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NEAREST NEIGHBOR ESTIMATION OF A BIVARIATE
DISTRIBUTION UNDER RANDOM CENSORING!

By MICHAEL G. AKRITAS

Pennsylvania State University

We consider the problem of estimating the bivariate distribution of the
random vector (X,Y) when Y may be subject to random censoring. The cen-
soring variable C is allowed to depend on X but it is assumed that ¥ and
C are conditionally independent given X = x. The estimate of the bivariate
distribution is obtained by averaging estimates of the conditional distribu-
tion of Y given X = x over a range of values of x. The weak convergence
of the centered estimator multiplied by n1/2 is obtained, and a closed-form
expression for the covariance function of the limiting process is given. It
is shown that the proposed estimator is optimal in the Beran sense. This
is similar to an optimality property the product-limit estimator enjoys. Us-
ing the proposed estimator of the bivariate distribution, an extension of the
least squares estimator to censored data polynomial regression is obtained
and its asymptotic normality established.

1. Introduction. Estimation of the bivariate distribution under random
censoring has received considerable attention over the past 10 years [see
Dabrowska (1988, 1989a), Van der Laan (1992) and references therein]. Here
we consider the problem of estimating the bivariate distribution of (X,Y) when
Y may be subject to random censoring but X is always uncensored. We are
motivated by applications to the linear regression model where the covariate
(X) is uncensored and the response variable (Y) is subject to random censor-
ing (see Section 5 for details). In this context it is unrealistic to assume that
the censoring variable C is independent from X. Therefore we work with the
assumption that Y is conditionally independent of C given X, but we allow C
to depend on X. This feature makes the present estimation problem different
from those considered thus far, where the assumption that the censoring mech-
anism is independent from (X,Y) was imposed. Some identifiability issues for
the bivariate distribution under conditional independence are discussed in the
recent paper by Pruitt (1993).

The proposed estimator of the bivariate distribution function is an average,
over covariate values, of estimates of the conditional distribution function of
the response given the covariate. Although the rate of convergence of estimates
of the conditional distribution function is slow, the square root n rate of con-
vergence is recovered by the process of averaging over the covariate values.
Estimation of the conditional distribution function under random censoring
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was introduced in Beran (1981) and was further studied by Dabrowska (1987,
1989b). See also McKeague and Utikal (1990), who allow time-dependent co-
variates and recurrent failures, and Cheng (1989), who considered the problem
of estimating the marginal distribution function of Y. The estimates of the con-
ditional distribution functions we use are smooth nearest neighbor estimators,
and thus we refer to the proposed estimator of the bivariate distribution func-
tion as the nearest neighbor estimator (NNE). In the uncensored case, near-
est neighbor estimates of the conditional distribution function were studied by
Stute (1984, 1986) and Horvath and Yandell (1988). To our knowledge, however,
averaging of such conditional distribution functions over values of the condi-
tioning variable was never proposed as a method for estimating the bivariate
distribution function. It is worth noting that, in the uncensored case, the NNE
is asymptotically equivalent to the empirical distribution function.

Clearly there is a class of such estimators, specified by the choice of the
kernel function. Arguing formally it is seen that, provided the kernel function
satisfies some simple conditions, all members of this class are asymptotically
equivalent. Thus the covariance function of the estimator does not depend on
the chosen kernel. In this paper we will work with the kernel K(u) = 0.51(—1
< u < 1). The choice of the indicator kernel function simplifies the arguments
and requires fewer smoothness conditions. The closed-form expression of the
variance function is slightly more complicated than the variance function of the
usual Kaplan—-Meier estimator on the line. A particularly important result is
that the covariance function of the NNE is optimal in the Beran sense [Beran
(1977)]. This optimality result is the direct analogue of a parametric optimal-
ity result established independently by Hajek (1970) and Inagaki (1970). It
implies that any other regular estimator will be at least as dispersed as the
NNE. That the product-limit estimator is optimal in this sense was shown by
Wellner (1982).

The next section introduces the estimator of the bivariate distribution and
states the assumptions. The weak convergence of the estimator of the bivari-
ate distribution is given in Section 3. Optimality of the NNE is established in
Section 4. Section 5 introduces an extension of the least squares estimator to
censored data regression using the present estimator of the bivariate distribu-
tion. Finally, Section 6 discusses further research.

Throughout the paper, K in proofs stands for a generic constant whose value
may differ from line to line.

2. Assumptions and definitions. In this section we state the assump-
tions under which the various results will be shown and present the NNE for
the bivariate distribution function.

Consider a sequence of independent and identically distributed (iid) random
vectors (Y;,C;,X;), i = 1,...,n, such that given X;, Y; and C; are independent.
The observed data are of the form

(21) Di =(Zi,6i,Xi), i = 1,...,71,,
where Z; = Y; A C; = min(Y;,C;) and §; = I(Y; = Z;). In what follows we let
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(X,Y,Z,6,C) be a generic random vector having the joint distribution of each
(X;,Y,,2;,6;,C;) and set F(x,y) =P(X <x,Y <y),Sx,y) =P X >x,Y >y), G(x)
= F(x,00),S(y|x) = P(Y > y|x) =1 — F(y|x); and Fp(D) will denote the joint
distribution function of the data D = (Z, §, X). The proposed estimator for the
bivariate distribution of (X,Y) is based on the relation

S(x,y) = /OOP(Y >y| X =¢) dG(®).

In particular we propose the estimator

(2.2) S,y =n"13"S(y | X)I(X; > ),

i=1

where S(y |x) is an estimate of S(y | x). We will consider estimates S( y|x) that
are based on nearest neighbor estimates of the conditional subsurvival func-
tions. Estimates of the conditional subsurvival functions are used to estimate
the conditional cumulative hazard function A(¢|x), which leads to an estimate
of S(y | x) through the relation

S(v1%) =exp{-A(y12)} [T {1-2A(s1%) },

s<y

where A°(y|x) is the continuous component of A(y|x); the product is taken
over the set of discontinuities of H;(z | x) defined below; and AA(s |x) = A (s |x)
—A(s — |x).

Note that in the univariate case (so Z = Y A C and there is no X) it is not
possible to estimate the distribution function of ¥ beyond the support of the
distribution of Z. It follows that in the bivariate case we can only hope to es-
timate S(x,y) at the (x,y) values for which y is a number less than the upper
bound of the support of the conditional distribution of Z given X = x;, for all
X1 > X.

Denote the subsurvival functions by H,(z |x) = P(z >z, § = ¢|x), t = 0,1, and
H(z |x) = Hy(z|x) + H1(z | x). Thus the conditional cumulative hazard function
associated with S(y |x) is

t t
A(t]x) = /0 S(y - |2) 'dF(y|x) = —/O H(z — |2) " dH;(z|%).
For . = 0,1, we consider smooth nearest neighbor estimates of the form

&@—&&» o1

an

H(z|x) = (nan) Y 1Z; > 2, § = L)K(

Jj=1
fI(z|x) =ﬁ0(z|x) +ﬁ1(z|x),

(2.3)

where a, is a deterministic sequence of real numbers converging to zero, K(u) =
0.5I(—1 < u < 1) and G is the empirical distribution function for X;,i = 1,...,n.
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The estimates of the conditional cumulative hazard function and the survival
function of Y given X = x are given by

A(t]x) = —/Otﬁ(z— |1x) " dH; (2| x),

and

@0 ,§’(y ) = H {1 ~ . K((G(x) - GiXi))/aj) } |

Zi<she1 r 12 > 2K (G - G(X))) fan )

The analysis of the estimator in (2.2) will be based on the following decomposi-
tion:

SC,y) - S,y =n"1>" S(y| X)I(X; > x) — S(x,y)
i=1

2.5) —IZ[ (v1X:) = S(y1X:) |1X; > 2)
¥ / S(y|£)I¢ > x)[C(dt) - Gld)).

Note that the above decomposition does not display the bias term explicitly.
The bias term is contained in the first term on the right-hand side of (2.5).

The assumptions are stated separately for each of the results of the following
section but are collected here for convenient reference.

Al. The sequence a, satisfies na3[log a; 135 — co and naj; — 0.

It should be noted that the condition na? — 0 is required to make the bias
term asymptotically negligible. For all other derivations naS[log a; -1 — 0
suffices.

A2. (i) The bivariate distribution function F is absolutely continuous with
respect to the Lebesgue measure on R

(ii) The joint densities fg(z,u) and fg(z, 8, u) of (Z, G(X)) and (Z, 6, G(X)) are
twice continuously differentiable with respect to », and

/Sup{lf(’;’(Z,u)|;0<u <1}dz < o,
/sup{| foz,1,u)];0 <u < 1} dz < co.

Now define the function

I(z>s) Iz<y,6=1)

26) &6 =-S(y|x) [— /0 _(sl_)— 1(ds %) + =0T

The following smoothness condition is needed for showing that the bias term is
asymptotically negligible.
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A3. The function £5-1(,(z,6,y) is twice continuously differentiable with
respect to u. Let £, and & denote, respectively, the first and second derivatives
of {g-1(,) evaluated at u = G(x). Then:

i) sup{|¢.(z, 6,y)|; all (x,y) €Q,z< Ty and6=0, 1} < oo,

where Q = {(x,y): x € R, 0 <y < T, for all x; > x} and T is any number less
than the upper bound of the support of H(- | x).

(ii) We say that x € N(xy,xs; €) if |G(x1) — G(x3)| < € and G(x) is between G(x1)
and G(x,). There is an ¢ > 0 such that

Sup{lf;l(Z% 62,y0)|; X € N(xl,xz; €) andyo < Ty for all x > x2}
x G(dx1)Fp(dD5) < oo.

The last assumption is only used in the proof of Lemma 3.4, to establish a
bound on certain covering numbers.

A4. Foreache > 0there exists a partition of [0, T into at most Ac~", where
A and V are constants with V > 3, intervals [}, a;, 1] such that sup{H;(a;, 1| x)
— Hy(aj|x); allx and j} < e.

REMARK 2.1. Note that the function &,(z, §,y) defined in (2.6) is a conditional
version of the function used in Lo and Singh [(1986), Theorem 1]. It follows
that the conditional expectation of &.(z, 6,y) given x is zero for all y, and the
conditional covariance of &,(z,6,y1) and &(z, 6, y2) given x is S(y; |x)S(ys|x)
C1(y1 A ys | x), where

2.7) Ci(t)x) = - / tH(slx)_zHl(dslx).

REMARK 2.2. The assumption that the supremum of |¢}| over all x is finite
may not be met in certain applications. In such cases, the results of this paper
are true on a restricted domain of x for which this assumption is met.

3. Weak convergence. In this section we will prove the weak convergence
of the estimator in (2.2) through the decomposition in (2.5).

Let Q be as defined in assumption A3@).

THEOREM 3.1. Let assumptions A1-A4 hold. For fixed (xy,y,) we have

nl/2 [§(xo,yo) — S(x0,50)]
GD =[Syl > x)and)

+nl/2 / &2, 8,90)(x > x0) [Fp(dD) — Fp(dD)] + Ra(xo, y0),
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where an(x) = n!/ 2[G(x) — G(x)] is the empirical process that corresponds to the

covariate; n'/2[Fp(D) — Fp(D)] is the empirical process that corresponds to the
data D; = (Z;;6;,X,),1 = 1,...,n; and sup{|R,(xo, yo); (x0,50) € Q} = o(1), in
probability.

The proof of Theorem 3.1 follows from Lemmas 3.1-3.4 and relation (3.4)
given below.

COROLLARY 3.1. The process nY/2[S(x,y) — S(x,y)] converges weakly to the
limiting Gaussian process Z(x,y) with covariance function

Cov [Z(xla yl), Z(x27 y2)]
(3.2) = Cov[S(y1] X)I(X; > %), (72| X)I(X; > 22)]

+E[S(y1 | X;)S(y2 | Xi)C1(y1 Aye | X)) I(X; > 2, sz)] ,
where x1 V xg = max{xy,xs}.

Itis seen that the covariance function is slightly more complicated to compute
than the covariance function of the Kaplan-Meier estimator. Alternatively, it
is possible to use the bootstrap method [see Akritas (1992)].

PRrROOF OF COROLLARY 3.1. Using Remark 2.1 and a conditioning argument,
it follows that the first two terms of the right-hand side of (3.1) are uncorrelated.
It follows that the covariance of the limiting process, if weak convergence can
be established, is given by (3.2). Because the two components of the process
n1/2[S(x,y) — S(x,y)] are asymptotically independent it suffices to prove weak
convergence for each component separately. We will use the functional central
limit theorem given in Pollard [(1990), page 53]. The main concepts in’ this
theorem are the pseudodimension of certain subsets in R” and manageability
with respect to the envelope function of these subjects. We will also make use
of the results of Pollard [(1990), Section 5] and in particular his Lemma 5.3.
Consider the first component of n1/2[S(x,y) — S(x, y)]; thus, in Pollard’s notation

frilw,t) = S(tz | X,)I()(; > tl)/nl/z, t = (t1,1t).

To establish manageability, it suffices to consider separately the two contribu-
tions to f;;. Consider the subset of R*

Fn = {(S(t|X1),...,S(t|Xn)); teR}.

Clearly it has a bounded envelope function. Next we will shown that ¥, has
pseudodimension 1. Indeed, the monotonicity of S( | x) as a function of ¢ implies
that (S| X;),S(¢| X;)) cannot surround a point in R? for any (i, j). The same
arguments apply for the set defined by the indicator functions {I(X; > #)}.
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Manageability of the second component of n1/2[S(x, y) — S(x, )] is established by
exactly the same arguments. The remaining conditions in the functional central
limit theorem are easily seen to be satisfied from the covariance calculation in
(3.2) and the fact that the envelope functions are constant (¥,; = K/\/n, for
some K > 0). O

We now proceed with the proof of Theorem 3.1.

LEMMA 3.1. Assume that nad[loga;'135 — oo and naS[loga;!]~! — 0,
and let the assumptions imposed on fg(z,u) and fg(z,1,u) in Proposition A.1
and Remark A.1 hold. Let £,(z,6,y) be as defined in (2.6). Then

S(y1X%) -S(v1X)

= (na) 1Y €x,(Z;, 8,051(1GX;) — G(X))| < an) +raly, Xy),

Jj=1

where sup{|r,(y,X)|; 0 <y < Tx,, i = 1,...,n} = o(n™Y2), as n — oo, al-
most surely.

The proof is given in Appendix B.
Relation (2.5) and Lemma 3.1 imply that

S(x,y) — S(x,y)

- / S(y| )1t > x)[Gldt) — G(db)]
(3.3) n n - ~
7ty [(nan)_l > _£x.(Z;,8,9051(GX) - GX))| < an)

i=1

x I(X; > x)+o(n~1/?)

j=1

uniformly in (x,y) € Q, almost surely. Let T, (x,y) denote the second term on the
right-hand side of (8.3). Fix (x¢,y0) and write T}, = T}, (x0,¥0) as
(3.4) Ty =Thn + Ton + Tn,
where
271, = ;" [ [6uen, 82,90 — e, B30 1 > 30
x I(|Gx1) — G(x2)| < @) G(dx1)Fp(dDy)
2Ty, = a,! /Exz(zz, 62,¥0)(x1 > %) (|G(x1) — Glxg)| < an)
x G(dxy)[Fp(dDy) — Fp(dDy)]
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2Ts, = a,;! /&1(22,52,3’0)1(961 > xp)

x [I(|é(x1) — Glxy)| < an) — I(|Glxy) — Glxg)| < a,,)]
x G(dx1)Fp(dDsy).

LEMMA 3.2. Assume na: — 0 and let assumption A3 hold true. Then

sup{|n1/2T1n|; (x9,¥0) € Q} =o0(1) almost surely.

The proof is given in Appendix B.
LEMMA 8.3. Under the assumption na2 — oo,

sup{|n1/2T3,,|; (x0,¥0) € Q} =0(1) almost surely.

The proofis given in Appendix B.
LEMMA 3.4. Let assumptions Al, A2(i) and A4 hold. Let

ho(x1,29,62) = &, (22, 62, y0)(x1 > xp).
Then

sup{n1/2 Ton — / ho(x,2,6)[Fp(dD) — Fp(dD)]

; (%0,50) € Q} =0(1)

in probability.
The proof is given in Appendix B.

4. Asymptotic optimality. In this section we will show that the limiting
distribution of any regular estimator (as defined prior to Theorem 4.1) of the bi-
variate distribution function that is a function of the data (Z,,4;,X;),i=1,...,n,
can be represented as a convolution of the distribution that corresponds to the
limiting process of the proposed NNE with another distribution on C(£2). This
will imply that any other regular estimator is at least as dispersed as the NNE.
See Beran (1977) for a nice discussion of this point. For notational simplicity, in
this section we will assume that T, = T, constant for all x. With this assumption
Q=R x [0,T]. See also Remark 4.1 at the end of this section.

Such representation of regular estimators was first established in the para-
metric case independently by H4jek (1970) and Inagaki (1970). For an excellent
textbook presentation of this theorem see Roussas (1972). Beran (1977) estab-
lished a nonparametric version of this theorem and showed that the empirical
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distribution function is optimal. Wellner (1982) used the same techniques to
show that, when the data are subject to random censoring, the product limit
estimator is also optimal in this sense.

Let 14 be a measure on the real line R with respect to which the conditional
distributions F(- | x) and C(: | x) have densities /(- | x) and ¢(- | x). The measure v,
can depend on x, but this will not be made explicit in the notation. Let v, be a
measure on R with respect to which G has a density g. It then follows that the
observed random vector D = (Z, §,X) has density

(4.1) fo(z,6,%) = fp(z,6|x)g(x)

with respect to the measure u = 14 x v x {counting} on S; = R? x {0, 1}, where

4.2) folz,81x) = {Cz 1) (2 |x)}6{S(z |x)e(z |x)}1_

is the conditional, given x, density of (Z, §) with respect to the measure y; =
v1 X {counting} on Sy =R x {0, 1}.

Note that f without the subscript D denotes the density of F, the bivariate
distribution that is to be estimated. It is possible to recover F or, equivalently,
S from fp through the relation

S( exp( / H )fD z, ll )dV](Z),
43) Hislx)= 3" | oeis1x) dne)
5§=0"%

Swy)= [ S(y10g®)dn.

Let ” ' ”ua ” . ”ma ” ' ”Vz, ('7 ')/u <'a ')ma <" ')uz, denote the usual norm and inner
products on L2(Sy, u), L%(Ss, 1) and L2(R, ), respectively. Let F(u) denote the
set of all densities on S; with respect to u; let F1(u1) denote the set of all densities
on Sy with respect to y;; and let F5(1,) denote the set of all the densities on
R with respect to ve. Finally, let C(fp, 3), C1(fp(:,-|x), 51(:,-|x)) and Cy(g, F2)
denote the set of all sequences of densities {fp, € F(w)}, {fom(, | x) € F1(u1)}
and {g,, € F2(vp)}, respectively, such that

lim ||m1/2(f1/2 1/2) - ﬁ”u

@ay im0 1) < £ 19) = A1)

lim ||m1/2 gl/2 1/2 52”,,2

m — 00

It is easy to see that relations (4.4) imply
<ﬂ’ f1/2> _07 </81(7| ) 1/2(7 I )> =0 and <,32,g1/2>,/2=0.
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This is most easily seen by writing

-0y
= —2m/ [fom —£5'* = m"28) £ dps — 2m32 [ (a2 - f3/%) By
+ /ﬂzdu—2m1/2/ﬂf$/2dua

and similarly for the other implications.
LEMMA 4.1. Let
len} € C8,p0) and {fom(-|2)} € Cs(fo(12), Aa(-,-|9)),
for almost surely [v5] all x, and let

fD(za 6’x) = fD (Z, 6 Ix)g(x),
(4~5) fDm,(z, 5; x) = fDm (Z, 6 |x)gm(x)’
Bz, 8,%) = b1 (2,6 | )" *(x) + Bo(x)fy* (2,6 | x).

Then {fpm} € €(fp,B). Conversely, each sequence { fom} € C(fp,B) specifies
sequences {gn} € C(g,B2) and {fpn(,-|x)} € Cy(fp(,-|x), B(,-|x)) such that
fp(z,6,%), fp(z,6 | x) and g(x) are related through the first relation in (4.5), and
Bo(x) = [ Bz, 6,x)f5/2(z, 6§ |x)dua(z, 8) and By(z, 6 | x) is given in terms of 8 and B
through the third relation in (4.5). In addition,

(46) 181 = [ 118:(-1) | ) + .

The proof of Lemma 4.1 follows by straightforward L? calculations.

Let now C(fp) denote the union of all sets {C(f,, A): 8 € L2(Sy, ), B L fi/}.
Let {fpm} € C(fp), and let {S,(x,y)} be the sequence of bivariate survival
functions obtained from (4.3) with fp,, substituted for fp. Consider the corre-
sponding sequence of experiments where in the nth experiment we observe
n independent random vectors (Zniy 6pis Xni)y © = 1,...,n, with joint density
II7- 1 fon(Znis 6niy Xpi) on S%. Let {S,} be any sequence of C(2)-valued estima-
tors of S, where S, is a function of (g,,i, Oni, Xni), 1 = 1,...,n. We say that an
estimating sequence, or estimator {S,}, is regular at fp if the distributions
L{n'/2%(S, — S,)} on C(Q) converge weakly to the same distribution D = Dy,
depending only on fp for all sequences {fpn,} € (fp). Of course D may also de-
pend on the estimator {S, }. Exclusion of estimators that are not regular avoids
the complicating issue of the existence of estimators that are superefficient at
a specified distribution [see Beran (1977) for a discussion of this issue].
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Let Dz denote the law on C() corresponding to the process Z defined in
Corollary 3.1.

THEOREM 4.1. For any regular estimator S, of S that is based on (Z;, 6;,X;),
i=1,...,n,thelimiting law D on C() may be represented as Dz x Dy, where Dy
is the distribution of some process W that is independent from Z. Alternatively,
if Z denotes the limiting process of n'/2[S, — Sl under fp, Z = Z + W.

The proof of the theorem proceeds by a number of lemmas. Let

: fDn(Ziv(Si’Xi)}
4.7 L, =21 T vy
@ °g,.=Hl{fp<z,-,a,~,Xi>

for {fpn} € €(fp,B), B € L3Sy, ). The first lemma is a straightforward ana-
logue of corresponding lemmas in Beran (1977) and Wellner (1982) and can be
deduced easily from LeCam’s second lemma.

> 6} =0.

LEMMA 4.2, Let L, be given by (4.7). For every £ > 0,

lim Pﬁ,{ Lo — 20723 82,6, Xy V*(Zi,6:, X)) + 2| B2

i=1

For each (x,y) € R? define the function

I6=1)
H(z|x)

(4.8)  vy(2,6|x) =1z <y) [Cl(y |x) — C1(z | %) + } (2,8 | x).

Note that this corresponds to the function in relation (3.2) of Wellner (1982).

LEMMA 4.3. Let {fp.} € C(fp,P), and S, is the corresponding sequence of
bivariate survival functions obtained from (4.3) with fon substituting fp. Let
B1(z, 8 |x) and By(x) be the functions related to through Lemma 4.1. Then

sup 012 [Su(y 1) = (3 1%)] +25(y1%) (B1(-1%), 75 (- 12)) | =0,
O0<y<T , K1
as n — oo, for almost surely [v5] all x, and
sup [n'/2[S,(x,y) — S(x,y)]
(x, ) €N
. 2/ S(y|x1)<ﬂl(.,.|x1),7y(.,-|x1)>mg(x1)dv2(x1)
- 2/ S(y 1) Balac1)g % (1) dvg(y)| — 0.
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The first relation in Lemma 4.3 follows directly from Wellner [(1982), Lemma
2], while the second follows by writing

n/2[Sa(x,y) — Sx,y)]
= n1/2/ [Sn(5121) = (v 1%1) [g@n) dwate)

#n?2 [,y 1) gnten) - )] ey

and some easy L? calculations.
Let v; and v, be functions of bounded variation on R and [0, T'], respectively.
Set

T
V(z|x) = / S(y|x) dva(),

T
ws) Ulz|x) = /z S(y1%)Ci(y | %) dug(y),

n(z,6|x) = [%22+U(zlx) —Cl(z|x)V(z|x)}
x f/%(2,6|2)100 <z < T),

and

(4.10) o3 (vg %) = /OT [V(z|x)]2d01(z |x).

Note that the functions in relation (4.9) are analogues to the functions defined
in Wellner [(1982), (38.3) and (3.4)] while the variance in relation (4.10) is the
analogue of relation (3.6) of the last reference.

LEMMA 4.4. Let {fp,} and S, be as in Lemma 4.3, and let vy and v, be as
specified above. Then

lim [ n'2[S,(x,y) — S(x,y)] dv1(x)dva(y)

n— oo 0
= —2/ [v1(x1) — v1(0)] <ﬂ1 (s l%1)sm (s le)>u g(x1) duo(xq)
1
T
+2/ [v1(x1) — v1(0)] / S(y|%1) dva(¥)Balx1)g  X(x1) dvg(xy).
0
The proof of Lemma 4.4 follows easily from Lemma 4.3 and the fact that

/0 "8 (1) (81 ). o EANIE ORI (ACHENTIORENY

[see also Wellner (1982), Lemma 3].

B
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LEMMA 4.5. The characteristic functional of the Gaussian process Z on )
with covariance function (3.2) is

(2 1 2
(4.11) Eexp [i / Z(x,y)dvq(x) dvz(y)} = exp [ (012+ o3) } 7
Q

where 02 = 0%(v1,v5) and o} = 02(v1,vy) are given by

r 2
g%:/ [(vl(xl)_vl(O))/o S(y|x1) dvz(y)J glx1) dvy(xy)

2

T
(4.12) - [/(vl(xl)—vl(O))/O S(y|x1) dvz(y)g(xl)duz(xl)] ,
ol = / [v1(xy) — v1(0)]203 (va | %1)g(x1) dvalxy),

with 02(vy | x) given in (4.10).

This follows easily by noting that the two components of the Z-process are
independent and that the function &,(z, 6,y) appears in the iid representation
of the product limit estimator [Lo and Singh (1986)].

Now choose
By(x) = —l—gl/ %(x)
0%+ o2
T
x {[vl(x) - v1(0)] /0 S(y|x)dva(y)
(4.13)

T
- /[vl(xl)—vl(O)]/o S(yle)dvz(y)g(xl)dlfz(xﬂ},

-1
Bi (2,6]%) = ——=—=[v1(x) — v1(0)] 0 (2,6 %),
\/ 03+ 02

where 10(z, 6 | ) = (2,8 | x) — U0 | %) f¥/%(z, 6 |x). Tt is easy to see that

x S1/2\ A N
<ﬂ2,g >u2 =0, <ﬂ2’:82>,,2 - 0,% +0.§’

(4.14) o2

[2. 2
Ul+02

T
/ [v1) — v1(0)] /0 S(y |x) dva(y)g2)B5 () dun(x) =
Next, from Wellner [(1982), Lemma 5], it follows that
G- 12) |1 = o3 (v |2) + U (012)®

(10152 -12)), = U012),
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so that

(ro-19).£52 o 12) =0
and .

”770('a : Ix)”ul = <770(" ) |x),?7(', : Ix)>u1 = 0‘%(1}2 Ix)

Therefore,

(B (1), 3200 12) =0,

. . v1(®) — v1(0))

(4.15) <,31 (- 1%), 8 (.,.|x)>”1 = £1_0%+_l;1%_)g§(v2|x),

—02(vy,vg)

2 2
0'1+02

/ [vl(x) - Ul(O)] <,6;‘(’ . |x),n(., . |x)>“1g(x)du2(x) =

To prove Theorem 5.1, let {§n} be a regular estimator of S. The characteristic
functional of n'/%(S,, — S,,) under £, is

Ey, exp{i / n*2[S,(x,y) — S(x,y)] dvl(x)dvz(y)}
Q .
=Esp exp{i / n'/2[S,(x,y) — S(x,)] dv1(x) dva(y) + Ly
Q
(4.16) + 2i/ [vl(xl)—vl(O)] <ﬂ1(.,.|x1),n(.,.|x1)>g(x1)duz(x1)
T
-2 —-v1(0 S

l/[vl(xl) v1( )]/0 (ylxl)

X dvg(y)ﬁz(xl)gl/z(xl)duz(xl)} +0,(1),

by Lemma 4.4. By regularity, (4.16) converges to

Eexp(i/ Z(x,y’)dvl(x)dvz(y)).
Q

The rest of the proof proceeds as in Beran (1977) except that we choose 3 = h5*,
where (* is specified by B1 and G5 defined in (4.13) through Lemma 4.1. Note

that by Lemma 4.1 and relations (4.14) and (4.15) we have 8L fg/ % and 18] =
h2. The final result is

$(v1,02,0) = §(v1,vs, —0)exp(—0?/2),
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where o = 1/02 + 0%, $(v1,v9, 0) is the characteristic functional of the process Z,

exp(—c?/2) is the characteristic functional of Z by Lemma 4.5 and ¢(vq, vy, —0)
is the characteristic functional of the process W.

REMARK 4.1. Although the assumption 2 = R x [0,7'] was imposed in this
section for notational convenience, it should be noted that it is not very restric-
tive. Indeed, the real line can be partitioned into a finite number of intervals Ij,.
For each interval I, take T}, = inf{T; x € I;} and apply the above arguments
for the process that restricts x on I,.

5. Application to least squares estimation. As was explained in the
Introduction, this research was motivated by applications to linear regression.
This section proposes an extension of the least squares estimator (LSE) to poly-
nomial regression with censored data. An asymptotic representation of the pro-
posed LSE is obtained from which its asymptotic normality follows. Applica-
tions to general multiple regression are discussed in Remark 5.3 and in the
next section.

Suppose that some strictly monotonic transformation of the response vari-
able, such as logY, satisfies a polynomial regression model. Since we will only
refer to this transformed variable in this section we denote it also by Y. (Simi-
larly we will keep the same notation for the bivariate and conditional distribu-
tions and all other quantities.) Thus we assume E(Y | X) = X3, where Y is the
n x 1 vector of the transformed response, and X denotes the n x (p + 1) design
matrix whose kth column has elements Xik, k=0,...,p. With uncensored data
the LSE is

Y X, / 2y dF(x,y)
. = nP—l . ,

plxy=pt| :
> XPY, / Py dF(x, )

where P = X'X and F is the bivariate empirical distribution function from
(X1,Y1),...,(X,,Y,). The proposed extension consists in replacing the uncen-
sored-data empirical distribution function by the present estimate of the bivari-
ate distribution. It is worth noting that the proposed estimator estimates the
same functional as the uncensored data LSE. Thus it is suitable even in cases
where the errors are asymmetric and/or heteroscedastic. In fact the asymptotics
developed below do not assume symmetry or homoscedasticity.

The idea of replacing the uncensored-data empirical distribution with a
censored-data version was also used in Miller’s (1976) extension of the LSE.
The difference is that Miller used it on the quadratic expression to be mini-
mized whereas we use it directly on the expression for the LSE. Most other
approaches for extending the LSE use a transformation of the data and apply
ordinary least squares to the transformed data, without regard to censoring.
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The first such method was proposed by Buckley and James (1979), but their
transformation is in terms of the error distribution function so it requires it-
eration. Lai and Ying (1991) established asymptotic properties of a modified
Buckley—James estimator. Koul, Susarla and Van Ryzin (1981) and Leurgans
(1987) have proposed different data transformations that make possible the
direct application of the least squares principle. Zhou (1992) establishes the
asymptotic normality of Leurgan’s estimator and claims his result also holds
for heteroscedastic regression models. His derivations, however, assume that
the censoring distribution does not depend on the covariate. The same assump-
tion is imposed in Koul, Susarla and Van Ryzin (1981). On a different note,
Stute (1992) proposed a weighted LSE which is based on an estimate of the
multivariate distribution of the response variable and the covariates. Under
the assumption that the censoring variable is independent of Y, Stute estab-
lishes strong consistency of his estimator.

The following asymptotic theory for the proposed LSE requires three addi-
tional assumptions.

LS1. The upper bound for the support of the conditional distribution of
Y given X = x is less than or equal to the upper bound of the support of the
conditional distribution of C given X = x for all x.

LS2. The distribution of X has bounded support.

LS3. The p-variate distribution of (X, X2,...,X?) is nonsingular.

The first assumption can be unrealistic in certain real-life applications. A
method that could weaken this assumption is described in the next section.

Write 8 = [E(n~'P)]"1([x% dF(x,y), ..., [’y dF(x,y)). Since the bivariate
distribution F is estimated only in a restricted domain, what is estimated is

By = [E(n—lp)]_l(/xozTde(y|x) dG(x),...,/x" /OTde(ylx) dG(x))l.

By assumption LS1 the bias 87 — 8 can be made arbitrarily small by choosing
T large enough.

REMARK 5.1. One of the referees conjectures that the assumption

r(x) !
nl/z/xk/ yF (dy | x)G(dx) —p O,
Ymﬂx

for k = 0,...,p, would suffice for consistency and asymptotic normality of the
LSE. The above condition is the regression analogue of condition (3.3) of Gill
(1983). The proof of such a result requires extending the results of Gill (1983)
to estimates of the conditional survival function as well as to estimates of the
bivariate distribution. It should be noted that the iid representation of the
estimate of the bivariate distribution, as developed in this paper, holds for a
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restricted domain largely due to the use of results similar in nature of those in
Lo and Singh (1986).

In what follows we write § instead of 5. Then

~

/xoy d [I?'(x,y) — F(x,y))

p~p=nP! .
/xpyd[ﬁ(x,y) — F(x,y)]
(5.1)
/xode(x,y)
+n (P - [E®) ) :
/xpy dF(xay)

Using the fact that the present estimate of the bivariate distribution is
obtained by averaging conditional distribution functions, it follows that, for
k=0,...,p,

/xkyd[f'(x,y)—F(x,y)]
(5.2) = /xk /de(ylx)d[@(x) - G(x)]
+ /xk/yd[ﬁ(ylx) —F(ylx)] dG(x),

- where the insides of the double integrals go from —oo to 7. Integrating by parts
and using Lemma 3.1, the second term on the right-hand side of (5.2) is seen
to be asymptotically equivalent to

n n T
5.3) n! Z(nan)'l ZX,-k [/ ¢x,(Z;, 6,5)dy — T¢x,(Z;, 6, T)J

i=1 j=1

x 0.51(|G(X;) — G(X))| < ay).

Note that this expression is similar to,the second term on the right-hand side
of (3.3). Using an expansion similar to (3.4) it is easily seen, using assumption
LS2, that arguments similar to those in Lemmas 3.2-3.4 go through. Thus (5.3)
is asymptotically equivalent to

n T n
(54 n 'y XF (/ ¢x,(Z;, 8;,y)dy — T¢x/(Z;, 6, T)) =n"1) Wy,
Jj=1 T j=1

say, which is a sum of iid random variables with zero mean and finite variance.
From that it is easily seen that the second term on the right-hand side of (5.2) is
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asymptotically independent from the first as well as from the second term on the
right-hand side of (5.1). Relations (5.2)—(5.4) establish a convenient asymptotic
representation of the first term of the right-hand side of (5.1). To complete
the asymptotic theory of the proposed LSE, we will establish an asymptotic
representation of the second term of the right-hand side of (5.1). Write n~1P
=A,, E(n~'P)=A and

(P71 - [E@) ") = A1 - A7 = (gu(An) — gu(A),

where g;,(A,) is the (I, k)th element of A}, and similarly for g;(A). Note that
assumption LS3 implies that A is of full rank; also, the same assumption and
arguments similar to those in Arnold [(1981), Theorem 17.8, page 316] imply
that A, is of full rank with probability 1. By an application of the §-method
to each element g;.(A,) — g;1(A), it follows that an asymptotically equivalent
expression for A;! — A-lis

p P
(55) Z Z érs(A)(ars - ars)7
r=1s=1

where a,; and a,s are the (r,s)th element of A and A, respectively, and G,s(A)
is the (p + 1) x (p + 1) matrix with (/, k)th element gj;(A), the partial deriva-
tive of g;,(A) with respect to a;;. Combining (5.1)~(5.5), we have the following
asymptotic representation for 3 — 3 whose covariance matrix is straightforward
to compute.

THEOREM 5.1. Under assumptions A1-A4 and LS1, LS2 and LS3, we have
that the right-hand side of (5.1) is asymptotically equivalent to

-1 -~
n JZ‘I’OJ' /xO /de(y|x)d[G(x) - G(x))
nP-1 : +nP71

n—lz\l’pj /xp /de(ylx)d[&(x)—G(x)]
J

/ 2Oy dF(x,y)

+ Z Z érs(A) (ars - ars)-

/xpy dF(x,y)

REMARK 5.2. In the uncensored case, one usually obtains the conditional
distribution of the LSE given X. In the present formulation, it is more conve-
nient to obtain the unconditional distribution.

REMARK 5.3. Similar formulas for the LSE hold for general multiple re-
gression, provided the censoring variable is independent from all covariates.
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The case that the censoring variable depends on the covariates but, given the
covariates, it is conditionally independent from the response variable is briefly
addressed in the next section.

6. Further research.

1. The method of estimating the bivariate distribution by averaging conditional
distributions over a range of values of the conditioning variable has desir-
able properties for applications to regression analysis. Indeed, when linear
regression seems a reasonable model for the relation between X and Y, the
present method allows one to use information about the tails of the residuals
from a region with light censoring in order to achieve better estimation of
the tails in regions of heavy censoring. This can be used to decrease the bias
of the proposed LSE.

2. For applications to general multiple regression with covariates X, ...,Xp,
the present estimate of the bivariate distribution will not suffice. Indeed,
under the assumption that Y and C are conditionally independent given
(X1,...,X,), the present estimate of the bivariate distribution of (X1,Y),
say, will not have the stated properties. To circumvent this difficulty, one
needs to estimate the multivariate distribution of (X3, ...,X,,Y) when only
Y is subject to censoring. This can be achieved by extending the present
method of averaging the estimated conditional distributions of Y given X to
multiple covariates. This estimate of the multivariate distribution will yield
estimates of the bivariate marginal distributions of (X},Y), k=1,...,p,and
the marginal distribution of Y which can be used in the form of the LSE as
described in Section 5.

3. The NNE can be extended to the case that the covariate X is also subject
to random censoring. An obvious way to achieve this extension is to use the
product-limit estimator for G to determine the “nearest neighbors” among
the uncensored x-values. This estimate of the bivariate distribution can then
be used to extend the proposed LSE in this context. The LSE when both x
and y are subject to censoring has applications in astronomy.

APPENDIX A

Results needed for the main proofs. This appendix establishes a rate of
convergence and an oscillation result for the conditional process

Bu(z1X;) = (nan) 2y [I(ZJ >2) - H(z| Xi)]l(@(Xj) — G(X)| < an)
j=1

uniformly in i and, as a corollary, obtains the rate for a certain integral uni-
formly in i. These results are used in the proofs of Appendix B.

PROPOSITION A.1. Assume that the joint density fg(z,u) of (Z, G(X)) is twice
continuously differentiable with respect to u. Let f; denote the second derivative
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of fc with respect to u, and assume that Jsup{|fiz,u); 0 < u < 1}dz < o
Assume also that nal(log a; 1= — 0. Then

sup{[loga;l]—1/2],8n(z|X,~)|; 0<z<Tx,i= 1,...,n} =0(1),

almost surely, where T, denotes a number less than the upper bound of the
support of the conditional distribution of Z given x.

PROOF. Write
(A1) Pu(2]X:) = Ba (21 X:) + B2(2] X3) + B2 (2| X2,

where

Be %) = a2y [12; > 2) ~ Hy(z]%)]
Jj=1

xI(|G(X)) - Gw)| < ay),
Be 1) = a2 [Hale 1) — H (e %) | 1(1G(X) ~ G| < an),
j=1

Pi(z]2) = (nan) /2 [1Z; > 2) ~ Ha(e )]
j=1
x [T1GX) — G < an) ~I(1GX) - G| < an),
with H,(z|x) = P(Z > 2| |G(X) — G(x)| < a,). Using the assumptions made on

fa(z,w), it is easy to verify that H,(z |x) — H(z |x) = O(a?) uniformly in x and z.
It follows that 32(z | X;) multiplied by [log a;11-1/2 is

0] ((naf‘l [log a;!] _1) 1/2) -0,

almost surely uniformly in i,z. For B3(z | X;) we note that |G(X;) — Gx)| < a,
implies that

‘ [G(XJ') - a(x)] - [6X) - Gl(x)] ' <Kn~'2[a,log a;!] 1/2

almost surely for n sufficiently large [Stute (1982)]. It follows that, for n
large enough,

I(|G(X)) - G@)| < a,) ~ I(|G(X) — G®)| < a,) £0
only if [@(Xj) — G)] /an is in an interval around 1 (or —1) of length

Kn~12q;1/2 [log a;] 172
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Thus, for each i,

Y (GX) - G| < an) —I(IGX) — G(X) < ay)]
(A.2) J

< Kn'2a;/*[1og a;] vz

for n sufficiently large almost surely. Consequently, for n large enough, 83(z | X;)
multiplied by [log a;]~'/2 remains bounded uniformly in ; and z. Finally, by
the Dvoretzky—Kiefer-Wolfowitz inequality [Dvoretzky, Kiefer and Wolfowitz
(1956)],

P(sup{[loga;l]_l/zjﬂ,f(lei)h 0<z< TXi} > d>
< K exp[-2d®log a;].

Selecting d = [1/2]'/?, where [ satisfies 2% ; nal, < oo, implies the statement

of the proposition with 3! substituted for 3,. This completes the proof of the
proposition. O

PROPOSITION A.2.  Let Jo(x) = {(21,22): |[H(z1 |x) — H(z3 |%)| < c}, and set
(A.3) wn(e|%) = sup{ |G (211%) — Bn(z2|%)]; G1,20) € Jo(x)}.

Consider the assumptions on the joint density fg(z,u) imposed in Proposition
A.1. Let @, be any sequence of positive numbers tending to zero that satisfies

_ _ 191 _ -1
@na,? — oo, nala,'[loga;]”™ -0, na,a? [loga;']™" — oo,

and there exists an | > 0 such that ¥° | n@, < co. Then

sup{[—m;ze 1,...,n} = 0(1),

1/2

anloga, ]

almost surely.

ProoF. Consider the decomposition of 3, given in (A.1) and let wk(c|x) be
defined as in (A.3) but with B%(z|x) substituted for 3,(z |x), B = 1,2,3. The
assumption that @,a,; 2 — oo and the fact that

|Hn (21 | %) — Hy (29 |%)| < |H (21 |x) — H(zz|x)| +O(a2)

implies that |H,(z1 |x) — H,(22 |x)| < K@, whenever |H(z; |x) — H(zg | x)| < @y.
Thus, Lemma 2.4 of Stute (1982) with s = [2(1 +1)(1 — 6;)%log a; 1]'/2, some
é1 € (0,1) asin the aforementioned lemma and any ! that satisfies $.°° ; na, < oo

implies that the statement of the proposition remains true when w} is substi-
tuted for w,. Using again the fact that H,(z |x) — H(z|x) = O(a2), uniformly in
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x and z, it is seen that the assumption nala@;, }[log a;!]-! — 0 implies that the
statement of the proposition is true when w? is substituted for w,. Finally, to
show the same statement for w3, note that, by (A.2) and for z; < zs,

183 (211 Xi) — B2 (22| X3) | e
< |Ha (11 X,) ~ Hu(e2 | X)) |[K [log a; )

A4 ~
AD g, 12 > [I(zl < Zj <z5)— Hi(21| X;) + HY (22| )g)] I(AL(X;, X;)
j=1
+|H: (21| X3) — Hy (22| %) |K [ log a1 Y%,
where

An(Xj,x) = [an < |G®) - G(X)| < ap +Kn~Y?[a, log a;] 1/2]
Ulan — Kn™"2[a, log a;7] ! < |GG) - G(X)| < an]

and H;(z | x) = P(zj > z | Ap(x,x)). Using the assumptions made on fg, it is easy
to verify that

|H; (21 ]x) — Hy (22 |x)| < |H(21|x) — H(z2 | x)| + O(a?) = O@,)

uniformly on x and (z1,22) € J;,(x); as before, the same in true for H,(z; | x)
— H,(z9 | x). It follows that the supremum of the first and third terms on the
right-hand side of (A.4) over all (z1,23) € J;,(X;) and over all i, divided by
[@log a; 11'/2 tends to zero. Application of Lemma 2.4 of Stute (1982) with the
same choice of s specified above gives that the supremum of the second term in
(A.4) over all (z1,22) € J5,(X;) and over all i, divided by [a, log a; ']'/2 remains
bounded almost surely. Note that the assumption na,@2[log a;']-! — co guar-
antees that condition (iv) of Lemma 2.4 of Stute (1982) holds (with n replaced
by Kn'/2ay/*[log a;11Y/2) for n large enough. This concludes the proof of the
proposition. O

REMARK A.1. Replacing the condition on fz(z,u) by a similar condition on
fa(z,1,u), the joint density of (Z,5,G(X)) at § = 1, it is easily seen that the
result of Proposition A.2 is true for oscillations of the process (na,)Y2[H;(z | X;)
— Hy(z| X))].

COROLLARY A.1. Assume that na3[log a;!13%* — co and nallloga;11-! — 0,

and let the assumptions imposed on fg(z,u) and fg(z, 1,u) in Proposition A.1 and
Remark A.1 hold. Then

(A.;up{ / [H(lei) —H(Z|Xi)_]d(Hl(z|Xi)_Hl(z|Xi))';

0
O<y<Tx,i= 1,...,n} =0(n‘1/2),

almost surely.
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PROOF. For eachy, the interval [0, T,] can be partitioned into subintervals
[zj,2j41),0 = 1,... )kp, 0 = 21 < 29 < -+ < 24,41 = Tx,, where k, = O((na,)'/?
llog a;1173/4), such that

H(z| X;) - H(zj+1| X;) < K(na,)""2[loga;!]"" = @,,
and the integral in (A.5) is bounded by
knsup{|H(z| X) ™ ~H(z| %) ' 0 <2z < T}
X SuP{fﬁ1(Zl | X;) —ﬁ1(22|Xi) —Hy(z11X;) + Hi(22| Xi) |; (21, 22) € Ja,,(Xi)}
+2sup{|H(z1| %) "~ H(z2 | X)) — H(z1 | X) "+ H(e2 | %) 7'
(1,22) € Jo, (X .

Note that the sequence @, that bounds H(z; |x) — H(z;,1 | x) satisfies the condi-
tions of Proposition A.2. Use now Proposition A.1 and Remark A.1 to conclude

that the supremum over ally € [0,Tx,] and over alli = 1,...,n of the first term

above is O(n=%/4a;,; 3/*[log a;;115/8). Using Proposition A.1, the expression inside

the supremum of the second term can be written as
B (211 %) [He1 | %) — H (1 | X5)| - H(za) X) 7 [H(z2 1 X3) - H (22 )|
+0((nay)"'log a;t)
= [H | %) P [H (| %) - B X) - Hes | X)) + Bz | X)) |
+0((na,)~[log a;1]5/4),

almost surely, where the remainder term is uniforminz € [0, T',] and in i. Using

Proposition A. 2, this is seen to be O(n=3/4a; %/*[log a;711"/8) almost surely and

uniformly in z € [0, T},] and in i. This completes the proof of the corollary. O
APPENDIX B

Proofs.

Proor oF LEMMA 3.1. Use relation (2.4) and a two-term Taylor expansion
to write

~ Y~ 1=
logS(y| X;) —/0 H(z - | X)) 'H(dz| X))
1S 1Z; <y, §=DI(|GX) - GX)| < an) 1

9 ~ ~ 2(1 _R..)2’
2j=1 [ZZ=II(Zk >Zj—)I(|G(X,~)—G(Xk)l San)] 1-E;)
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where R;; is between zero and

I(|G(X;) - G(X))| < an)
Y I > ZOI(GX) — B(X)| < an)

Proposition A.1 implies that, for n large enough,
H(z| X)) - K[log a;1])Y*(na,)" V2 < H(z | X))

uniformly in 0 < z < T, and in i. Thus, for n large enough, He | X;) is bounded
away from zero uniformly in z € [0, T,] and in i. This implies that

sup {

= O((na,)™1),

~ Y ~ ~
log§(y| X,) -/0 B - 1X) ' (dz)| X))

)

(B.1) .
O<y<TXi,z=1,...,n

for n large enough almost surely. Next write
Y _1a i -1
/0 Bz X) "By (dz] X;) - /0 H(z| X)) ‘Hy(dz) X))
y ~
- / H(z| X;) "H(z| X;)Hy(dz | X;)
0

Y ~
¥ / H(z| X) B, (dz] X,)
0

(B.2) . /y [H(Z | X;) — ﬁ(z | Xi)]zHl (dz |X)

H(z| X))’ H(z| X))

+ /oy [B(1%) 7" - HE 1 %) 7] [B(de| X)) - Hi(d2] )]

& 05I(|G(X) — G(X)| < an _
= (na,) ™) €x,.Z;,6,9) ( S(y|X,-)J )+0(n 2)

Jj=1

uniformly iny € [0,Tx] and i = 1,...,n, by Proposition A.1 and Corollary A.1.
The result of the lemma now follows from (B.1), (B.2) and a Taylor expansion. O
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Proor oF LEMMA 3.2. Using a two-term Taylor expansion, we have (see
assumption A3 for notation)

T, =n'2q;? / [G(x1) — G(x9))&, (22, 62, 90) (21 > x0)

x I(|Gx1) — Glxp)| < a,)G(dxy)Fp(dDy)
nl/2q-1

Rk / [Gxr) — Glxp)) %€l (23, 82,50)

x I(xy > 2) (|G(x1) — Glxz)| < a,)Gldx1)Fp(dDy)
= Il + IZv say,

where x is such that G(x) is between G(x;) and G(x,). By the assumption nat — 0
and assumption A3, it is easily seen that I goes to zero almost surely and
uniformly in x, y,.

Next write I; =I5 + I, where

Iy = nV21 / [Glxr) — Gan)]€!, (2, 6, yo x> x0)
x I(|G(x1) — Gxy)| < a,)G(dxy)Fp(dDsy)

I, = nV21 / [Ge1) — Gx2)] €L, (22, 63, ¥0) [Ixy > x0) — TGy > x0)]
x I(|G(x1) — G(xg)| < an)Gldx1)Fp(dDy).

By the assumption na; — 0 and assumption A3, it is easily seen that I, goes to
zero almost surely and uniformly in xy,y,. Finally, using assumption A3,

3| < sup |&,(Z;, 6;, yoI(X; > xo)a;, !
1

< / [Gx1) — GV (1Gy) — GX)| < an)an(dxy)

almost surely and uniformly in i since, integrating by parts, we have

ol / [Gx1) — GX)I(|Glxy) — G(XD)| < an)am(day)
- [a,, (G—I(G(X,.) + an)> _ 17,] - [a,, (G—I(G(Xi) _ a,,)) _ ri]
x ay?! / [on(xy) = T JI(|G(x1) — G(X;)| < an) dGlxy);
taking I'; = o, (x*), for some x* such that |G(x*) — G(X;)| < a,, the above is easily
seen to converge to zero almost surely and uniformly in i. This completes the

proof of Lemma 3.2. O

Proor or LEMMA 3.3. Consider a sequence of kernel functions K,(z) such
that K,(u) =I(-1+n"2 < u < 1-n"2) and K, (x) vanishes outside the interval
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(—-1-n72,1+n~2)and is continuously differentiable. It is not hard to verify that
nl/2|2T;, — A,| — 0 almost surely,

uniformly in (zq,y) € 2, where

nl?4, = nl/za,:1 /ho(x1,22,52)

y MM) _Kn<w>}@(dxlﬁpw2),

an an

and Ag(x1,23,62) is defined in Lemma 3.4. Using a one-term Taylor expansion
and (A.2), it is seen that

|n1/2An| < K[nl/Za;Zn—l/2(an log a;1)1/2n1'5(an log a;1)1/2] /n2

almost surely for all n large enough, uniformly in (xy,y) € Q. This completes
the proof of the lemma. O

PrROOF OF LEMMA 3.4. Write
nl/2 [TZn - /hO(xaza 5)[ﬁp(dD) - FD(dD)]]
= nV2 / ho(, 2, 6)Qu(@)[Fp(dD) — Fp(dD)]

+nt/2q -1 /5,52(22, 62,50) [L(x1 > x0) — I(xg > x0)]

X 0.5I(|Glx1) — Gxp)| < an)G(dx)[Fp(dDy) — Fp(dDy)]
=I5 + I,

say, where

Q) = (na,) "1y [051(G(X) — G| < an) - an)-

i=1

Define the process
Wat) =12 [ hota,2, 0l < O[Fp(dD) - Fo(aD],

indexed by £, xo and yo. Next let

Q1) = (2na,)™! ;I(G(x) < G(X)+a,) - 1—_326“_“
_1-G&)—an

’

Qan(x) = (2na,)™1 Y " I(Gx) < G(X)) — an)

2a
i=1 n
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and note that

|Qn,( x)— an(x) + QZn(x)l < (2nan)—1»
Q1) = ~0.5n"%0; %0, (G71(G) - @),

Qo (x) = —O.5n_1/2a;1a,, (G‘I(G(x) — an)),

for each fixed x and for n large enough. In this notation,
I = [ Queaw,w
(B.3) = [ 1@+ Qua(@)] dWa() 4 0,()

= —/Wn(x—)dan(x)— /Wn(x—)szn(x)+0p(1)-

Note that the remainder term in (B.3) converges to zero uniformly in (xq,yo). It
is easy to verify that

/ W, (x—)dQ1,(x)

=12 1SS ho(X;, %5, 8)[GX) - IX; < X))

i=1j=1
and that
(B.4) Vo =071 ho(X;, Z;, 6)[G(X) — I(X; < X))
i=1j=1

remains bounded in probability. [Take the expected value of V2 or see Serfling
(1980), page 223.] Thus the first term on the right-hand side of (B.3) converges
to zero in probability. That the second term on the right-hand side of (B.3)
converges to zero is shown similarly. The same argument can also be used to
show that I converges to zero in probability. The proof of the lemma will now
be completed by showing the stochastic equicontinuity [Pollard (1990), page 51]
of Is and I in (xg,y0). We will do this by verifying the conditions of Nolan and
Pollard [(1988), Theorem 7]. Set

£&:,&) = 0.5{ho(X;,Z;, 6)[C(X;) — I(X; < X))]
+ ho(X;, Zi, 8)[G(X) — 1(X; < X)) }.

Thus V, in (B.4) is V, = n~!'3}7_ 37 ,f(&,£)). Note that the dependence of
f(&, &) on (xg,y0) is not made explicit. Different values of (xo,yo) yield different
functions f(-, -), which generate the class F. Now let

(B.5) Uo=n"t > f&&.

1<i#j<n
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Note first that the class F has a constant envelope function F. Let T, be the
measure described in Nolan and Pollard [(1988), page 1293]. Using assumption
A4, it can be seen that the covering number N(e, T}, F, F), which is the smallest
cardinality of a subclass F* of F such that min{T, | f — f*|%; f* € 7} < 2T, F?
for each f in 7, is bounded by A<~V. This implies that conditions (i) and (ii)
of Nolan and Pollard [(1988), Theorem 7] are satisfied. Using assumption A4
again it is seen that condition (iii) of the above theorem is also satisfied. Next,

Vn - Un = n_l Zf(ﬁi,&),

i=1

which can be seen to converge to zero uniformly in (xg,yo) by an application
of Theorem 8.2 of Pollard (1990). This and (B.3) show that I5 converges to
zero in probability uniformly in (xg,y¢). Similar arguments show that I con-
verges to zero in probability uniformly in (xg,y0). This completes the proof of
the lemma. O

Acknowledgments. This research was carried out while the author was
a Visiting Fellow in the Centre for Mathematics and Its Applications at the
Australian National University. The author is grateful to Peter Hall for encour-
agement and for a number of helpful discussions, and to the referees and an
Associate Editor for their helpful comments.

REFERENCES

AKRITAS, M. G. (1992). Bootstrapping the nearest neighbor estimator of a bivariate distribution
function. Unpublished manuscript.

ARNoOLD, S. F. (1981). The Theory of Linear Models and Multivariate Analysis. Wiley, New York.

BERAN, R. (1977). Estimating a distribution function. Ann. Statist. 5 400—404.

BERAN, R. (1981). Nonparametric regression with randomly censored survival data. Technical
report, Univ. California, Berkeley.

BUCKLEY, J. and JAMES, I.(1979). Linear regression with censored data. Biometrika 66 429-436.

CHENG, P. E. (1989). Nonparametric estimation of survival curve under dependent censoring. /.
Statist. Plann. Inference 23 181-192.

DABROWSKA, D. (1987). Non-parametric regression with censored survival time data. Scand. J.
Statist. 14 181-197.

DABROWSKA, D. (1988). Kaplan—Meier estimate on the plane. Ann. Statist. 16 1475-1489.

DABROWSKA, D. (1989a). Kaplan—Meier estimate on the plane: weak convergence, LIL, and the
bootstrap. J. Multivariate Anal. 29 308-325.

DABROWSKA, D. (1989b). Uniform consistency of the kernel conditional Kaplan—Meier estimate.
Ann. Statist. 17 1157-1167.

DVORETZKY, A., KIEFER, J. and WoLFowITz, J. (1956). Asymptotic minimax character of the
sample distribution function and of the classical multinomial estimator. Ann. Math.
Statist. 27 642-669.

GILL, R. (1983). Large sample behaviour of the product-limit estimator on the whole line. Ann.
Statist. 11 49-58.

HAJEK, J. (1970). A characterization of limiting distributions of regular estimates. Z. Wahrsch.
Verw. Gebiete 14 323-339.

HORVATH, L. and YANDELL, B. S. (1988). Asymptotics of conditional empirical processes. J. Mul-
tivariate Anal. 26 184-206.



ESTIMATING A BIVARIATE DISTRIBUTION 1327

INAGAKI, N. (1970). On the limitating distribution of a sequence of estimators with uniformity
property. Ann. Inst. Statist. Math. 22 1-13.

KouL, H., SusArLA, V. and VAN RyziN, J. (1981). Regression analysis with randomly right-
censored data. Ann. Statist. 9 1276-1288.

Lal, T. L. and YING, Z. (1991). Large sample theory of a modified Buckley—James estimator for
regression analysis with censored data. Ann. Statist. 19 1370-1402.

LEURGANS, S. (1987). Linear models, random censoring and synthetic data. Biometrika 74 301-
309.

Lo, S.-H. and SINGH, K. (1986). The product-limit estimator and the bootstrap: some asymptotic
representations. Probab. Theory Related Fields 71 455—465.

MCKEAGUE, I. W. and UTIKAL, K. J. (1990). Inference for a nonlinear counting process regression
model. Ann. Statist. 18 1172-1187.

MILLER, R. G. (1976). Least squares regression with censored data. Biometrika 63 449-464.

NoLAN, D. and POLLARD, D. (1988). Functional limit theorems for U-processes. Ann. Probab. 16
1291-1298.

PoOLLARD, D. (1990). Empirical Processes: Theory and Applications. IMS, Hayward, California.

Pruitt, R. C. (1993). Identifiability of bivariate survival curves from censored data. J. Amer.
Statist. Assoc. 88 573-579.

Roussas, G. G. (1972). Contiguity of Probability Measures: Some Applications in Statistics. Cam-
bridge Univ. Press.

SERFLING, R. J. (1980). Approximation Theorems of Mathematical Statistic. Wiley, New York.

STUTE, W. (1982). The oscillation behavior of empirical processes. Ann. Probab. 10 86-107.

STUTE, W. (1984). Asymptotic normality of nearest neighbor regression function estimates. Ann.
Statist. 12 917-926.

STUTE, W. (1986). Conditional empirical processes. Ann. Statist. 14 638-647.

STUTE, W. (1992). Consistent estimation under random censorship when covariables are present.
Unpublished manuscript.

VAN DER LAAN, M. J. (1992). Efficient estimator of the bivariate survival function for right cen-
sored data. Preprint, Dept. Mathematics, Univ. Utrecht.

WELLNER, J. A. (1982). Asymptotic optimality of the product limit estimator. Ann. Statist. 10
595-602.

ZHou, M. (1992). Asymptotic normality of the ‘synthetic data’ regression estimator for censored
data. Ann. Statist. 20 1002-1021.

DEPARTMENT OF STATISTICS
PENNSYLVANIA STATE UNIVERSITY

326 CLASSROOM BUILDING

UNIVERSITY PARK, PENNSYLVANIA 16802



