
L. Fortunately this can quite easily be done. We still have ER; = h — Ly. If n
is large compared to A, the following holds:

N Lo R R 2
var(Rp) ~ 1—\% Z2tr (((I - er(Mh)lr(Mh)'> Wh2j> ) ,

Jj=1 r=1

where ¥, is a diagonal matrix with

2(X. 2(X,
diag(x)) = ( a2 (X1) 07 (Xn) )

o2s(X1)?" T o7s(X,)?

Noting further that NY/2(h — Ly)~Y/2Ry, is asymptotically normal for large n
and N, these formulas can be used to determine approximate critical values for
different L and a.

How to estimate the variances UJ-2(X,~)? Following Gasser, Sroka and Jennen-
Steinmetz (1986), we might determine squared pseudoresiduals

(1 (2 2
72 = (Yij—Ci Yi—lj_Ci Yi+1j)
" 1+ CEW + ng)z ’

where CV := (X1 — X))/(Xi41 - Xi—1), CP =1 - CP.

By using, for example, kernel estimators one then might smooth these
squared pseudoresiduals to obtain estimates 52(X;) of ajz(Xi). Let us consider
Gasser—Miiller kernel estimators based on a bandwidth & and a kernel of or-
der % [cf. Gasser and Miiller (1984)]. Then under some regularity conditions
on the design and on the smoothness of the m; and 0j2(~) it can be shown that,

for large n, bias and variance of these estimators are of the order O(b*) and
O(1/(nbd)). When considering the influence of the error in variance estimation,
results very similar to those of Theorem 4 can be derived: qualitative proper-
ties of our procedure are left unchanged. It should be noted that it is important
to choose a small bandwidth. In either (5.1) or (5.2) we have to determine av-

erages. This introduces a further smoothing. We obtain var(%f) = O(1/n) and
var(s(X;)) = O(1/(Nnb)).

6. An application: family expenditure survey. In thissection we apply
the techniques developed above to U. K. family expenditure survey (FES) data
from 1968 to 1983 [HMSO(1983)]. For each of these years the data reports the
expenditures on various goods of approximately 7000 households. Separately
for each year, households were selected at random from electoral registers. The
data contains total expenditure and expenditures on nine commodity aggre-
gates: housing; fuel; food; clothing; durables; transport; services; alcohol and
tobacco; and “miscellaneous and other goods.”
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Starting with Engel (1857), a major issue in applied demand analysis has
been the estimation of “cross-sectional Engel curves,” that is, the conditional ex-
pectations of expenditures on a commodity aggregate given total expenditures.
Most work has been done in the context of parametric models. An overview
of different parametric approaches is given by Deaton (1986). All important
parametric models for Engel curves are linear and, hence, of the form (1.2).
Furthermore, they are low dimensional: L, typically varies between 2 and 3.
Such models have provided reasonable fits in many applications, but none of
them seems to be fully satisfactory. Nevertheless the relative success of these
models might lead to the hypothesis that a low-dimensional model is sufficient
for describing Engel curves. An appropriate model for the FES data will provide
a first step in this direction.

For estimation it is quite convenient not to use expenditures on a commodity
aggregate directly, but to rely on shares of total expenditures. This leads to
“budget share Engel curves.” Furthermore, to improve comparability of Engel
curves over different years, it is reasonable to normalize total expenditure by
dividing by mean total expenditure (separately for each year).

Let (y¢,x;:) denote the resulting data. Here k& indicates commodity aggre-
gates; t, years; and [, households. Data for very rich and very poor households
is sparse and not very reliable. Estimating and modelling Engel curves thus
has to take place within a compact domain. Since, by normalization, the value
1 for x; corresponds to mean total expenditure in the year ¢, J := [0.25,2.5]
seems a reasonable choice. Normalized expenditures for approximately 95% of
all households fall into this range, differing a little bit from year to year.

When trying to apply the above methodology to this data, a further difficulty
arises. In the present application we have a random design and the x;; are not
identical for different years. One now might specify a grid 0.25 =: X < Xj <
X <. <X, <25=:X,,1 of n points and define new “data” (Yjx,X;), where,
for given i,k,t, Y, denotes the average over all yj;; corresponding to some
xp € [(X;_1+X:)/2,(X;+X;,1)/2). If these intervals are small enough such that
the bias is negligible, we obtain m;(X;) := E(yu, | X;) = EY};;. For the present
analysis a grid of 231 points was chosen. Grid points X; were selected in such a
way that some adaptation to the design density was reached. Combining now
k and ¢ to a common variable j, we end up with data with can be written in the
form (1.1). We have n = 231 and N = 144.

REMARK 4.

(a) Basically any grid X3, ..., X, is appropriate which is dense enough to
guarantee a small bias. Suppose we choose a comparably small number n of
grid points. Then averaging takes place over a large number of y;,. This results
in comparably small variances of the Y;;; (as well as in “more” normality). Thus,
a small n is balanced by the effect that when transforming the data we have to
divide by small standard deviations (see Section 5).

(b) There is a deviation from our assumption on the independence of error
terms. We have 22= Wikt = 1 for all ¢,1, that is, expenditures on the nine com-
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TABLE 1
Analysis of eigenvalues, dimensionality; h = 7

Critical value

L Eigenvalues > L:\\,- (o = 0.05)
1 18669.60 19177.77 7.52
2 471.44 508.17 6.48
3 29.99 36.76 5.44
4 3.33 6.74 4.40
5 1.51 3.42 3.34
6 0.98 1.90 2.28
7 0.92 0.92 1.20

modity aggregates sum up to total expenditure. Any Y;; is thus correlated with
the observations Y;,, s=1,...,q, of ¢ = 8 out of the 144 curves. It is now easily
seen that the theoretical results given in Theorems 3 and 4 generalize to the
case that as N increases there are such dependencies for certain collections of
q + 1 out of the N curves (g € N fixed). However, these dependencies may have
some influence on the asymptotic distribution of R;,. As for heteroscedastic
errors one then might adjust critical values. It still holds that ER; = h — L.

The asymptotic variance of Ry, might be approximated using nonparametric
estimates of covariances.

We are now ready to apply the methodology described above. Error variances
are heteroscedastic and we have to use the transformations presented in Section
5.2. Smoothing was based on least squares fits of polynomials and cubic B-
splines. For polynomials, generalized cross-validation brought out A* = 7 as
average optimal smoothing parameter.

Let us first consider the dimensionality of the model. Table 1 presents results
obtained when analyzing the eigenvalues of the M}, matrix according to step 3
of our procedure. Here, smoothing is based on cubic B-splines with five knots
at 0.2, 0.7, 1.25, 1.85, 2.7; h = 7. Recall that ), estimates 1+ (1/N)EN 1n62, if
r < LO

The critical values given stem from x2 approximations. This is justified, since
adjustments, as outlined above, did not lead to essential changes. Differences
usually varied between 2 and 3%. The eigenvalues now lead to Lo = 5. A closer
look at the table shows that four components are highly significant, while the
fifth is somewhat dubious. Further applications of the method confirm this
result. It also holds for A = 6,8 and for both polynomial regression and cubic
B-spllnes There is no evidence that more than five base functions are required.
In fact, ©*_, )\, < (h — 6) was obtained throughout.

Choices of A = 9 or A = 15 lead to Lo = 4. Table 2 reports results when
smoothing is based on cubic B-splines with 49 knots (k2 = 51).

__ Here, noise obviously superimposes small components. We end up with
Ly=3
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TABLE 2
Analysis of eigenvalues, dimensionality; h = 51

Critical value

L Eigenvalues po LAr (a = 0.05)

1 18669.82 19219.51 52.39

2 471.77 549.69 51.38

3 30.58 77.92 50.36

4 3.91 47.34 49.35

5 2.30 43.43 48.34

6 2.26 41.13 47.32

7 2.17 38.87 46.31

TABLE 3
Approximation of estimated base functions

L Eigenvalues AE(gr)
1 18669.62 0.000004
2 471.51 0.000176
3 30.10 0.005959
4 3.34 0.021633

When combining these results we can conclude that the data supports our
hypothesis that a low-dimensional model of the form (1.2) is appropriate. Fur-
thermore, four or five base functions should be sufficient.

We now might use one of the procedures presented in Section 3 to estimate
the functional values of base functions at the design points. However, a closed-
form analytic expression is certainly much more desirable. Based on dimension
estimation, data might again give hints:

Consider a smooth, strictly monotone transformation x — T'(x). For half of
the data, say, j = 73,...,144, then determine Y}, by averaging over all yz;(k
= k(j), t = t())) corresponding to some x; with T-1(xy) € [(X;_1 +X))/2,(X;
+ X; . 1)/2. Then estimate the dimension of a model for the data (Y** ,X;), where
Y= Yij,j=1,...,72,and Y :=Y};,j = 73,. ,144. Approx1mate1y,

Lo
Y=Y traX)+e;,  j=1,...,72,
r=1

and
Ly

Y= 0,8 (TX)) +ej, Jj=73,...,144.
r=1

hold. However, usually it will not be true that g,(T(-)) € span{gy,...,8L,}, and
the dimension L§* of a model for (Y** X;) will be larger than Lo. If Ly* = Ly,
this allows us to draw conclusions about the structure of the base functlons
Using transformations of the form T(x) = ¢ - x and T(x) = «, L** = LO
was obtained for all ¢ in a reasonably large neighborhood of 1. Other trans-
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F1G. 1. Estimated budget-share Engel curves of three commodities for the year 1973.

formations [as, e.g., T(x) = x + ¢] lead to an increase of dimensionality. Fur-
thermore, goodness-of-fit tests were applied to check whether base functions
estimated from (Y7, X;) (transformation applied to all j) are able to model the
original data (Y{},)%i)- Again results were consistent with the assumption that
g(T()) € span{gy,...,8L,}, r = 1,...,Lo, holds for transformations of the form
T(x) = ¢t - x and T(x) = x*. This already suffices to fix the structure of the g,’s.
It can be proved that the only functions with these properties are polynomials
in log(X). Table 3 illustrates that estimated base functions can indeed be well
approximated by functions of the form ¥%_,6,(log (X)) It shows the approxi-
mation error,

. N A ‘ A\
AE (g) = min — FZI (gL(Xi) - & (log(Xy)) ) ,

r=0

for the estimated base functions g1, g2, g3, 24 of the four highly significant
components.

Estimates were obtained according to step 4 of our procedure. Smoothing
was based on cubic B-splines with 7 knots at 0.2, 0.45, 0.8, 1.15, 1.5, 2.0, 2.7,
h = 9. Recall that the theoretical results imply that the larger the value of the
corresponding eigenvalue, the better the estimates of base functions.
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We thus arrive at the conclusion that the budget-share Engel curves of the
FES data can be described by the model m j(X) = 24 ofir(log (X))". This im-
plies the model &% _ 6, X(log(X))" for the cross-sectional Engel curves. Different
goodness-of-fit tests were applied to check this model for each of the 144 curves.
Between six and eight rejections were obtained for o = 0.05, and between one
and two for o = 0.01. This is evidently in accordance with the hypotheses that
the model is appropriate. Figure 1 shows weighted least squares fits of the
model for three different commodity aggregates in the year 1973.

APPENDIX
For an n x n matrix A let L(A) :={A -v|v € R"}.

PROOF OF THEOREM 1. Letuy, := g forr = .,Lg. Select orthonor-
mal vectors vy ,1,---,u such that yl, .. vh is an orthonormal basis of L(W},)
D L(IIAI;,). Set €, := v, - ¢ and § := (§;j,...,€,;), and let ['s,I'r, and ', 1, de-
note the n x h,n x Ly and n x (b — Lo) matrices (v;,...,v4),@;,...,vy,) and
(QL0+17"‘ ,Qh).

Clearly, W;, = I';I', and Ilth = PhP;LJlAIhI‘hPZ. It is now immediately seen
that the largest A& eigenvalues of M}, and of A= I',M,T, are identical, or,
more precisely,

(A1) N = NB), r=1,...,h.

Obviously, A (Mh) =0forr > h.Let Ars denote the entries of A. It is immediately
seen that A,,(1/N )ZJN 162 holds for any r > L.

Since trivially Zf" 1)\,(A) > Z)L" Ar, it thus follows that

h h
SoaM = > Ad

r=Lo+1 r=Lo+1
a2 ° L
-~ 1 _9
<Y A Y Y
r=Ly+1 r=Lo+1 Jj=1

On the other hand, note that (1 /n)Er 1g g =TI, I'7,- Some easy computations
lead to

N
RLO-tr (Fh LOF;. LO<NZ§ )Fh—LoI‘;z—Lo)

=1

(A.3)

which together with (A.2) proves the first assertion of the theorem.
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By construction v;,...,v, are orthonormal. It thus follows from standard
results that if the ¢;; are i.i.d. N(0, 1) distributed, so are the €,;. Theorem 1(ii)
is then an immediate consequence of (A.3).

More generally, Assumption 1 implies that §; and g, are independent for;j # &,
and

(A4) Ee; =0, cov(g ;) = I, j=1,...,N,

where I;, denotes the A x h identity matrix. Hence, EELO =h —Ly. Let v,s denote
the elments of the vector v,. Since I';I'}, = W}, we can infer from Assumption 2
that, for any i,

(A.5) U%i+~-~+v;2u~ SD]%.

Straightforward computations now yield

~ 2(h L ) 1 Z Z Z
Var(RLo) 0 N2 vrl vLo +ll -+ vlzll) (Eel4j - 3)
(A6) j 1r=Lo+1i=1

3(h Lo)D, + —(h Ly)D, —-(Do -3).

2

It remains to prove Theorem 1(iii). Using the Cramér-Wald device, (A.4),
(A.5) and Assumption 1(c), we can deduce from standard martingale central
limit theorems [cf. Pollard (1984), page 171] that, for all j,§; follows a N(0,1;)
distribution asymptotically (n — oo0). Together with (A.3) thls completes the
proof of the theorem. O

PROOF OF PROPOSITION 1. Let r < Ly, and let N* € N be such that the
dimension of the space spanned by m,,...,my. is L§ > r for some L < Lo. It
is then easily seen that the N* x N* matrix

- ( / mj<X>mk<X>f(X>dX)
J jyk=1)"')N*
possesses exactly L{ nonzero eigenvalues /; > --- > lLE > 0. Consider the
matrices
Qn = (}-m’-mk) and M*:= Z
n=—/— jk=1,...N* _j_J

It is easily seen \.(Q,) = A\.(M*) holds for all »r < min{N*,n}. By our assump-
tion on the X;, @, converges to @ as n — oo. It follows from Kato [(1966),
Theorem 5.14 of Chapter 2], that

A (M*) = 2(Qp) — 1y, r=1,...,Lj, asn — oo.
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Together with N/n = O(1) this implies the existence of d, > 0 such that
M(M* - n/N) > d, for all n, N sufficiently large. However,

N N
1 , n 1 . n o
ﬁijmj:M:M "NtN Z mm’; =M -N+M .
Jj=1 Jj=N*+1

The matrix M** is positive semidefinite. We can conclude that (1/N )Z‘}Z 1n0J.2r
= MM) > M(M*n/N) > d, for all n, N sufficiently large, as follows from a
theorem of Anderson and Dasgupta (1963). O

PrOOF OF PROPOSITION 2. The proof is analoguous to the proof of Propo-
sition 1, when noting that (1/n)|m; — Whﬂj”% — 0 for all j implies that @, :=
((1/n)ni4)j k=1,.., N+ converges to Q. O

Generally speaking, Theorems 2—4 make assertions about relations between
eigenvalues and eigenvectors of matrices A and A* which in some sense are not
“very” different. This requires us to consider how eigenvalues and eigenvectors
change when passing over from A to A + B(B := A* — A). Lemma 1 provides the
basic theoretical tool to deal with this question.

We will need a matrix norm. For a real or complex k2 x 2 matrix A,k € N, set

[All:= sup [|A-vll,
vECHJoll; =1

where ||z||2 := ($F_,[2|2)1/2 for z € Ck. Of course, if A is real, || A|| can be deter-
mined by considering the supremum over real v € R, only.

We will use £G(A) to denote the set of all eigenvalues of A. For A € £G(A),
&V (A, \) will denote the set of all normalized eigenvectors of A for A. We say
that a vector v is “normalized” if ||v|2 = 1.

LEMMA 1. Let A and B be real kB x k matrices, k € N. Suppose that A is
symmetric and that, for some kg, 1 < kg < k, it holds that \1(A) > Ag(A) > --- >
Ak(A) > A 41(A) and Ay 1(A) = -+ = N (A) =t 1.

For )\ € EG(A) use U()) to denote the projection matrix projecting onto the
eigenspace of A for )\, and let

A7) sw= Y —U®
L€ ESAN{N)

be the reduced resolvent of A for \. Furthermore, for 3 > 0 let £G*(A, B, 3) denote
the set of all \ € £G(A) such that

/Bq

SOV PYRIN P ... QN PIRK( )\ ) Pg+1) N
(A.8) [S()PYBS() S()PIBS()) ||s”S(A)“q_p

holds for all g e Nand py,...,pg+1 € NU{0} withpy +---+pg.1 =p < q. Here,
S)©@ = —U\) and SN =S\, 6 € N.
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Then if, for some 3 < 1/8, \(A) € EG*(A,B,3) holds forallr=1,... ko, we
obtain the following:

(i) Forany r =1,... ko, there is a real ¢, € EG(A + B) and a real eigenvector
ur € EV(A + B, {,) such that

1
1-43

2
1-43

(A9) [ = M(A) ~ tr(UM(A)BU(M(A))] < a(M(4),

(A.10) 7, (A) = urflz < (A (A4)), -

where with X\ := \.(A)
|tr(BSO)PY ... BS(\) )|

(All) a()\) = su su ,
' QZI;P1+'--+pqp=q—l pg1-2
SO)PIB ... SO PIBU(N
(A.12) a(M)g :==sup  sup IS (1) “BU( )||
gq>1p1+--+pg=q ﬂq_

If, additionally, B is symmetric and if EG(A) = £G*(A, B, ) for some 3 < 1/8,
we furthermore obtain the following:

(ii) For any r = 1,... ko, it holds that £, = \,(A + B), and

k
)
(A.13) > MA+B)~(k— ko)1~ tr(UDBUD)| < 7= 5

r=k0+1

where o(l), is defined by (A.11), with X\ =1

ProorF oF LEMMA 1. The proof of the lemma is based on results in the
perturbation theory for finite-dimensional spaces. Consider \.(A), r=1,..., ko,
and let € C. The conditons of Lemma 1 imply that, for  near 0, A + 7 - B has
exactly one eigenvalue /.(n) near \.(A). Moreover, Z,(n) is a holomorphic function
near 7 = 0 [cf. a corollary of Reed and Simon (1978), pages 3—4]. Formulas (2.21)
and (2.31) in Chapter II of Kato (1966) yield the corresponding Taylor series.
For any r = 1,...,ko we then obtain, abbreviating A := \.(A),

(A14) () =L =1+ Z (_T”)q Z tr(BS(\)'PY ... BS(\)(P?)

g=1 p1+-+pg=q-1

for |n| sufficiently small. A corresponding matrix U(n), projecting into the eigen-
space of A + n B for 4,(n), adopts the expansion

Tl = U, N = UN) = 3 (=)
(A.15) _ g=1 _ 3 B
x Y SPYBSOP? ... S\ POBS(M) Pa+0),

P1+--+pgi1=q

as follows from formulas (1.17) and (2.12) in Kato [(1966), Chapter 2].
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The number of solutions of p; +---+pg =q — 1is

(2q - 2)!/((g - 1))*

(recall that p; € N U {0} for all i). It is easily verified that (2q — 2)!/ (¢- (¢ —
1)1?) and (29 — 1)!/(g!)? can be bounded by 47~ 2 and 47 if ¢ > 2 and ¢ > 1.
Thus, if 8 < 1/8, A € £G"(A, B, 3) implies that the series in (A.14) and (A.15)
converge for all || < 2, and that

(A.16) 1T, =TI < Tfﬂjlll-ﬁl_ﬁ’
In[*a(\)1
(A17) |6:(n) = X = ntr(UWBUW))| < 145

where a()\); is defined (A.11). We obtain
|[UMBS()PVB - - S(\) P~ VBUW|

a(\); < sup sup i
(A.18) g>2p1++pg_1=q—1 B4
< ﬂz .
~ SO

To verify relation (A.18) first note that in (A.11) we have p; = 0 for atleast one
pi € {p1,-..,pq}. Since tr (CD) = tr (DC), the second supremum in (A.11) is thus
equivalent to the supremum over those values of py, . .., pg With py = 0, only. By
definition S(\)©@ = —U()\). The matrix U()\) is idempotent with rank(U(\)) = 1.
It holds that tr (DU(X)) = tr (UNDU(N)) and [tr (UNDUW)| < [ UNDUMN)),
for any real & x k£ matrix D, and (A.18) is an immediate consequence.

Relations (A.16) and (A.17) imply that, for all |n| < 2, 6-(n) := £.(n)is an eigen-
value of A + nB, while U(n, \) projects into the eigenspace of A + nB for ¢,.(n).
These are consequences of Kato [(1966), Theorems 1.8 and 1.9 of Chapter 2]
and of the identity theorem for holomorphic functions. In particular, 4, := £,.(1)
is an eigenvalue of A + B, and (A.17) proves assertion (A.9).

To prove assertion (A.10), first note thatu, := U(1, ) L(A)/H UQ, )‘)'lr(A)”2
is a real, normalized eigenvector of A + B for /.. Recall that we abbreviate
A := A(A). It holds that S(A\)y (A) = 0 and, hence, S()\)(P)lr(A) =0,p > 0.
Relation (A.15) thus leads to

U@, y,(A) - 1r(A)||2'

(A.19) <M SOV PIBS(N P ... SN PPBUW|

where the last inequality in (A.19) can easily be deduced from the fact that the
number of solutions of p; + -+ +p, = g is (2¢ — 1)!/(g!(q — 1)!) < 49~ 1, Trivially,
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a(A)g < 8. Using (A.19) and o)), < 3, relation (A.10) then follows from the fact
that, for all vectors v, w with |w|s =1,

+ v —wllz

< vl
2

1
Tolz ~*
< |lwllz — lvlle] + llv — wll2 < 2[lv — w].

LW
[[v]l

Now, consider the second part of the lemma, and suppose that B is symmetric.
Theorem 1.10 in Kato [(1966), Chapter 2] implies the existence of a number of
functions £, +1(n), . . ., £x(n) (some of them might be identical) with the following
properties: the £,(-) are holomorphic functions in a region containing the real
axis; for any 7, £.(n) is an eigenvalue of A + nB; and 1 = £;, ., 1(0) = - - - = £;(0).

Formulas (2.21) and (2.31) of Kato (1966) provide a Taylor expansion for
Z’:= ko +1¢r(n) — (B — ko)l which is of the same form as those of £,(n) — X in (A.14);
just replace A by lin the tr(-)-terms. Accordingly, since 1 € £5*(A, B, 3), relation
(A.17) remains true when replacing £,(n) — A by 3*_ ko +16r(M) — (B — ko)L

The term o(1);, defined by (A.11), can then be bounded by

|[U®BSQ)?VB - - S(1)P«- VBUD)|

o(1); < (k —kg)su su
' ° ngp1+~-+pq?1=q—1 pa-?
(B — kg)3?
O

We thus can conclude that assertion (ii) of Lemma 1 holds, provided 4, = ), (A
+B),r=1,...,kp,and ¥ _, &) =3%k_, \(A+B).
Since 8 < 1/8, we can infer from (A.17) and (A.18) that, for all r = 1,..., kg,
1 _ L min
2||S(/\r(A))“ 2r9€se{1,“.,ko+
Hence, {1 > ly > - > £y > M (A) — (A, (A) —1)/2, and to complete the proof
of the lemma it only remains to show that

IM(A) = £| < 3 [A(A) — As(A)).

1 (41
2SO 2 '
For )\ =1, let U(n, \) be defined by (A.15). Since 1 € £€G*(A, B, 3), relation (A.16)
carries over to A\ = 1, and the series in (A.15) converges for |n| < 2. We now

can infer from [Kato (1966), Theorem 1.10 and formulas (2.3) and (2.12) in
Chapter 2] that we have 4,.(1) -1 € £€S5((A + B — 1I) - U(1,1)). Hence,

(A.21) max [1-£(D)| < |(A+B-1-D-ULD].

r= 0+1 .....

(A.20) max |l- (1) <

7‘=k0+1,‘“,

Formulas (2.16) and (2.18) in Kato [(1966), Chapter 2] provide a series expan-
sion of the right-hand side of (A.21):

max |1 - £(1)]
7‘=k0+1,.‘.,k
< Z(_n)q Z ”§(1)(p1)B§(l)(pz) ... SM)POBSA)Pe+1) |
g=1 P1+-+pge1=g—1
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The number of solutions of p; +--- +pg.1 =9 — 1is

(2¢ - D!/(g¥g - 1)!) <47~ %.

Any summand on the right-hand side can be bounded by 3?/|S(1)|. Conse-
quently, |1 — £(1)| < B/(ISMD||(1 — 48)) for all = ko + 1,...,k, and § < 1/8
yields (A.20). This completes the proof of Lemma 1. O

The bounds established in Lemma 1 are too general to be feasible for practi-
cal computations. There are several different ways to make them more specific.
Lemma 1la provides a version which is particularly suited for the proof of The-
orem 2.

LEMMA la. Under the conditions of Lemma 1 define matrices S(\) by replac-
ing £ — \by [£— X in (A.7). For \ € £€G(A), set

B :=max {|B -S|, SN - [|IB- UMW)},

and let § :=max,-1, ., BA(A)).
Then M\.(A) € £G"(A,B,B), forallr=1,... ky, and
2OV, < [BUGAN | [T, A)BS (A
a(W(A), < [SOWA) |- [BUG A,

PrOOF. For any two & x k matrices C and D it holds that

[CSWPD| < [[CSWIISMIP~ YD,  p=>1,
and
ICTD| < [CTWINTMWD]| < [|CTUMN|ID].

In a straightforward way, such decompositions can be used to establish relation
(A.8) for all ¢, p1,...,pq and X € {A\(A),...,I;,(A)}. Note that ||[U())|| = 1 and
U\ - U(\) = U(N). Accordingly, the asserted bounds for a()\); and a()\), follow
from (A. 18) and (A.12). O

Lemma 1b establishes the version of Lemma 1 which is particularly suited
for the proofs of Theorems 3 and 4 and Propositions 3 and 4.

LEMMA 1b. In addition to the conditions of Lemma 1 suppose that B is
symmetric. Define matrices S(\) by replacing £ — X\ by |£ — \| in (A.7). For \ € £S
(A) set s(\) := ||SW,

B\ = max{[[UMNBUW)| - s, [[SVY2BUW)|| - sC)M2, |[SOVY2BS()Y2||}

and let B := max) ¢ gg(a) B
Then £G*(A,B, 8) = £S(A), and, for any X € £G(A),

(A.22)  a(\) < s |tr(UMBUMNBUW)| + |tr(UMBSBUW)).
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Furthermore, forr=1,... kg, it holds that

a(M(4), < s(A(A) 72 ||S(M(A) 2 BU (M)

ProOF. For any two k2 x k£ matrices C and D it holds that

[CS)PD]| < [[CSMM2|[IS)I2 = HISY2D|,  p>1,
and

[CUMWD|| < [[CUW[|UMND]|.

As is easily seen, such decompositions can be used to establish relation (A.8)
for all q,p1,...,pqy and XA € EG(A). Accordingly, the asserted bounds for a(\),
follow from (A.12).

It remains to prove (A.22). Let A\ € £€5(A), and recall the arguments used to
verify relation (A.18). We can infer that

tr(C(py,...,pg—1;A
(A.23) a(\); = sup sup |tr(C(p1 Pq-1 )|
q>22py+-+pg_1=q-—1 ﬁq

holds, where
C(p1,...,0g;N) i= UNBSO)PYB ... S\ PPBUN).
Now let
C1(N) = UMB(SWY2 + sO)M2UW))

and note that, for ¢ > 2, C(py,...,pg; A) = C1(N)Ca(py, . ..,pq; NC1(N) for a
matrix Co(py,...,pqg; A) With [|Ca(py,...,pg; M| < B9~ 2 [recall that U(A\)S(\)
= 0]. We thus obtain, for ¢ > 2,

|tr(C'(p1, . Pg—1; )\))I
= |tr(C1(\Ca(p1, . .. ,pq - 1; NC1(N)|
=||Co(p1, .- -, pg; V|

tr(Cl()\)Cl()\)l) —tr <Cl(/\l)<I _ C2(Pl, . ,Pq; A) )Cl(A)’>

g ”CZ(pl:" 7pq,/\)“

It is easily seen that the matrix I — Ca(p1,...,pg; N/||Co(p1, ..., pg; M| is posi-
tive semidefinite. We can conclude that

[tr(C(p1,-..,pg; V)|
<|ICopy, .- -, pg; M|l - tr(C1(NC1(NY)
< 7= 2(s)[tr(UNBUMBUW)| + [tr(UNBSNBU)) ).



ESTIMATING COMMON REGRESSORS 1417

The last inequality can immediately be derived from the definitions of C;(-) and
Csy(+). Together with (A.23) this completes the proof of Lemma 1b. O

PROOF OF THEOREM 2. Definition of M implies that E5(M) = {l4,...,IL,, 0},
where [, := (l/N)ZjI‘Lln@j%. Forr=1,...,L, the projection matrix U(l,) project-
ing onto the eigenspace of M for [, is given by

1
U(l’) = ;'grgr”

1
S(l,.) = Z WU(A)
Ir # XEESM)

: 1 1 , 1
Now let

Ly
1
M} =W, —DM =W, - er;g,gf,.

r=1

In the sequel we will consider the largest L, eigenvalues, and corresponding
eigenvectors, of M + M} . They will prove to be identical to those of M;. Let
us thus analyze the terms relevant to establishing the assertions of Lemma
la. Based on the assumptions of Theorem 2 we obtain the following, for all
r= 1, . ,L()Z

1Dy
8 )

(A.24) IMUQ| = I — Wy)l,n~?g ||5 =1, Biasy, , <

d - Wilen=1/%g
agsa) < 3 1 W AL

[ts — &r|
(A.25) rr
. s . 1
< < =
< 2 D, Biasy, s < g
s#r
N I, 1
IU@IM;SE| < ; Dol 7 &0~ Wakg |
(A.26) < Bias, , Biasy
D,
s#r
Biasy, ,
— 8 )

1

1 .
A27)  tr(UCIMUG) = ~L—g\(d ~ Wh)g, = —I; Biasy .
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Necessarily Dy < 1, and, hence, ||S(,)|| < 1/(D3l,). Therefore, relations (A.24)
and (A.25) imply that, for any r = 1,..., L,

B = max {| M - ST, ISE)I - M - UG} < §

Lemma 1la thus yields I, € £€§"(M + M};,1/8),r = 1,...,Lo. We now can invoke
Lemma 1 to analyze differences between the eigenvalues and eigenvectors of
M and M + M;. Bounds for o(l;); and o(l,), are to be obtained from Lemma
la, (A.24) and (A.26). Additionally, using (A.27), it follows that for each r =

.., Lo there exist a real eigenvalue 4, € EG(M + M}) and a real eigenvector
u, € EV(M + M;, 4,) such that

(A.28) L — 4] < §l, Biasj, ,,
4
(A.29) |n=1/2 g, — url|, < D, Biasy, ;.

By assumption, Bias, , < Dy/8 and |I; — I;| > Dyl,,s#r. Hence, (A.28) implies
|6 — 1] < 1;D3/2 < 1/2ming 4, |ls — I;|. From this we can deduce that ¢; >
Ly > >4, >0.

At this point, recall that M;, = W, MW}, and note that A\.(M},) = (1/N )z)f"= lngﬁ
and y (Mj) = n=1/%g . Obviously,

M+ Mj = My + WpMI — Wp),
and it is easily seen that, forallr=1,...,Lo,

(My + WaM(I - W) - n= Y28 =My, -n~Y%g = \(Mp).

Consequently, both ¢; > --- > £, > 0 and \y(Mp) > --- > Ar (M},) define
collections of eigenvalues of M}, + W,M(I — W},), while u;,...,ur, and n~12g g,
.., n"1/2

g L, are corresponding real, normalized eigenvectors. On the other
hand, note thach +WhM(I— Wh) U= Mh -vforve L(Wh), anth +WhM(I—
Wi - v =WMIT - W) -v e LW) for v € R*"\L(W}). This shows that any
real, nonzero eigenvalue of My, + Wy M(I — W) is necessarily an eigenvalue of
My, too. The total number of such eigenvalues cannot exceed rank(M}) = L.
Consequently, 4. = \,(M}) and n~Y2g = u, or n=Y % = -u,r=1,...,L.
Together with (A 28) and (A.29) this completes the proof of Theorem 2. D

In the sequel, let A, := (1/N)zY 1n012r, r= .,Lo,and A\, :=1, r > Ly.
LEMMA 2. Under the conditions on Ly, h,n,N imposed in Theorem 3 let A[=
A(Lg, h,n,N)] denote h x h diagonal matrices with diagonal entries A1y > Agg >
> Apore > Apg+1o+1 = - = App i= 1. Assume that there exists a D* > 0 such
that |Ay — Ass| > D*), holds forallr,s € {1,...,Lo+1},r#s,and all Ly, h,n,N.
For Lg,n,N,h € N let E[= E(Lg,n,N,h)] denote symmetric h x h random
matrices. Let &5, r,s = 1,...,h, denote the entries of =, and assume that there
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exists a sequence 6y of real numbers with the followzng properties: (1) h - §y — 0
as N — oo; (2) sup, ;. h(EE,s/)\ Xe) = 0(82), N — oo.
Then the followzng hold

[Ar(A+E) — Ay

0 b ge
vz, %
Err —_— ; =1,...,L;
(( & ) Zl max{)\,,/\s}) 4 0
lly,(A) =7, (A+ 32
(ii) - 1/2
(Es r [ngs/max{)\r, )\s}])
P <172 ) r= 1’ . ’LO;
(i) max WAXEZAel o0, g
h h ’
(iv) Y Aa+D- Y @ +D)|=0p (h(h —Lo)éﬁ,).
r=Lo+1 r=Lo+1

Proor. It holds that EG(A) = {A11,...,ALyL,, 1}. Furthermore, EV(A,,) =
span{e,},r=1,...,Lo,and EV(1) = span{er ,1,---,e;}, Wheree, = (1,0,...,0),
..,e = (0,...,0,1) denote the Euclidean basis of R”. The matrix U(A,,)

e, e is the projection matrix projecting into the eigenspace of A for A,,, r
.,Lg, while

UQ) = e€,
r=Lo+1

is the projection matrix for the eigenvalue 1. For [ € £G(A) matrices S(4), as
required in Lemma 1b, are given by

SO= > = £|U(e>
L€ EYMN{L}

By assumption,
1 1
|Arr — Ass| D*max {/\r, s }

(A.30)

holds for all r,s with A,,# As. Hence, s(A,,) = [|S(A,)|| < 1/(D*),). Now, note
that

(A31) tr(g"g:"Eg els) frs * Orsy
r

Ee,e,Zee}) = €2 - bgs,
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for all r,s,q, where ¢;; = 1if i = j, and 6;; = 0 otherwise. Furthermore,
ICll £ (tr(C'C))Y/? for any real h x h matrix C. After some straightforward
computations this allows us to derive that

por s =33 s

r=1s= 1
holds for all A € £G(A), where 5()\) is defined as in Lemma 1b. This implies
3

A Ee? 1/2
sy P EE,AOSEE=0p ((Z_;X; D*2X,SXS) )
= Op(héy) = op(1).

Relation (A.32) now allows us to invoke Lemma 1 in the specialized version
established by Lemma 1b. Note that tr(U(A,.)ZU(A,) = &, r < Ly, and
tr(UDEUD) = Tk} | 1&r. Assertions (i), (i) and (iv) are immediate conse-
quences of (A.9), (A 10) and (A.13), when using (A.30) and (A.31) to evaluate
the bounds for a()\); and a()); given in Lemma 1b. Assertion (iii) follows from
(A.32), oA )1/Ar < B* - D* and tr(UADBUND) /A = /A < B2 . D*,
r<Ly O

PrOOF OF THEOREM 3. Recall the arguments used to prove Theorem 1.
Using the notation introduced there, it follows from (A.1l) that the nonzero
eigenvalues of M;, and of A are identical. Furthermore,

(A.33) n2%g =Ty ®Q), r=1,.., Lo
Let A denote the diagonal matrix with A,, = A+ 1,r=1,...,Lg,and A, := 1,
r > L. It holds that
nY%g =Ty-y (MN)=Th-e,, r=1,...,Lo

Consequently,

n~Y2|g ~Z llz = IThy,(A) = Thy, M2 = lly,(A) — v (B2
Hence, in order to prove the theorem it suffices to show that the asserted
s’e'chastic bounds apply to |A,, — r(A)l |Er Lo+1 A(A)—Ryp,| and ||:y_r(A)—1r(A)||2
(recall that A, = A +1). Let

(A.34)

N -

1 N &

NZZZ €rj€sj — rs
=1
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where 6,5 = 1 for r = s, and 6,5 = 0 otherwise. The random variables ,; and €
are independent for j#£, satisfying E€,; = 0, E€2 = 1 and E%,&; = 0, r#s.
Similar to (A.6), some easy computations show that there exists a constant

Dj1,00 > Dy; > 0, such that E€; < Dyy. For r,s € {1,...,h} this leads to

the following:

(A.35) BV’ = fv r<Lo; E¢Y=0, r>Lg
(A.36) E¢Y = % s<Ly E&2=0, s>Lg;
(A.37) EeY < 13\}1,

for all r,s. These results might be combined to obtain

E¢2 1 E¢2 1
(A.38) sup —=& = 0(—) and sup —F-—— = 0(—),
q,s=1P,.,h g s N s=1 ph max{\, A } N

r=1,.. Y hLLet D* := min{D4,Ds}. Assumption 4 implies that |A,, — Ag| >
D*max{\;, A\s} holds for all r,s € {1,...,Lo + 1}, r#s. The assertions of the
theorem now are consequences of Lemma 2, when additionally noting that

1 N h h
RL0=NZ Z €£j= Z (&r+ 1. -

Jj=1r=Lo+1 r=Lo+1

PROOF OF PROPOSITION 3. Since we do not rely on Assumptlon 4, we have
to consider the eigenvalues )\ first. Recall that )\ = )\,(Mh) = r(A) r= h.
Let A* denote the diagonal matrix with diagonal entries A}, = 1+ 0. 9’ 1 - Ars
r= .,Lg, and A}, := 1, r > L. Using the notation 1ntroduced in the proof of
Theorem 3, we obtain A = A*+Z+(A—A*). Since A— A* is positive semidefinite, it
follows from a theorem of Anderson and Dasgupta (1963) that ), L) > M(A*+5).
Proposition 2 implies that there exists a d > 0 such that ALO > d. Hence,
A%, — AZ| > min{0.1-0.9%~2 09 -1.4d}. ) forallr,s = 1,...,Lo + 1, ré#s.
Since, furthermore, (A.38) generalizes to the present situation, we might invoke
Lemma 2 to analyze the eigenvalues of A*+Z Lemma 2(iii) and N*/24~1/2 — oo
now lead to

min NY2p=12(3, 1) > min NY2h"Y2(A(A*+E) - 1) — oo

r=1,...,Lg r=1,...,Lo

in probability. At the same time there obviously exists a constant C%* < oo such
that

N=Y2h ~ Ly V*(Co,ntn-1) ~ N(h — L)) < C¥



1422 A. KNEIP

for all N and A > L. It follows that

h
o (rg o) <

h
<P ( min (Nl/z(h LY R -1 - c;;*) < o) —0.

=1,...,Lp
3oy r=L

Relation (A.39) shows that P(EO < Lg) — 0, and it only remains to prove that

P(EO > Ly) — a. We can infer from Lemma 2(iv) and from our assumptions on
h,N that

h
Nl/Z(h_LO)—1/2 Z j‘\r

I'=Lo+1

(A.40) h
>NYV2(h - Lo)™"2 Y M(A*+8)

7‘=Lo+1

= NY2(h — Lo)~Y2Ry, + 0p(1).

Now, however, consider the diagonal matrix A** with A** = 1+ 1.1%0~". X,,
r=1,...,.Loand A¥* := 1,r > Ly. We have A = A** + E+ (A — A**) and A\(A) <
M(A** + E), since A — A** is negative semidefinte. Arguments similar to those
used above show that we might invoke Lemma 2(iv) to obtain

h h
wapy NR-LoTE ST A SNVHR-LoTVE YL MM +E)
’ r=Lo+1 r=Lo+1

= NY2(h — Lo)~'/?Ry, + 0p(1).

At this point recall the notation introduced in the proof of Theorem 1. It can
be inferred from Assumption 1 that there is a constant D§* < oo such that

EE,? < Dg* for all r,j. By using standard martingale central limit theorems we

thus can deduce from Theorem 1(3i) that

N n
Nl/Z(h _ Lo)_l/zﬁLo = N_41/2(h - L())_l/2 Z Z Er?‘

(A.42) j=lr=Lo+1

is AN(Nl/z(h —Ly)V/2, 2).
On the other hand, we can obtain from standard results that, for any o > 0,
IN“Y2(h — Lo)™2Co, b 1) = Ci| = 0

as N — oo, where C?, denotes the corresponding critical value of a N(N/2(h —
Ly)'/2,2) distribution. When combining this with (A.40)—(A.42), we can
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conclude that
h —~
P<N > o> Ca,N(h—Lg))
7‘=L0 +1

h
= P<N1/2(h —Lo)™% Y N >NVAh - LO)_I/zca,N(h—Lo)> - a,

r=Lo+1

which proves that P(Eo >Lg) —a. O

ProOOF OoF PrROPOSITION 4. Let Lg') < Ly denote the dimension of the pro-
jected model, and recall that Eﬁloj,ejs = 0 if r # s. The assumptions of the

proposition imply that Lg’) > Ly for all n sufficiently large. Some easy compu-
tations then show that

1 ¥ Ly+1 Ly+1 /
My=5d. ( > n'%,2, *Whﬁj) ( > n'*Gg + Whéj)
r=1

Jj=1 r=1
1 N Lg') Lgn)
1/2p = _t 1/29 =/
(X agme S g )
J=1 \r=L;+2 r=Lj+2
1 N Lgn Lgn ’
1/27 = 1/29 =
*NZ( > n/é’fra,)< > n/%ré'r)
J=1 \r=L§+2 r=Lg+2
= M) A2 | Ar(3)
=MP+ MP + MP.

Set mz) = 0 and Jl/\lf') =0if L§+2 > Lf)h). Let A* denote the diagonal matrix with
diagonal entries A¥, = 1+ 0.97 1 Ar=1,... , L+ 1,and A}, := 1,r > Ly + 1.
Replacing Lo by Lj + 1, define matrices A, Aand = analogous to those in the
proof of Theorem 3. We have )\, Zl//:f}ll)) = )\Q), for all r = 1,...,Lj+1,and A=
A*+ E + (A — A*). Arguments similar to those used in the proof of Proposition 3
now show that Lemma 2 (iii) leads to

(ol -1) > _mig | 49—

(Ad43)  relinlysl i
= 0.9%0 )\Ls +1(]_ + OP(]-)).

Since the normalization implies

1y, 1 & ~
D onfr <= nbi., =g forr>Li+l,
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it is easily verified that

M (J12 @ o)
(12)] < (tr(M' 1))

(A.44) St B~ s
Op (W)\L;u) =op(As1)

Note that necessarily Lf)h) < h. Clearly, Zl//:f}f” is positive semidefinite. It fol-
lows that A,(M,,) > A,(ml)) —maX,-1,. |)\r(]l/\4,(f))|. Furthermore, Proposition
2 implies the existence of ad > 0 such that XLS +1 > d for all A, n, N sufficiently
large. This can be combined with (A.43) and (A.44) to obtain that

min  NY2p-12(}, _ 1) 5

r=1,..,L§+1
in probability. As an immediate consequence, relation (A.39) generalizes to the

present situation; just replace Ly by Lj + 1. Hence, P(f,O < L§) — 0, which
completes the proof of the proposition. O

PROOF OF THEOREM 4. Let A* := r;ﬁ #'p. Using the same arguments as in
the proof of Theorem 3, we obtain that in order to prove Theorem ‘1 it suffices
to show that |A,, — A (A)],| 7. Los1 M (A*) - Ry,| and ll7,(A) — 7,(A*)]|2 adopt
the asserted bounds.

__ As above, this will be derived by making use of Lemma 2. However, now
A* — A contains additional terms. It holds that

== K* _ A= E(l) + E(Z) + 5(3) + 3(4),

where ZV, 22 and Z® are defined by (A.34), and where

2 h h

1 (o2 o ~ - !
==5 > (a_Jz - 0_12) (Z (n'26;, +3rj)9.r) (Z (n/28;, +€rj)€r) :
j=1 \YJ

J r=1 r=1

Additionally, we have to analyze the asymptotic behavior of ¢ for all , s.
Therefore, first note that UY;) — EQUY)) = 5, pwireijeir — E; pwineijen. Based
on our assumptions on the ¢; = ¢;;/0j, an application of an inequality of Whittle
(1960) shows that there exists a constant Dy, < co such that, for any o € {1, 2}
and allj,N,

(A45) (Q(Y ) - EQ(Y ) < D12 (Zwlk) < DlZDgan_a'

Together with condition 2 of Assumption 5(c) this yields EQY)) - sz)za <
Dy3n=*, D13 < oo, which obviously carries over to E(c’fj2 — 01.2)20‘ < Dyn—@,
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D14 < oo. It follows that there is a constant D5 < oo such that, for a € {1,2}

and all j, N,
2a —~ 2a
(A.46) J J i .
NCAN B XA n-%
D6D8 =15
Set @r :=0forr=Ly+1,...,h. Based on the independence of the error terms

for different j, (A.46) leads to

Jj=1 J J
1 N /2 1/2
(A4T) < =Y (Disn7?) (E( 1720, + ;)" ( /9,s+esj))
j=1
)\}/ 1/2
< D5 N

for some Djg < oo. This is easily obtained by making use of the Cauchy-

Schwarz inequality, and by noting that, by assumption 5(b), (1/N )EnZOfrOfs

< n-DEN/X/% If both r > Ly and s > Ly, then §, = 0 and 8, = 0, and
we can denve a sharper bound for the variance:

N
1
var(§9) < 55 3 (Disn™?) " (Eeie)
(A.48) j=1
Die
< Nn' r,s > LO)

for some D16 < 00.

It remains to consider E¢). Since, by relation (A.45) and by condition 2 of
Assumption 5(c), P(Y;) < Dg) = o(n~1) uniformly for all j, we can immediately
infer from condition 1 of Assumption 5(c) that there is a D;; < oo such that
E(0? — 5%)&; < Dygn~1, for all j, N, r. On acount of a Taylor expansion of 1/52,
this allows us to derive the existence of a constant D1 < oo such that, for all r,s,

’\2
| ZE D20 (125, 4 5) (012G, +2,)
g; — 52 1/2 ~ ~ 1/2
(A.49) Z (E J(D4 2 il ) (E(nmejr+Erj)2(nl/29js+€sj)2)
/\;/2)\81/2

< Dss
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We now might combine (A.35)-(A.37) and (A.47)-(A.49) to obtain

B[ < Du( 3+ 5

for some 0 < D19 < 00, and hence

E¢2 2 3
sup ~£53=0(—1—+—1§) and  sup ————E;’i—.,—=0<—1-+)\—;>,
g,s=1,..,h )\q)‘s N n s=1,...,,h Max {AIH)‘S} N n

r=1,...,h. The assertions of the theorem now are consequences of Lemma 2,
when additionally noting that, by (A.48) and (A.49),

h ~ h = h — Lo
> <£rr+1>=RLo+0P< > fﬁf’)=RLo*OP(mﬁ)'

r=Lo+1 r=Lo+1

This completes the proof of the theorem. O
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