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A MISSING INFORMATION PRINCIPLE AND M-ESTIMATORS
IN REGRESSION ANALYSIS WITH CENSORED
AND TRUNCATED DATA!

By TzE LEUNG LAI AND ZHILIANG YING

Stanford University and Rutgers University

A general missing information principle is proposed for constructing M-
estimators of regression parameters in the presence of left truncation and
right censoring on the observed responses. By making use of martingale cen-
tral limit theorems and empirical process theory, the asymptotic normality
of M-estimators is established under certain assumptions. Asymptotically
efficient M-estimators are also developed by using data-dependent score
functions. In addition, robustness properties of the estimators are discussed
and formulas for their influence functions are derived for the robustness
analysis.

1. Introduction. Consider the linear regression model
(1.1) yiza+0Txi+e, i=1,2,...,

where the ¢; are i.i.d. random variables with a common continuous distribution
function having a finite mean (not necessarily 0) and the x; are independent
v x 1 random vectors independent of {¢;}. Taking the location parameter o in
(1.1) to be a minimizer of the function R(a) = Ep(y; — 6Tx, — a), Huber’s M-
estimators [Huber (1973)] @ and 3 of @ and 3 based on (xy,y1),...,(x,,y.) are
defined as a solution vector to the minimization problem

n

1.2) Zp(yi —a—bTxi)(= /p(y —a)dF,’:’b(y)> =min!,

i=1
where F , is the empirical distribution constructed from y,(b) = y; — bTx;,

i =1,...,n. In particular, when p(u) = u2, @ and B reduce to the classical least
squares estimates, and they reduce to the maximum likelihood estimates of «
and 8 when p(u) = —logh(u), where h is the density function of ¢;. When p is
differentiable, the M-estimators @ and 3 are also defined as a solution of the
estimating equations

1.3) Zpl(yi -a- bTxi) =0, inpl(yi —a-b"x)=0.
i=1

i=1
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Suppose that the responses y; in (1.1) are not completely observable due to
left truncation and right censoring by random variables #; and ¢; such that
00 >t; > —oo and —oo < ¢; < 0. Lety; =y, A¢; and §; = I, <.}, where we use
A and V to denote minimum and maximum, respectively. In addition to right
censorship of the responses y; by c;, we shall also assume left truncation in the
sense that (¥;,6;,x;) can be observed only when y; > ¢;. The data, therefore,
consist of n observations (¥?,#?,6?,x?) with y? > #?,i = 1,...,n. Unless stated
otherwise, it will be assumed that (t,,c,,x ) are 1ndependent random vectors
that are independent of the sequence {sn}. The special case ¢; = —oo corre-
sponds to the “censored regression model,” for which Miller (1976) suggested
an extension of the least squares estimate [p(u) = u2/2] 2] by substituting F;
in (1.2) by the corresponding Kaplan—Meier estimator F,, p constructed from
(y; —bTx;,6;),i =1,...,n. An alternative extension of the least squares estimate
[p'(u) = u] to the censored regression model, proposed by Buckley and James
(1979), is to modify the estimating equations (1.3) for censored data. A similar
extension of the least squares estimate to truncated (but uncensored) data by
modifying the estimating equations (1.3) was recently proposed by Tsui, Jewell
‘and Wu (1988). An alternative to (1.2) or (1.3) in the case of complete data is the
method of rank estimators. The rank approach was first extended to truncated
(but uncensored) data by Bhattacharya, Chernoff and Yang (1983), and Lai
and Ying (1991b) recently gave a complete generalization of the method to left
truncated and right censored data.

A general method for constructing M-estimators in left truncated and right
censored regression models is given in Section 2. Influence functions of these
M-estimators based on censored and truncated data are derived in Section
3, which also studies their robustness properties. A complete asymptotic the-
ory of M-estimators in left truncated and right censored regression models is
developed in Section 4. The asymptotic theory is applied in Section 5 to construct
confidence regions and to study the asymptotic efficiency of these M-estimators
in the left truncated and right censored regression model. In this connection
it is also shown how fully efficient M-estimators can be constructed by a data-
dependent choice of score functions.

2. A missing information principle and M-estimators in left trun-
cated and right censored regression models. To begin with, consider the
case of known 3 = 0 so that (1.1) reduces to a location parameter model. Sup-
pose that the data are only subject to right censorship by i.i.d. random variables
c;, so that the i.i.d. random vectors (¥, 1), ..., (¥, 6,) are observed for the esti-
mation of the location parameter «. Since the y; are not completely observable,
it is natural to replace the criterion (1.2) defining an M-estimator of « by

(2.1) > Elp(y; — a)|¥i, &) = minl.
i=1

Moreover, since the conditional expectation in (2.1) involves the unknown com-
mon distribution function F of y;, it is natural to replace F by its nonparametric
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maximum likelihood estimator f‘,,, which is the Kaplan—Meier (product-limit)
estimator based on the censored data. This leads to the minimization problem

(2.2) /m plz — a)dﬁn(z)< = wip(y; — a)) = min!,
-0 i=1

where the weights w; are the jumps of the Kaplan-Meier curve. It is well
known that

23)  sup|Fal) ~F®| —p 0, where 7 =inf{e: (1 - F(®)Pley > t] =0}
t<T

[cf. Wang (1987)]. Hence, assuming suitable regularity conditions on p and that
F(r) =1, we have

inf / ~ plz — a)dF,(z) —p inf / ’ plz — a)dF(z)
(2.4) e Bl
= ilef/ p(z — a)dF(z),

and therefore the M-estimator defined by the minimization problem (2.2) is a
consistent estimator of the minimizer « of [~ p(z — a) dF(2).

Without assuming (3 to be known, an addltlonal complication arises since F'
is the common distribution functlon of y; — BTx;, which 1nvolves the unknown
parameter 8. First note that the F in (2.2) is the same as Fn 8, Where Fn b
denotes the Kaplan—Meier curve based on (y; — bT x,,5 )i<n- Since § in Fn 8
is unknown, an obvious approach is to replace F,, (= Fn, g) in (2.2) by F,,,b, as
suggested by Miller (1976). A difficulty with this approach is that unlike (2.3)
we now have under certain regularity conditions that, for every 0 < ¢ < 1 and
K >0,

sup {@n,b(t) —F, s@)|: —00 <t < o0, ||b]| <K,
(2.5a)

n
ZI{&i—bTxizt} 2 nl_e} — 0 as,
i=1

where

; dP{y; = b"x <u, yi < ¢;
(2.5b) Fn,b(t)=1_exp<_z/ {y xiSuy _c}>,
j=1J/ust

E;:l P{y; - bTx; > u}

which may be very different from F(¢) for b # 8 [cf. Lai and Ying (1991c) Lemma
2]. In particular, this implies that unlike (2.4) the minimizer (@, b) of [ pz—

a) an, »(z) need no longer be consistent and may differ substantially from (o, 5).

2.1. M-estimators in the censored regression model. Instead of directly mod-
ifying the minimization problem (1.2) for censored data to define M-estimators,
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we can modify the estimating equations (1.3) for censored data to the form

iE[ﬂ)(yi -a- bTxi)|xi,§i,5i] =0,
i=1

(2.6) )
> wB[y (i~ o~ b7x) | x0.5,8] =0,
where =
E[w(yi -a- bTx,.)|xi,;i,5i]
2.7 =6y (yi —a—bTx)
+(1 - 5,-)f;o- o1, ¥ (1 —a — (b~ 0)Tx;) dF ()

1-F(y - fTx) ’

in which ¢ = p’. Since the infinite-dimensional parameter F in (2.7) is unknown,
Buckley and James (1979) and Ritov (1990) proposed replacing it by F,, ;. We
shall clarify the role of f'n, p in order to extend the approach to the much more
difficult setting of left truncated and right censored data.

To do this, we first introduce a general principle to construct estimating
equations for the regression parameters when the y; in (1.1) are not completely
observable. Let z denote the vector of observations and let y denote the associ-
ated unobservable complete data vector. Letting v = (¢, 3, F), suppose that an
estimate of v based on y is defined by

(2.8) T(y; v)=0.

For example, the M-estimators & and B of « and 3 in (1.3) and the empirical
distribution function of y; — 8 x; correspond to (2.8) with

T(y’ay/ByF) = (Z’lp(yl _a_IBTxi)a lew(yt -« _IBTxi)a
i=1

i=1
n
F-nt ZAM —ﬂ%)v
i=1

where ¢ = p’ and A, _ gr, (w) = Iy, _ gr,, <. Since we do not observe y, we
replace the unobservable function T'(y;~) in (2.8) by E, [T(y;~) |z, leading to
the estimating equation

(2.10) E,[T(y;7)|z] = 0.

(2.9)

In applying this missing information principle to the case where the y; are
subject to right censorship, first note that

~

51,51,3‘71, e a&nyényxn = Fn,,ﬂy

(211) Eﬁ‘,, s [n_IZAyi—ﬁsz
i=1
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which is the “self-consistency” property of the Kaplan—Meier estimator f‘n g [cf.
Efron (1967) and Tsai and Crowley (1985)]. This implies that a solution of (2.9)—
(2 10) in the censored regression model is of the form (&, ﬁ Fn 6)s where a and

ﬂ are defined by the estimating equations (2.6) with F replaced by F,, p in (2.7).
Equation (2.10) can be regarded as a generalization of the missing information
principle of Orchard and Woodbury (1972), who considered the case in which
T(y;~) is the derivative of the log-likelihood of v = (a, 3), assuming F to be
known and to have a smooth density. In (2.10), however, F is not assumed
to be known so that v = (o, ,F), and T(y;~) is not connected to likelihood
maximization.

2.2. M-estimators in the left truncated and right censored regression model.
We now apply the above missing information principle to derive M-estimators
of regression parameters when the data are subject to both right censorship
and left truncation. As in Turnbull (1976), assume in this derivation that the
t" cl and x{ are nonrandom, with ¢ > #?, and regard the observed sample

= ( yl,tf,él ,X?)1<i<n as having been generated from a larger sample y =
(yia ti,Ci X1 <i<mn)s where

(2.12) 90 =0, g = lnf{l > Uj—liyz 2 } m(n) = o,,
| o= (£,6.) Tros<i<a,

Let v = («, 8, F) as before. If y were observed, then we would be able to estimate
v by (2.8) with

m(n) m(n) m(n)
(2.13) T(y;) = ( Y (3B —a), Y xip(v:(8) — @), mF - > Ay,m))
i=1 i=1 i=1
where (and in the sequel) y;(b) = y; — bTx;, ¢;(b) = ¢; — bTx;, ¥ ¥2(b) = bTx" and

t2(b) = £ — bTx?. Note that

m(n)

m(n)
2.14) > P(r(8) - / Yt —a)d [ > Ayxm(t)]

i=1

m(n)
EF[ZAy(m(u) zl —EF[Z Z Ly <} zl
Jj 10’, 1<iLgj
(2.15) = Z(‘f I{y"(ﬂ)<u} + Z I{y"(ﬂ)<u}
F(u)— (y}’(ﬁ)) N L F(uA82(B))
- F(3(8) ol- F(t"(ﬂ))
(2.16) Ep[m(n)|z] =EF[Z(J~—0,._1) z TFER)
it o1- Ft"(ﬂ))




M-ESTIMATORS FOR CENSORED AND TRUNCATED DATA 1227

Turnbull (1976) and Lai and Ying (1991a, b) studied the following extension
of the Kaplan—Meier estimator of F to the left truncated and right censored

regression model. Let ¥0;)(b) < --- < 3?,)(b) denote all the ordered uncensored
residuals. Fori=1,...,k, let

2.17) Z(b,u) = #{j < n: £2(0) <u <)},

where we use the notation # A to denote the number of elements of a set A. Define

N 1
218 Fn =1- l1-———— )
(2.18) 5w 11 ( Z,(b,5°(b)) )

7o) <u, =1

n

H,b,u) =Y §lipen<uy, Kabuw)=) (1- ) ow <uys
2.19) ot o
L,(b,u) = Zl{t;(b)gu}~

j=1
In the case where § is known, f‘n, g is the nonparametric maximum likelihood

estimator of the common continuous distribution function F of the y; — 57x; and

oo

(220) Ep  [m(n)|z] = / (1-F, 50)~ YdL.(3,t) =g, say,

—00

by (2.16). Furthermore, fn, g satisfies the self-consistency property

m(n)

D Ay

i=1

(2.21) By

z} = mgF,, su)

[cf. Turnbull (1976)], noting in view of (2.15) that the self-consistency property
(2.21) is equivalent to

F, sw) —F, 50

P, p() = Ha(B,u) + / R0
. T Enp@ D gr 0,
oo L= Py 50

which can also be expressed in the form

migFn sw) = Hy(B,u)

(2.22) u [ s o0 ~
+ / [ / _AKBD) / _AL.B,8) ]dF,,, 5(9).
—00 — 00 l—Fn,g(t) s 1—Fn,ﬁ(t)
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F:}'oAm (2.13), (2.20) and (2.21), it follows that a solution of (2.10) is of the form
(a, B, F, B)' By (2.22),

Fig / W — a)dFy, sw)

=/ Y(u — a)dH,(8,u)

(2.23) e .
+/ @b(u—a)[/ —M
-0 ) l—Fn,g(t)

+ / ~ M] dF, sw).
u 1-—Fp 8()

In view of (2.10), (2.14), (2.21) and (2.23), @ and B are given by the estimating
equations

(2.24) > ¢ia,b)=0, Y xi(a,b)=0,
i=1 i=1

or more precisely, (@, B) is defined as a minimizer of |37 19 (@, b)| + || %0
x¥ (a, b)||, where

Jyoiw ¥t = @)dFy ()
1- l?',,, b (&f(b))

Yia,b) = y(3b) —a) + (1 - 6)

(2.25) , R
. J5® wu — a)dF, ()

1-F, ;(22(b)

Note that the first equation in (2.24) is equivalent to [ fooo Y —a) dlAf",,, () =0,
which implies that fﬂ? Y — a)dF, p@) = — JSeowy ¥ — a)dF, »(u). Hence we
can rewrite (2.25) in the form
Sy ¥ — @)dF, ()

1-F, 5 (32()

¥ (a;0) = §P(H2b) —a) + (1 - &7)

(2.26) . -
ft‘l?(b) P(u — a)an,b(u)

1 Fp 5 (20))

3. Influence functions and robustness. The influence function, or in-
fluence curve (IC), provides an important heuristic tool for studying robustness
and is the cornerstone of the infinitesimal approach to robust statistics [cf.
Hampel, Ronchetti, Rousseeuw and Stahel (1986)]. Expressing an estimator
based on i.i.d. observations as a functional T of their empirical distribution, the
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infinitesimal approach studies robustness of the estimator via the Gateaux or
other derivatives of T'. In particular, the influence curve of T is

3.1) ICGT,G) =lim ¢t {T((1 -G +15,) - T(G)}
tl0

at a distribution G, where &, denotes the distribution that puts mass 1 to x. It
measures the normalized influence of adding one more observation x to a very
large sample on the value of the estimate.

In this section we first evaluate the influence curve of the M-estimator (2.24),
assuming that

(3.2) (t;,ci, %7, &;) are iid., with ¢; independent of (¢;,¢;,x7).

We shall regard the observed data (y?,?,6?,x7),i = 1,...,n, as having been gen-
erated from a larger sample of i.i.d. random vectors (¢;,¢;,x7,¢;),i = 1,...,m,
with n = n(m) and with #;, x;, 5 = (@ + f7x; + &) Ac; and & = Ipy pryie, <o)
observed only when y; > t;. The M-estimator defined by (2.24) and (2.26) can
be expressed as a function of this larger sample {(ti,ci,xiT,ei): 1 <i<m}
where the function involves only (¢;,x7,5;, 6,)I (5 >t;}» and therefore we can rep-
resent the M-estimator as a functional of the empirical distribution G,, of
{@i,ci,xT €): 1 <i<m}.

The following “implicit function formula” for the influence curve of a statisti-
cal functional T that is defined implicitly by a functional equation will be applied
to the M-estimator defined implicitly by (2.24). Letting M denote the space of
probability measures on some measurable space, suppose that ®: MxRP — R?
is a von Mises functional and that T: M — RP? is well defined by

3.3) TH=0 < @G, 06)=0.
For any fixed 6 € R?, define &5: M — R? by &4(G) = ®(G, §). Then

(3.4) I: i @(G, 9)] IC(x, T, G) =-IC (x; (I)T(G)a G),
96 0=T®
as can be shown by a standard argument similar to that in Hampel, Ronchetti,
Rousseuw and Stahel [(1986), page 101]. The notation (8/99)®(G,0) in (3.4)
denotes the Jacobian matrix, recalling that both # and & are p-dimensional.
To define the functional @ so that (2.24) can be expressed as ®(Gp,6) = 0
with 0 = (a,bT), we first represent the product-limit estimator F,, , in terms of
the empirical subsurvival functions

m

Q -1

85,1@) =m ™Y Liare> b praru a@®>are>u@)
i=1

m
Q -1
(3.5) 85,2 =M™ e y5 6 - o, ave>a® >4 @)
i=1

m

Q -1

Sb,8@) =m ™Y Liaue) nei(8) 3 4(8)> b - 6)7 )
i=1
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By (2.17), Z,(b,u) = m[S,1(w) + S, 5(u) — Sp 3], recalling that 5;(b) = (y; A
¢;) — bTx; = [(a + ;) A ci( B)] — (b — B)Tx;. Therefore (2.18) defines F, ;(u) as a
functional JJ,, of S 1, Sy 2 and Sy, 3, where

_ S1(8) = S1(t+) 0
6O TS S)=1- 1] {1 T 510 +5:0 - Ss(t)} (6 ) °>'

For b = 3, since the §b j in (3.5) are functionals of the empirical distribution
G of {(t,c;,x7,&): 1 < i < m}, the functional (3.6) can be used to express
F, s(u) as a functional of Gy, say, F, s(u) = J;(Gr). The influence curve of J;
at the underlying distribution G of (¢1,c1,x], £1) can be evaluated by modifying
Reid’s arguments [Reid (1981)] in the censored case. Letting

(3.7 To(s) = P{t1(B) < s < e1(B)}, o = inf {s: To(s) > 0},

and noting that f‘n, g only estimates consistently the conditional distribution of
o+ e given a +¢; > 7o [cf. Lai and Ying (1991a)], the influence curve of the
functional JJ} is given by

. 1-F(u)
IC((tcx €); I G) T‘—F(—u_)l{(a+ﬂ7'x+e)/\c>t}

I T
3.8 {a+te<un(c-pTx)}
@8 8 { (1 - Fla+é&)Tola+e)

/(a+e)A(c—-ﬁTx)/\u dF(s) }
b (1 - F(s))’To(s)

if 7o < ¢ — BTx < u and F(u) < 1. For the special casea =8=0and ¢; =t = —oo,
7o = —oo and (3.8) agrees with IC; or IC; in Reid [(1981), formula (2.2)] according
ase<core>c.

As pointed out at the end of Section 2, the first equation in (2.24) is equiv-
alent to f Y — a) dF,, ) = 0, which upon multiplying both sides by
1 - F(rp) y1elds

(e 0]

(3.92) (1= Flro) / W —a)dFy 4w) = 0

—00

We now express the second equation in (2.24) in terms of similar stochastic
integrals with respect to empirical measures on R *1. For any u € R and Borel
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subset B C RY, define

m
Q -1
Sbyl(u’B) =m Zl{a+ei2(b—ﬂ)7xi+u, c;(B)>a+te, >t,(ﬂ)}I{x,~EB}

i=1

and define :S“'b, o(u,B) and §b, 3(u, B) similarly by multiplying the corresponding
summands in (3.5) by Iy, ¢ ;. In view of (2.26), the second equation in (2.24)
can be written in the form

(3.9b) xp(u — a)dSy, 1 + Ju~ ¥t — a)dF, ()

~ xd(Sy 5 — Sy 3) =0,
Rv+1 Rv+1 ]_ — Fn,b(u) 2 b’3

in which the integrands are functions of u, x and the :S“'b, j are regarded as

distributions of (z,xT). Combine the left-hand sides of (3.9a) and (3.9b) into a
(1 + v) x 1 vector, which can be expressed as a functional ®(G,,,6) of 8 = (a, bT)
and the empirical distribution G,, of {(z;, c,-,xiT, €): 1 <i <m}. Thus,

(G, 0) = ((1 ~Fw) [ - @)dFa ),
(3.10) o r
left-hand side of (3.9b)) .

Let 6y = (o, 8T), where « is defined as the solution of the equation f:o W(u —
a)dF(u) = 0 and 7 = inf{s > 74: (1 — F(s))I'o(s) = 0}. We integrate over [rg, 7]
because all jumps of 'F\‘n’ g occur inside this interval. Under (3.2), the expectation
of §b, ;j does not depend on m and is denoted by S, ;, for example,

(8.11) Sy 1w,B) = E{ [F(cl( B)) — F(tl(ﬂ) V(w+®- ﬁ)Txl))]I{x1 €B} }

Replacing :S"b) i by Sp; and f‘n, » by F in the left-hand side of (3.9b) gives the

value 0, so ®(G, 6y) = 0, where G is the underlying distribution of (¢1,¢1,x7, ;).
Therefore, by (3.4), we can evaluate thé influence curve of our M-estimator via
that of the functional &4, = &(-, (a, 57)).

To find the influence curves of ¢y, at G, we shall evaluate the two influence
curves of the functionals associated with (3.9a) and (3.9b) separately and make
use of Reid’s chain rule [Reid (1981)] for ir}\ﬁuence curves. The Aintegral in (3.9a)
with @ = a and b = 3 is a functional T of F,, g, defined by T1(Fy, ) = (1 — F(7))
X f:o w(u—a)dﬁn,g(u). Since f:o Y(u—a)dFw) =0,I1C(u; Ty, F) = (1—F(19))y(u—

)l <u<ry. Since f‘n, ) = J(Gp,), we can make use of (3.8) on the influence
curve of J; together with Reid [(1981), formula (3.2) (in which a minus sign
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is missing)] to conclude that the influence curve of the functional Ty o J*
associated with the left-hand side of (3.9a), in whicha = a and b = 3, is

IC((t,c,xT,e); T1 0 J*, G)

__ /T IC((¢, ¢,27, €, J%, G) {ad; Wlu — a)} du

0

T u I T
{s<(a+e)A(c—BTx)}
= - dF( )}
(3.12) /7-0 {/t—ﬁTx (1—F(s))2I‘0(s) °

x d{ /T (1 - F)) d(v - a)}

I{a+5§c_grx} T
" A Far )o@ d Jo,, LTV =),

if 7 > (a+e)Alc — Tx) > ¢t — fTx > 7. Here and in the sequel it will be assumed
that v is absolutely continuous with respect to Lebesgue measure. Note that
the last term in (3.12) represents an uncensored observation and can be written
as —dro(a + €), where

{ 7 (1-FQ@)dyw - a)}

(3.13) To(w) =
{(1-F@)To@}

=I{a+6§c—ﬁ7'x}'

Integration by parts then simplifies (3.12) to
IC((t,c,a”,e); Ty 0 J*,G)
(3.14)

(a+e)A(c—BTx)
/ 700 IEw) — Srolar+ €),
t

_ ﬂTx 1 — F (u)
Similar calculations can be used to evaluate the influence curve of the func-

tional associated with the left-hand side of (3.9b) with a = o and b = 3, which
we can rewrite as

/ 1 xp(u — a)d(g',e,1 +§,(§,2 - gﬁﬁ)
Rv+

I (1= F, p®)dy(t - o)
Rv+1 ]_ — An’

+ xd(gg’z—gﬁ’g),

)

after applying integration by parts to — fu°° Pt —a)d(1l— f‘n, 3(®)). The influence
curve of the functional T, associated with the second summand above can be
simplified by repeated use of integration by parts and leads to an expression
that is completely analogous to (3.14). The influence curve of the functional T’
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associated with the first summand above is easy to compute and leads to the
last term in the following:

IC((t,c,xT, €); Ty + T, G)

(a+e)Alc—BTx) 7‘( )
3.15 = ) _
(3.15) /t o L dF @) — bri(a+ )

—x{éw(s) +(1=8)¥(c— pTx) —U(t - ﬂTx)},

if 7 > (a+e)Alc — BTx) >t — BTx > 7, where

_ Ti(w) fuT (1-F@)dy — ) _ fuT P(v — a)dF(v)
16 " T 1_F@w) S T R

') = E{in{ti(g)SuSCi(ﬁ)}}'

The column vector formed from (3.14) and (3.15) gives the influence curve
of the functional &g, = ®(-, (o, 7)), where ® is defined in (3.10). To apply
(3.4) to evaluate the influence curve of the functional T' associated with our
M-estimator, it remains to find (8/90)®(G, 9). First note that since G is the
underlying distribution of (¢1,cq,27, 1),

<I><G, (a, bT)) = ((1 — F(r)) /oo Y(u — a)dF, (), /Rwlxz,b(u —a)dSp,1

T
bt w(t—a)an,b(t)
+/Ru+1 {/u W}xd(‘sb,z _Sb,3)> ;

where the S, ; are defined as in (3.11) and

) dP{t:(6) < y:(b) < c1(B) Au}
Fn,b(t) =1-— exp{—LSt P{yl(b) Z w Z tl(b)} }a

which agrees with (2.5b) in the censored case. Formal differentiation with re-
spect to @ and b under the integral signs, assuming the functions involved to
be differentiable, gives

9 _ wa _gg
317 [ﬁ <I>(G,9)L=(a’ﬁT)‘ ‘( 0 C, )

The (v x v) matrix C,, (v x 1) vector g, and scalar 1, in (3.17) are given ex-
plicitly in (4.27) and (4.38) of Section 4, where we give a rigorous derivation of
these quantities via an asymptotic linearity argument under precisely stated
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regularity conditions (given in Theorem 2) which allow the (¢;, ci,xiT) to be non-
identically distributed but such that

m
m-1! fol{ti(g)gsgci(g)}} =T,(s)

lim E
(3.18) m—oo { —

forr=0,1,2 and s < F~1(1),

where x? = x;x7 and ['(s) = [ %71, (p)<s<ey (9} G-
Summarizing, we obtain from (3.4) and (3.17) the influence function formula

T\ 7!
(3.19) 16((t.c,4",¢); T.G) = (1/: cga) @1:;)

for the functional T associated with the M-estimator of (o, 57) defined by (2.24),
at the underlying distribution G of (¢, cl,x{, £1) under assumption (3.2). More-
over, we can also apply (3.19) to study robustness in the case of independent
and nonidentically distributed (¢;,¢;,x;) such that (3.18) holds with I',(s) being
the corresponding expectation under some limiting distribution G.

The preceding discussion can be easily extended to the following situation.
Suppose that only the slope parameter 3 in (1.1) is of interest. Clearly we can
absorb the o into « + ¢; and thereby assume that a = 0 in (1.1), noting that F
in the preceding discussion is in fact the distribution function of a + ;. We can
fix any a in the second equation of (2.24) and use it as an estimating equation
for 8. Denoting the functional associated with this M-estimator of 3 by T4, its
influence curve at G is

(3.20) 1C((t,c,27,2); T, G) = C; - 3.15),

where we replace the o + ¢ in (3.15) by ¢, and the « in (3.16) by a.

We next give a numerical example to illustrate and discuss some insights
provided by the influence function formula (3.20) into the robustness properties
of M-estimators of the slope 3 in (1.1). Consider the regression model y; =
Bx;+¢€;,i=1,...,50,in which the ¢; are i.i.d. random variables whose common
distribution function F is a mixture, 0.6 N(0, 1) + 0.4 N(0, 102), of two normal
distribution functions with respective standard deviations 1 and 10. The 50
design points x; are evenly spaced in the interval [-1, 1] with x; = —1 and x5
= 1. The y; are subject to right censorship by independent random variables c;
which are normal with means 2.5+ 3x; and standard deviation 5. The censoring
probability P{e; > c¢; — Bx;} is 0.35, and the observations are (x;,y;, ;) with
¥i =yiAci, 6 =1y, <3, 1 <i <n=>50.The second equation of (2.24) witha =0
and £, = — oo reduces to

i _ © Y dF, 1)
(3.21) xi{5i1/)( i —bx;) + (1 — 5i)/ — }
; ? gi—bx 1 —Fy p(y; — ba;)
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TABLE 1

Influence curves (IC) associated with the Buckley—James (BJ) and Huber (H) score

functions for a censored sample of 50 observations (x;,y;, 6;)

xi :’;i o i 3';' - ,Bxi IC (BJ ) IC (H)
—1.0000 -1.79 1 -0.79 6.79 6.79
—0.9592 -1.39 1 —0.43 3.56 3.56
—0.9184 —-29.17 1 —28.25¢% 222.36* 7.87
—0.8876 —0.50 0 0.39 —34.35% —8.28
—0.8367 -20.91 1 —20.07% 143.95% 7.17
—0.7959 —0.44 1 0.36 —2.45 —2.45
—0.7551 —4.68 0 -3.92 -11.11 0.00
—0.7143 -2.10 0 -1.39 -13.26 0.00
—0.6735 1.12 1 1.79 —10.36 -5.77
—0.6327 —22.17 1 —21.54¢% 116.81* 5.42
—0.5918 1.98 1 2.57 —13.03 -5.07
—0.5510 —3.68 0 -3.13 —8.46 0.00
—0.5102 -0.13 1 0.38 —1.68 —1.68
—0.4694 0.83 1 1.30 —5.24 —4.02
—0.4286 —0.26 1 0.16 —0.60 —0.60
—0.3878 —2.62 0 —-2.24 —6.33 0.00
—0.3469 -0.51 1 -0.17 0.50 0.50
—0.3061 —2.68 1 —2.37 6.23 2.62
—0.2653 —0.45 1 —0.19 0.42 0.42
—0.2245 2.93 1 3.15 —6.06 —-1.92
—0.1837 -1.87 0 -1.69 -3.21 0.00
—0.1429 -5.89 1 —-5.74 7.03 1.22
—0.1020 0.00 1 0.11 —0.09 —0.09
—0.0612 -1.30 1 —-1.24 0.65 0.52
—0.0204 —0.52 1 —0.50 0.09 0.09

0.0204 -1.83 1 -1.85 —0.32 -0.17
0.0612 —11.42 0 —11.48% 0.46 0.00
0.1020 0.15 1 0.05 0.04 0.04
0.1429 —0.04 1 —0.18 —0.22 —0.22
0.1837 —4.33 0 —4.52 2.61 0.00
0.2245 —10.06 0 —10.29¢% 1.93 0.00
0.2653 —2.42 1 —2.68 —6.10 —2.27
0.3061 -0.11 1 —0.42 -1.10 -1.10
0.3469 —0.05 1 —0.40 -1.19 -1.19
0.3878 —4.74 0 -5.13 5.29 0.00
0.4286 —0.45 1 —0.88 -3.21 -3.21
0.4694 —0.24 1 -0.71 —2.85 —2.85
0.5102 —0.33 1 —0.84 —3.68 —3.68
0.5510 0.52 1 . —0.03 —0.16 —0.16
0.5918 3.75 0 3.16 51.08* 5.07
0.6327 —3.43 0 —4.06 9.23 0.00
0.6735 —0.44 1 -1.12 —6.44 —-5.77
0.7143 —3.42 0 —4.14 10.38 0.00
0.7551 2.12 1 1.36 8.82 6.47
0.7959 0.12 1 —0.68 —4.62 —4.62
0.8367 —4.33 0 —5.16 11.40 0.00
0.8876 -3.37 1 —4.25 32.36* -7.61
0.9184 —-7.97 0 —8.88t 9.15 0.00
0.9592 —2.54 0 —3.50 14.45 0.00
1.0000 1.72 1 0.72 6.15 6.15

1235
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which need not have a solution. An M-estimator is defined as a zero-crossing of
the left-hand side of (3.21).

The special case ¥(u) = u in (3.21), which we denote by gs, gives the
Buckley—James estimator. Table 1 tabulates the values of (x;, y;, §;) of a ran-
dom sample of size 50 from the above censored regression model with 3 = 1.
It also tabulates the influence curve IC ((x, y, 6); BJ, G) of the Buckley—James
estimator, for the observed values of (x, y, §), at the distribution G specified by
(i) the normal mixture F of the ¢;, (ii) the N(2.5, 52) distribution of ¢; — fx; and
(iii) a uniform distribution on [—1,1] for the design vectors x; such that ¢;, x;
and ¢; — Bx; are independent.

Most of the absolute values of y; — Bx; in Table 1 are less than 6 and there
are six exceptions, which are marked by a dagger. Most of the tabulated val-
ues of the influence curve of the Buckley—James estimator are less than 15
in absolute value; the six exceptions are marked by asterisks with three of
these greater than 100. To avoid these exceptionally large influences, (3.20)
suggests replacing gy by bounded score functions ¢ such that ¢’ vanishes out-
side some bounded set. In particular, we chose Huber’s score function ¢ g(u) =
(=1) V (u A 1), and we computed by numerical integration the influence curve
IC((x, y,6); H, G) of the M-estimator defined by (3.21) with v = ¥ 5. The results,
which are given in the last column of Table 1, show a much smaller range
(between —8.3 and 8) of influence function values.

Figure 1 gives plots of the data and of (i) the true regression line (the solid
line) with slope 8 = 1, (ii) the regression line with slope 4.795 (the broken
line labelled BJ) fitted by the Buckley—James method and (iii) the broken line
with slope 0.79 fitted by using Huber’s score function 1 5. The few large neg-
ative outliers appear to be quite influential in tilting the Buckley—James line
toward them but do not have much influence on the M-estimator using Huber’s
score function. The data in Table 1 and Figure 1 represent one of 100 samples
from the above censored regression model in a simulation study of robustness
properties of the M-estimators (3.21) with + = gy or ¥g. The results of this
simulation study are summarized in Table 2, which also considers two other
censoring distributions N(3x;, 52), N(20 + Sx;, 52) for the ¢; (with respective
censoring probabilities 0.5 and 0.015) and the case of noncontaminated N(0, 1)
distribution for the ¢;. These results show that the score function ¢y gives a
more robust M-estimator of 8 than gy when there is contamination. More-
over, even when contamination is absent, the cases with p = 0 in Table 2 show
that the M-estimator associated with vy is only slightly less efficient than the
Buckley—James estimator.

Table 3 reports a more extensive simulation study in which the response
y; = Bx; +¢; (with 8 = 1) is subject to both left truncation and right censoring by
i.i.d. random vectors (¢;, ¢;) that are independent of the ¢;, fori = 1,...,100. The
x; are evenly spaced in the interval [—1, 3] and the ¢; are i.i.d. random variables
whose common distribution F' is contaminated standard normal of the form F,
or Fy or Fs, where F; = 0.6N(0,1) + 0.4N(0,22), F, = 0.8N(0,1) + 0.2 N(0, 62)
and F3(x) = 0.5P{N(0,1) < x} + 0.5 exp{— max(1 —x, 0)}. Note that each F; has
mean 0 and that and F; and F, are symmetric but F3 is not. Each ¢; has the
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TABLE 2
Mean, standard deviation (SD) and five-number summary of the simulated sampling distribution of
M-estimator of 3 (= 1) based on 1) and a censored random sample of size 50 from ¢; ~ (1-p)N(0, 1) +

0.5

1.0
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First Third
p, 1) P Mean SD Min. quartile Median quartile Max.
(0.4,2.5) BJ 1.03 1.44 -3.09 0.19 0.93 1.94 4.90
H 0.90 0.52 -0.37 0.54 0.91 1.27 2.11
0.4,0) BJ 0.97 1.80 -3.61 -0.14 0.99 2.29 5.75
H 1.00 0.65 -0.98 0.56 0.93 1.46 2.45
(0.4, 20) BJ 1.32 1.52 -2.12 0.49 1.19 2.45 5.19
H 1.06 0.47 -0.14 0.75 1.09 1.37 2.13
(0, 2.5) BJ 1.02 0.29 0.23 0.81 1.03 1.21 1.67
H 1.00 0.33 0.15 0.75 0.99 127 1.78
(0, 0) BJ 1.00 0.32 -0.20 0.83 1.00 1.21 1.88
H 0.94 0.41 -0.33 0.77 0.97 1.18 2.06
(0, 20) BJ 0.97 0.22 0.42 0.82 0.99 1.10 1.60
H 0.97 0.24 0.34 0.83 0.96 1.13 1.61
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TABLE 3
Mean and mean squared error (MSE) of M-estimator Bg; or By and of naive estimator Buaof B(=1)
based on randomly censored and truncated data, with censoring and truncation probabilities p¢
and pr for different error distributions F and parameters 0¢ and 0r of the censoring and truncation
distributions

. MSE MSE MSE
F 6c 01  pc Pt EQBna)  EPBey)  EPBn)  Bua)  Bry) B
Fy 2.5 0.4 0.24 0.15 0.606 0.997 0.999 0.166 0.031 0.029
Fy 2.5 1.2 0.24 0.26 0.568 0.991 0.993 0.200 0.045 0.043
Fy 1.5 0.4 0.41 0.17 0.450 1.011 1.010 0.313 0.048 0.046
Fy 1.5 1.2 0.41 0.31 0.430 1.002 1.001 0.336 0.064 0.061
Fy 0.6 0.4 0.58 0.24 0.304 0.993 0.992 0.494 0.075 0.068
Fy 0.6 1.2 0.58 0.42 0.317 0.970 0.967 0.480 0.112 0.109
Fo 2.5 0.4 0.25 0.17 0.592 0.994 0.995 0.179 0.031 0.025
Fy 2.5 1.2 0.25 0.28 0.545 0.991 0.993 0.223 0.043 0.035
Fy 1.5 0.4 0.41 0.19 0.440 1.005 1.006 0.325 0.052 0.040
Fy 1.5 1.2 0.41 0.32 0.421 0.996 0.997 0.348 0.072 0.056
Fy 0.6 0.4 0.58 0.25 0.296 1.001 0.998 0.506 0.091 0.064
Fy 0.6 1.2 0.58 0.43 0.308 0.970 0.961 0.492 0.141 0.111
Fq 2.5 0.4 0.22 0.12 0.701 0.995 0.995 0.095 0.014 0.014
Fq 2.5 1.2 0.21 0.24 0.685 0.996 0.995 0.107 0.017 0.016
Fy 1.5 0.4 0.41 0.14 0.504 1.000 0.998 0.253 0.025 0.023
Fy 1.5 1.2 0.40 0.29 0.507 0.992 0.992 0.252 0.027 0.026
Fq 0.6 0.4 0.60 0.21 0.328 0.989 0.987 0.458 0.047 0.044
Fy 0.6 1.2 0.60 0.39 0.352 0.969 0.966 0.428 0.071 0.066

N(Oc, 1) distribution, and (6 —¢;)/2 has the exponential distribution with mean
1, where 8¢ and 67 assume different values given in Table 3. These different val-
ues of 6c and 67 provide a wide range of censoring probabilities pc = 12 P{y; >
¢i}/100 and truncation probabilities pr = 1% P{¥; < ¢;}/100, with p¢ ranging
from 21 to 60% and pr ranging from 12 to 43%. Note that 100(1 — p7), which
ranges from 57 to 88, is the expected size of the observable sample {(32,82,67,x9),

1 < i < n}in which 3¢ > #2. From this sample, we first compute the “naive
estimator”

We use ENA as a convenient starting value for the iterative search of a zero-
crossing for the second equation in (2.24) (with @ = 0) that defines the M-
estimator Gg; [with ¢ in (2.24) given by ¥(u) = u] or By [with v given by
Huber’s score function (1) = (-2) V (u A 2)]. Table 3 gives the mean ES and
mean squared error E(3 — )2 for § = Ona, BBy, Bu, and each result is based
on 1000 simulations. These results show that g5 and B3y have negligible bias
except when pr reaches its highest levels 0.42, 0.43 and 0.39, that Sya has a
substantial bias whose square gives most of its mean squared error and that
Ou has a smaller mean squared error than SBg;.

In Tables 2 and 3, we have used two different choices of ¢ for Huber’s score
function ¥(u) = (—¢) V (u A ¢), with ¢ = 2 in Table 3 and ¢ = 1 in the 1y of
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Table 2. For complete data (without censoring and truncation), a well-known
robust regression method is to use ¢y in conjunction with suitably standard-
ized residuals in defining M-estimators. Such standardization requires some
estimate of the location and scale of the underlying error distribution, typically
carried out by including a location parameter in the model [as in (1.1)] and
by concomitant estimation of a scale parameter [cf. Huber (1973) and Hampel,
Ronchetti, Rousseuw and Stahel (1986)]. An extension of this approach that
involves concomitant scale estimation will be presented elsewhere. An alterna-
tive approach, which involves adaptive estimation of an asymptotically optimal
score function (instead of an appropriate scale parameter to be used in conjunc-
tion with Huber’s score function 1), is given in Section 5.

4. Consistency and asymptotic normality. Throughout the sequel we
shall assume that

% is continuously differentiable, lim sup |4’ ()] < oo
[t] = o0

@D .
and [~ 0 dF) < o

Because of the instability of the product-limit estimator (2.18) at points u for
which the “risk set size” Z,(b, u) is small compared with n, some modifica-
tion of (2.26) is needed to make the associated M-estimator more tractable. In
the formal influence curve calculations in Section 3, we have tacitly assumed
n=1Z,(b, u) to be bounded away from 0, since the functionals in (3.8), (3.10)
and (3.17) would become singular otherwise. Without artificially restricting u
within such a range, we shall use ideas similar to those introduced in Lai and
Ying (1991c, 1992b) for the special case gy to modify (2.26) and to establish
consistency and asymptotic normality of the corresponding M-estimators. Let-
ting

n
ZEb, ) =Y ek <u<ypo)
(4.2) =1
Jr(b,u) = Zx?{(l — ) gw > u +I{t‘;(b)§u}}a —o00 <u < oo,
i=1

it will be convenient to express the second equation in (2.24) coupled with
(2.26) as

- Y(u —a)dZi(b,u)
ueER

_/uen{/u“’ (1=Fos 010w —a)dv}dJi‘,(b,u)= 0,

(4.3)
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where
1-Foo(v)u) = ——rt®
1- Fn, b(u)
(4.4)

1

= H (1—Zn(b7?(b)—)-> foeru.

u<yP®)<v, =1

This follows from integration by parts applied to the last two terms of (2.26) if
t7(b) > —oo, noting that the last term of (2.26) vanishes if £/(b) = —co.

4.1. Smoothing kernels to dampen the instability due to small risk set sizes.
In view of its definition in (2.17), the risk set size Z,(b, u) is small if either
L,(b, u) or N, (b, u) is small, where

(4.5) L, (b,u) = Zl{tg ®<up  Nalbu)= Zl{yg ®)>u}-
i=1 i=1

We shall use two smoothing kernels p,; and p,s to down-weight those points
u with small L, (b, u)/n or N,(b,u)/n. Specifically, let p be a twice continuously
differentiable function on the real line such that

(4.62) @ 0, foru<o,
o8 pr= 1, foru>1.

Let ¢ and d be positive constants and define, for n > 2,

P 1(B,10) =p((9$’“’ — n) 1ogn),

Pn,2(b,u) =17<(1Mt2 S )logn>-

n logn

(4.6b)

Define, for —oo < u < oo,

4.7 Z; ,(bu) = Zx?pn, 1(0, £®))pn, 2, W 12 1) < u <32 B3}

i=1

which is a step function with jumps at #(b) and y?(b), i = 1,...,n. Moreover,
define

Jip(b,u) =Y x%p, 1(b, (b))
48 >

X{(1—53)1{5';?(11)21;}+I{tg(b)5u}}, —oo<u<oo,
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as a modification of J;} in (4.2). In analogy with the left-hand side of (4.3), define

Enla,b) = — / Y(u - a)dZE ,(b,u)
(4.9) u€eR

_ T (1= By (010) )90 — alpn oby0)do b T2 (B, ).
ueR u P

We propose to replace (4.3) by the equation fn(a, b) = 0, which is analogous to
the modified Buckley—James estimator of 8 introduced by Lai and Ying (1991c).
In this connection, Lemma 1 of Lai and Ying (1991c¢), which shows that such
modification of the Buckley—James estimator does not produce bias, can be
extended as follows. Define

_F)-Fu)

(410) F(U I u) = —l:m fOI' U Z u.

LEMMA 1. Let g1 be a bounded function and let g5 be a function of bounded
variation on R.

(1) If &; is independent of (t;,c;,x;) and has distribution function F, then for
every a,

E{ - / Pu — a)g1(t(0))d (g2, (9 <u< e ne; (0]

- /oo [/uoo (1 _F(v|u))¢/(v - a)gz(v)va

(4.11) oo
x g1(t(8) d[ - ity <c;@ <u, (@< e}

+I{ti(ﬂ)§¢i(ﬂ)A5iAu}]|xi’ci’ti} =0.

(i) If c; > t; a.s., then (4.11) still holds with ¢; replaced by €}, whose condi-
tional distribution given (t;,c;,x;) is

Fu) - F(t:(8))

Plef sultocint = —Fa Gy

u > t;(6).

Lemma 1 can be proved by applying integration by parts to the left-hand side
of (4.11). The choice of the weight functions p, ; and p,, 3 in our modification
of the M-estimator is quite flexible in practice. The basic idea is to restrict the
range of integration in (4.3) only to u for which the risk set size Z,(b,u) is not
too small. The thorny issue of bias created by such trimming does not arise
because of Lemma 1, which has led to the definition (4.9). Without having to
worry about bias, we can in fact trim quite substantially to ensure at least a
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moderate risk set size Z,(b, u), although our experience from simulation studies
suggests that discarding u with Ln(b,u) < 2 or Ny(b,u) < 2 is often adequate
to avoid potential difficulties with F, ;(u). Instead of straightforward deletion
of such u, we use in (4.6b) a smooth version analogous to the kernel method in
density estimation. This enables us to establish below asymptotic linearity of
the random function £,(a, b) near (o, 8) in Theorems 1 and 2.

4.2. Consistency, asymptotic linearity and asymptotic normality of slope es-
timate under independent (ti,ci,xiT). Suppose that (ti,ci,xiT) are independent
random vectors that are independent of {¢,} and such that either

(4.12a) sup E(|ta|® +(c;)°) < 0o for some § > 0,
n

which precludes the censored regression model with ¢; = —00, or
(4.12b) t; = —-0c0 and E exp(fe; ) + sup E exp(fc, ) < oo for some 6 > 0,
n
where a” = |a|l{, < o). Letting ;(b) = ¢; — bTx; and ¢;(b) = ¢; — bTx;, suppose that
the following hold:

(4.13) | x| <K for alli and some nonrandom constant K;

m

sup Z [P{u <t(b)<u+h}

ol < p, — 0o <u<oo 7
(4.14) + Plu<ci(b) Su+h}| = O(mh)
as h — 0 and m — oo with mh — oo;

F has a twice continuously differentiable density f such that

iy () <

and / sup {|f'(¢+R)|+|f"'t+h)|}dt < oo forsomen > 0;
—oo|h|<n

m™ 1Y " P{t(8) < 5 < ci(8)} — Tols),

i=1

m
4.16) m™ 'Y E{xly@<ica@y) — T1(s),

i=1
m

m~1! ZE{xixiTI{ti(ﬂ)SSSCi (ﬁ)}} — F2(s) for —oc0 <s < F_l(l).
i=1

Assumptions (4.12)-(4.16) are essentially the same as those made by Lai
and Ying (1991c, 1992b) in their analysis of the modified Buckley—James and
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Tsui—Jewell-Wu estimators of 3. The assumption of independent (ti,ci,x;t") in
the present setting does not hold for the model (2.12), and an asymptotic theory
of M-estimators in the model (2.12) will be given in Section 4.4. A basic idea in
our analysis of (4.9) under these assumptions is to regard the observed sample
(#,x2,%%, 67), i = 1,...,n, of left truncated and right censored observations as
having been generated by a larger, randomly stopped sample of independent

random vectors (¢, ¢;,x7,¥;),i = 1,...,m(n), where
m
(4.17) m(n) = inf{m: ZI{,L. <yina) = n}
i:l
By the strong law of large numbers, as m — oo,
m m
(4.18) MY Iicyney —m 'Y P{t;<yinc} -0 as.
i=1 i=1

Hence, under (4.16) and the assumption

7o = inf {s: To(s) > 0} < 7 :=inf {s > 70: (1= F(s))To(s) = 0},

(4.19) m
lim m™! ZP{ti(ﬁ) <¢(B) <s} =G(s) exists for every s € (7o, 7),

n— oo 4
i=1

it follows from (4.17) and (4.18) that

_m_’(ln_z — A as., where .i_ = /Oo {To(s) + G(s)}dF(s)

(4.20) m
= lim m™ Y P{t <y Ac;}.

m — 0o 4
i=1

Another important idea in the analysis of the random function (4.9) is to ap-
proximate it using certain nonrandom functions &, (a, b). This is the content of
the following lemma, which can be proved by straightforward modifications of
the arguments used in the proof of Lemma 2 of Lai and Ying (1991c). To define

the functions &, let

Znb,u)=> P{t:0) <u<%®)}, Lnb,u)=) P{t®) <y®)Au},

i=1 i=1

Nub,u) =Y P{F:®) >uvt®)}, 7m=Y Pt <¥},
i=1

i=1

Dm, 10, u)=p ((Lm_(.b,lt) - ¢ ) logﬁm>,

im log 72,
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I_)m’z(b,u)=p<(Nm_(bau)_ d_ )logﬁm>,

im logn,,

m
Z:L,p(b, u) = ZE{xiﬁm, 1(0,8:B)) B,y 2, W 1, ) < u < 7, )} },

i=1

ji,p(b, u)= ZE{xil_’m, 1(0,6:®) (~Iie, <y, &)< 5: 0 <y + Lt 1) <5, (b)/\u})}-
i1
Letting H,,(b,u) = ¥ Py <ci, ti(b) <y,(b) < u}, define for v > u,
dI_Im(b,S)}

421 m =1- - 7
(4.21) Fu,p(viw) exp{ /u<SSU Zn(b,s)

na) =~ [ v -a)dZ;, 6,0

(4.22) - /oo {/oo (1= Fub(010) )W/ — a)

— o0

Xﬁm,g(b,v)dv}dj,’;’p(b,u),

LEMMA 2. Assume (4.1) and (4.12)(4.15) and suppose that lim,, _, o, i, /m
exists and is positive. Then, for every ¢ > 0 and 0 < v < 1 and for any positive
numbers A and B,

(4.23) sup  ||éu(@,b) — &nin(a,b)] = o(n¥/2*°) as,
lal <4, 1Bl <B

sup{||€a(@, b) — £,(a’, ") — Em (@, ) + Emmla’, b)|:
(4.24) la —a'|+||b-b| <n”7, la| V]a'| <A, ||| V ||b'|| < B}

= o(n(l"”ﬂ”) a.s.

Since Fp, g(v|u) = F(v|u) by (4. 21) setting b = § in (4.22) and applying
Lemma 1 yleld

(4.25) ém(a,B)=0 for every a.

This suggests that we can choose any a and estimate 3 by the estimating equa-
tion fn(a b) = 0. Throughout the sequel we shall assume knowledge of an upper
bound B > ||3|| so that we can restrict b to the ball {b: ||b|| < B}. More pre-
cisely, an estimator j,(a) of 8 will be defined as a minimizer of ||§,,(a b)|| over
the region {b: ||b|| < B||. In the one-dimensional case v = 1, we can also define
ﬂn(a) alternatively as a zero-crossing (in the interval [-B, B]) of fn(a b). The
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following theorem, which is an extension of Theorems 1 and 3 of Lai and Ying
(1991c) on the modified Buckley—James estimator, establishes the asymptotic
normality of Ba(a) via the asymptotic linearity of fn(a b) in the neighborhood
{b: ||b] < n~¢} of 8 and the asymptotic normality of n=Y/2¢,(a, ).

THEOREM 1. Under the assumptions (4.1), (4.12)-(4.16) and (4.19), define
ém(a, b) by (4.22).

(1) If lim inf, _ - m‘l{inf“b“ <B, |lb-8|>6 llﬁm(a,b)ll} > 0 a.s. for every
6 > 0, then B,(a) — B a.s.

(ii) Defining 19 and 7 as in (4.19), assume that
. lo “
mlgnw im Z [P{tl(ﬁ) <To— E}I{F(ro)>0}
(4.26) i=1

+ P{ci(B) >1+eflpe < 1}] =

for every £ > 0. Define the v x v matrix

T T T _ e
Ca=/ {Fg(u)— 1"1(u)1"1(u)}{fu (1= F(s)yp'(s a)ds}

@) fw)
X {f(u) + T-Fw }dF(u).

Then with probability 1, for every € > 0,

£n(@,b) = &,(a, ) — nAC, (b — §)
(4.28)
+o(n1/2 vnllb—p|) uniformlyin ||b— 8| <n”¢,

where A is defined in (4.20). Moreover, as n — oo, n~ Y 2g,,(a, B) has a limiting
normal distribution with mean 0 and covariance matrix AV,, where

T T T _ o _
(4.29) V, =/ {F2(u)_ Fl(u)l"l(u)}{fu (1 - F(s))y'(s a)ds}dF(u).

To(u) 1-F(u)
(iii) Suppose that (4.26) holds, that (4.27) is nonsingular and that for some
€ € (0, 2)

m — o0

(4.30) lim m-¢ 1/2+e){ iof lenta, b)||} _
18]l < B, ||b— 8] >m—¢

Then B,(a) = B+0(n~%) a.s. and Vn(B(a) - B) has a limiting normal distribution
with mean 0 and covariance matrix A~1C;1V,C; .

Part (i) of the theorem is an immediate consequence of (4.23) and (4.25). Part
(ii) will be proved in the Appendix. To prove part (iii), first note that (4.30),
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(4.23) and (4.20) imply that n= Y2~ infip < B, | — g > n-< [lEn(@, B)]| — oo a.s.,
and then apply part (ii) of the theorem.

Suppose that (¢;, ci,xiT) are i.i.d. Then conditions (4.16), (4.19) and (4.26) are
trivially satisfied. Moreover, (4.14) reduces to the simple Lipschitz condition

sup [P{u<t6) <u+h}+Plu<ci®) <u+h}] =0®)

6]l < B, —oco<u< oo

as h — 0. Furthermore, m~1¢,,(a,b) — &(a,b) asm — 00, uniformly in ||b|| < B,
where ¢ is obtained by replacing p,, ; and p,, 5 in Z mpr x, and in (4.22) by
the indicator function of [y, 7] and setting m = 1 in (4.22). Note that £(a, b)
is continuous in ||b|] < B. Hence, if £(b)#0 for b+ (with ||b|| < B), then the
assumption of Theorem 1(i) is satisfied. Moreover, if F(7) < 1, then by Lemma
2 and an argument similar to the proof of Lemma 3(iii) of Lai and Ying (1991c¢),
€n(a,b) ~ —mAC,(b — 3) as m — oo and b — S, and therefore, when C, is
nonsingular,

lim inf m-<1-€>{ | ém(a, b)||}
m— 00 e<||b pI<s
for every € > 0 and some 6 > 0. Hence (4.30) holds if F(7) < 1 and £(b) #0 for
b#6(||b|| < B) and if C, is nonsingular.

4.3. Asymptotic normality of M-estimators of o and 8 when i has compact
support. In the classical theory of M-estimators based on complete data, the
location parameter « in (1.1) is commonly chosen as a zero of the function
Ey(y; — fTx1 —a) = f_ Y(u — a)dF(u), or equivalently, as a minimizer of the
function Ep(y; — fTx; — a) with p’ = 1. However, in the present setting of left
truncated and right censored data, F' can only be consistently estimated within
the interval (g, 7) even if 3 should be assumed known [cf. Lai and Ying (1991a)],
and we therefore have to replace Ey(y; — fTx; — a) by f; Y(u — a)dF(u). Con-
sequently, the location parameter o in (1.1) will be chosen as a solution of

(4.31) / " — o) dF () = 0.

Under (4.1) the left-hand side 0f (4.31) is continuous in «, and (4.31) has a unique
solution if 1 is strictly increasing (or strictly decreasing) and lim, _, o, ¥(a) and
lim, _, _o ¥(a) have opposite signs.

Suppose that (4.31) has a unique solution « in the interior of some given
interval [Ag,A;] and

(4.32) 1 has support [sg,s1] with sg + Ay > 70, 51 +A41 < 7.

Under the assumption (4.32), we can rewrite (4.31) as f:o Y(u —a)dF(u|sg+Ayp)
=0, where F(-|-) is defined in (4.10). Defining Fn, 5(:|-) as in (4.4), let

S1 +A1 —~
(4.33) Sab)=n / W — a)dFy (] 50 +Ao).

o0 +Ao
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To estimate o and 8, we use the following modifications of the estimating
equations (2.24) [m which the first equation can be expressed in the form
n [ P —a)dF, ,@) = 0]:

(4.34) Gla,b)=0,  &a,b)=

More precisely, (@,, 3,) is defined as a minimizer of |(,,(a b)|+ ||§,,(a b)| over the
region {Ay < a < Ay, ||b]| < B}. Asymptotic properties of (&, 3,) are given in
the following.

THEOREM 2. Under the assumptions (4.1), (4.12)~(4.16), (4.19), (4.26) and
(4.32), suppose that (4.31) holds for some o € (Ag,A;). Assume furthermore that

/ "W - ) dF@40 and / "W — a)dF()£0
435)  Jn o

ifataand Ag <a <A;.
Suppose that the matrix C,, defined in (4.27) is nonsingular, and that there exists
e e (0, 2) such that

(4.36) lim m-<1/2+€>{ inf
m — 0o Ag<a<Ay, ||b||<B, |Ib-B||>m=*

lena, b>||} -

where {m(a,b) is defined in (4.22). Then |G, — o + ||ﬂ,, Bl = O(n=¢) a.s. and
Vi@, — o, BT — BT has a limiting normal distribution with mean 0 and
covariance matrix

1 (¢ 2 (va +85C31VC1%,) zp;lgEC;lVaCj)

(4.37) —
A V107V, Colg, c;v,c;t

where A is defined in (4.20), V,, is defined in (4.29) and
- / "W — o) dF ),
_ [ _ _ T1(s) (f'(s) f(s) dF(s)
8a = /To P(u a)d{(l F(u)) /To Fo(s)(f(s) 1—F(s)) 1 —F(s)}’

vy = / ’ / " (1 - F@) (1 - Fo)v/ — ad/ - )

uNv
X / —ﬂﬁdudv
n  Do(s)(1 - F(s))

The proof of Theorem 2 will be given in the Appendix. Although the influence
curve results in Section 3 suggest via standard heuristic arguments [cf. Hampel,

(4.38)
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Ronchetti, Rousseeuw and Stahel (1986), page 85] a representation of m(n )@,
- q, ﬂ ﬂT) as a sum of m(n) independent random variables plus a negligible
remainder, such representation is very difficult to establish rigorously, and our
proof of Theorem 2 uses more direct martingale representations and asymptotic
linearity arguments via empirical process theory.

44, Asymptotzc theory of M-estimators under independent (#?,c?,x?). The
(¢, ci,x; T) defined in the truncation—censorship model (2.12) are clearly not in-
dependent random vectors. We now consider the alternative setting in which
(t,c2,x¢T) are independent random vectors with ¢} >t} > —oo and are inde-
pendent of {€,} and in which 3? = (¢, + 8Tx2) Ac?, where o;=inf{n > 0;_1: e, >
£ — BT« ?},asin (2.12). Let ¢! = &,,. Then (t" cf,x? ,e*)are independent random
Vectors and

F(u) - F(#2(8))
T-F@6)

so Lemma 1(ii) is applicable. Replace ¢;(b) by #(b), c;(b) by c?(b) and (¢;, ¢;, x;) by
(#7,¢?,x7) in the assumptlons (4.12a), (4. 13)~(4 15) and (4. 26) Note that (4.12b)

i l )
is no longer relevant here since it is assumed that 2 > —oo. Moreover, replace

the assumptions (4.16) and (4.19) by
sup F®) <1 as,

n I
-1 {2 (B) <s<c2(B)}
Jm n ZE{ 1-F(#()

(4.39) P{ef <ul|t,cf,x0} = > 8B,

= T'o(s),

L (< s< e (B))
4.40 li -1 == =T
4400 lim n ,Zﬂ { 1-F(£(8) 18),

n 2% TT 0
. -1 % Hp@<s<aem@y | 1
nlln;o n Z_:E{ T—F(#0) } =Ty(s) fors < F~(1).

Replacing ¢;(b) by #(b), y,(b) by y2(b), (¢;,¥;) by (¢7,?) in the various quantities
defined in Lemma 2, note that in particular 7, = 22 ;,P{#? <3} = m and that
(4.23) and (4.24) with these modifications and with m(n) replaced by n still
hold in the present setting, again by modifying the proof of Lemma 2 of Lai
and Ying (1991c) that uses general tightness results for stochastic integrals of
empirical-type processes established in Lai and Ying (1988). Define 1, and 7 by
(4.19) and set A = 1. Then Theorems 1 and 2 with these modifications still hold
in the present setting of independent (¢7,c?,x?) with ¢? > #2 > —oo, as can be
shown by an obvious modification of their proofs given in the Appendix and by
applying Lemma 1 of Lai and Ying (1992a) together with (4.39).

5. Confidence regions and asymptotically efficient M-estimators of
B. Theorem 1 can be used to construct approximate (1 — a)-level confidence re-
gions for B by an extension of the ideas of Wei, Ying and Lin (1990). Since a
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is fixed in Theorem 1, we shall simply write B, instead of Bu(a) and &(B) in-
stead of &,(a, 3). In view of (4.16), (4.20) and (4.29), an obvious estimator of the
matrix AV, is

= -1 X% I S0 (A)< 50
Z ﬂn,y}’(ﬂn { Z {22 (Ba) < 52 (Bn) < 33 (Bw)}

~ ~ ~ T
z; (ﬂn,y;?wn))[ HENHES)

(5.1) e
nZ, (ﬂn,y})(ﬂn))

2
x { / [1-F, 5, (515380) |46 = @, 1B, 9101, 2B s)ds} ,
326)

which can be shown by arguments similar to those of Wei, Ying and Lin (1990)
to converge a.s. to AV, under the assumptions of Theorem 1. By Theorem 1(i),
n-1gT By 1Z,(8) has a limiting x2-distribution with p degrees of freedom.

Since V,, — AV, a.s., it then follows that
(5.2) {b: ]l < B, n T BV 1E0) < x2_ 4 )

is an approximate (1 — a)-level confidence region for 3, where x2 _ o, p denotes

the 100(1 — a)-percentile of the x2-distribution with p degrees of freedom.
Let A =f/(1 — F) be the hazard function of f. Then

XNof f
(5.3) X f+1 7

Assuming that f is twice continuously differentiable and that F(r) = i, we
obtain from (5.3) and integration by parts that

/uT [I—F(s|u)](%_’\) (s)cls--1 F( )/ (1-F(s))d (f;)

N
YO X

Hence, for the special case @ = 0 dnd ¥ = (N/)\) — X in (4.27) and (4.29),
C;V.Cl =, where

[ D@ITw) | [ XY@
(5.5) Ir = /To {rz(u)— o) }{ A(u)} dF(u).

(5.4)
u<rT.

Therefore, for the M-estimator J3, associated with the score function Y =
(A/A) — X (with a = 0), the covariance matrix of the limiting normal distri-
bution of \/n(8, — B) under suitable regularity conditions is A~1I " ! Moreover,
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as shown by Lai and Ying (1992a), A‘llf‘ lisan asymptotic lower bound for the
covariance matrices of regular estimators in the semiparametric problem of
estimating 3 when the density f of ¢; and the distributions of the independent
random vectors (¢, c;, x7) are unknown.

Since f is unknown, the optimal score function v = (\/ /A) — X is not avail-
able to form the asymptotically efficient M-estimator. We now extend the ideas
of Lai and Ying (1991b), on adaptive choice of score functions in constructing
asymptotically efficient rank estimators of 3, to M-estimators. Divide the sam-
ple into two disjoint subsets, the first of which is {#,%,62,%%): i <n/2}. From
the first subsample, define L,,, N,,,, Z* , and J* _ by (4.5), (4.7) and (4.8), in

ny,p niy,p
~

which 7 is replaced by n;. Also define F,, » by (2.18) with n replaced by n;. Let

z?)\,,, 2 be an estimate of (\'/)\) — X based on the second subsample of ng =n — ny
observations and define, in analogy with (4.9),

e®== [~ Fawaz;, 6.0

=—00

(5.6) _/uoo {/uoo (1—ﬁnl,b(v|u))

x 1}\;’2(b)pnh2(b,u)dv}dJ" (b,u).

ny,p

Likewise from the second subsample define

Einny(B) = — / D1 @) ZE, 1 (b, )

(5.7) - /oo {/uoo (l_i‘[n,nll,b(v | u))

x A,',,l(u)p[,,,,,l],z(b,u)dv}dJ;:,,,,ﬂ(b,u),

where 1/1», 1 represents an estimate of (\’/\) — A based on the first subsample and
we use the notation Ly, ,,|, fo»,nll’ J (n,n,) @0d so forth to denote (4.5), (4.7), (4.8)
and so forth, in which the sum ¥_; is replaced by X< n, +1 (ie., the summands
are only from the second subsample). Combining the two subsample statistics
(5.6) and (5.7) gives

(5.8) () = &,,(b) + Epy, 1 ().

From the jth subsample, starting with preliminary estimates b,,; such that
bn,j — B = Op(n™") for some 0 < r < 1, Lai and Ying (1991b) showed (i) how
to construct from the uncensored residuals ¥ - bf, ;%{ in the jth subsample a
smooth consistent estimate /A\,,, j of the hazard function X and (ii) how to smooth
X;, j /P, j to obtain a smooth consistent estimate of \’/\. Using these smooth

consistent estimates to define smooth consistent estimates Jn,z and zZ,,,l of
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(N/X\) — X for (5.6) and (5.7), it can be shown by a modification of the proof of
Theorem 1 in the Appendix and by the arguments of Lai and Ying [(1991D),
Theorem 2] that the adaptive M-estimator 3, defined as a minimizer of ¢} ()
in the sphere {b: ||b — (b, 1 + b,,2)/2|| < n™°} with 0 < € < r, is asymptotically
efficient in the sense that

(5.9) V(B — B) —¢ N(0,A7 1),
under (4.12)—(4.16), (4.19) and the additional assumption
(5.10) I; is nonsingular, F(7) = 1 and f(s) > 0 for 7y <s < 7.

The discussion in this section has been for the setting of independent random
vectors (¢, ¢;,x7) that are independent of {¢,}, as is assumed in Theorem 1. As
has been shown in Section 4.4, the conclusions of Theorem 1 can be extended
to the setting in which (t‘i’,c;?,x‘l?T) are independent random vectors that are
independent of {¢,} and such that ¢/ > # > —oo and (4.39) holds. Hence we
can also extend the above construction of confidence regions and adaptive M-
estimators of 8 to this setting.

APPENDIX

PROOF OF THEOREM 1(ii). The proof of (4.28) makes use of (4.24), (4.25) and
an analysis of {,(a,b) — &n(a, ) similar to the proof of Lemma 3(ii) of Lai and
Ying (1991c¢). To show the asymptotic normality of &(a, B), let Aw) = — log(1 —
F(u)) and M, (s) = ”‘(")I{t‘ B <e<shc(B} — f_ooZ (8,u)dA(u). Analogous to
the proof of Lemma 4 of Lai and Ying (1991c), we approximate p, ;j(3,u) by
Pm), B>w) (j =1,2), and use arguments similar to the proofs of Lemma 2 of
Lai and Ying ( 1992b) and Lemmas 5 and 6 of Lai and Ying (1991c) to show that
Enla, B) = €D + £@ +0,(v/n), where

m(n)

A;El) == Z xil_)m(n),l(ﬂa tl(ﬂ))

i=1

X { / (= ) [P (), 206, Wl s, () < u <518} ]

¥ /oo [/oo (1 _F(U'Iu))ﬁm(n),z(ﬂvv)ﬂ//(v - a)dv]

—00

(A.1)

X d[ - I{ti(ﬁ)Sci(ﬁ)Su, B <ert I{ti(ﬁ)gu/\&i(ﬂ)}] }a

A2 - / ’ I;:EZ;{ / ’ (1-F@|uw))ve-a) dv} dM, @),

An argument similar to the proof of Theorem 2(ii) of Lai and Ying (1991c) can be
used to show that n=1/2(¢(V+£®) has a limiting normal distribution with mean
0 and covariance matrix AV,. O
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PROOF OF THEOREM 2. From (4.25) and (4.36), it follows that 3, — B a.s.
Since so — Ag > Ty, it can be shown by an argument similar to the proof (4.4)
and (4.5) of Lai and Ying (1988) that

sup |f'n,b(u|so +A0) = Frumy, 5 (|50 +Ao)|
(A.3) I6ll <B, 7> u2s0+A0

=o(n~Y2*%) as,

sup Fo (w50 +A0) — Fo, (| 50 +Ao)
[b—Bll<n=7,7>u>so+4A,
B4 = Frun, 5 (w150 +Ao) + Frn(w, 5 (1| 50 +Ao)‘

=o(n~A*M/2+8) a5,

for every 6 > 0 and 0 < v < 1, where F},, (- |-) is defined in (4.21). Since E,, —f
a.s. and since

sup  |Fpp(u|so+Ao) —F(u|so+Ag)| 0 asm — coandb — g,
T>u>so+4Ag

we obtain from (A.3) that
sup |ﬁn,/§,. (ulso+Aqg) —F(u|so+Aq)| — 0 as.,

T>u>s9g+4Ap

and therefore, by (4.1),

sup
Ap<a<A

S1 +A1 ~
/ Y —a)dF, 5 (u]so+Ao)

0+Ao

(A.5) s1+A;
- / Y —a)dF(u|so+Ag)| — 0 as.

o0+Ag

Since fs?:‘,:: Y — a)dF(u|so +Ag) = {1 — F(sg +Ap)} ! f; Y — a)dF(u) for
a € [Ag,A;] by (4.32), it follows from (A.5) and (4.35) that &, — «a a.s. R

To simplify matters, multiply both sides of the estimating equation (n(a,b) =
0 by A(1—F(sg+Ay)), so that we shall work with ¢, = A(1 - F(sy +A))¢, instead
of ¢,. In view of (A.4) and (4.32), we can use an argument similar to the proof of
Lemma 3(ii) of Lai and Ying (1991c) to extend (4.28) to the following asymptotic

linearity property: With probability 1, for every § > 0,

n(@,8) = Gl B)\ NG YL
(A.6) &u(a,b) — &,(a, B) 0 —Co)\b-8

+o(vnVn|b—B||Vn|a—al)



M-ESTIMATORS FOR CENSORED AND TRUNCATED DATA 1253

uniformly in |a — a| +||b — || < n~°. We next show that

1 (G, p) Ve O
(A7) — - N{[0,A )
ﬁ(ﬁnm,m) ¢ ( (0 V))
From (4.1) and (4.31)—(4.33), it follows that
~ s1+A;
=13y, B) = /

¥ — a)d[Fa g (1] 50+ Ao) — F(u |50+ Ao)]
(A,S) 80+Ao

81+A ~
w1 (Bl A0 - Flalsn A9} v

0+4o

By Lai and Ying [(1991a), Theorem 5()] /n{F, (- |so + Ag) — F(:|so + Ag)}
converges weakly in D(sg + Ag, s1 +A;] to (1 — F(:|sg + Ap))W, where W(¢) is a
zero-mean Gaussian process with

t
Var(W(®) = 1 dF(s)

A so+Ap Po(s)(l — F(S))2

and with independent increments. From this and (A.8), it follows that
n" V2%, B) -y, N(O, {1 - F(so +Ao)}_2ua/A).

Defining £ and £ by (A.1) and (A.2) with a = q, it can be shown that
nE{¢PM, (1)}

t

S1 +A1
- —A Fl(s){/ (1—F(vls))z//(v—a)dv}dF(s),
So +A0 s

(A.9) ~
nlE{EPM, (1)}

t S1 +A1
—A Fl(s){ / (1-F@ls)) v - dv} dF(s).

So +Ao

Moreover, by Lai and Ying [(1991a), (4.17)],

ﬁn,g(u |So +A0) —F(ulso +A0)

(A.10) 1— ﬁ'n a(t—) dM,.(t)

= (1 - F(u ISO +A0)) /(so+Ao,u] 1 —F(tlso +A0)I{Z"(ﬂ’t)>o}zn(ﬂ’ )

From (A.8)~(A.10) and standard arguments involving Rebolledo’s central limit
theorem [cf. Gill (1980)], (A.7) follows, recalling that ¢, = A(1 — F(sg +A))¢n.




1254 T. L. LAI AND Z. YING

From (A.6) and (A.7), we obtain as in Theorem 1(iii) that |&@, — a| + |8, — Bl
= O(n=°) a.s. and that \/n(a, — a, 8T — 87)T has a limiting normal distribution
with mean 0 and covariance matrix

1 (vt —va'elcy! Vo 0
05 SR )

1 -3t 0 \|_
x [Z<_¢;IC;lga —C;lﬂ = (4.37),

o &L\ [-va' —yalglc;t 5
0 -C, 0 -C;1 '
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