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RECURSIVE TESTING OF MULTIPLE HYPOTHESES:
CONSISTENCY AND EFFICIENCY OF THE BAYES RULE!

By ANDREW L. RUKHIN

University of Maryland, Baltimore County

A version of the multiple hypotheses testing problem is studied in which
the decision procedure is based only on the current observation and the pre-
vious decision. Conditions for inconsistency and consistency of the stepwise
Bayes rule, which are related to the boundedness of the likelihood ratios, are
given. The (typically slow) rate of convergence of the error probabilities of
consistent procedures is determined, and a sharp lower bound for the Bayes
risk in terms of bounds on the likelihood ratios is derived. A modification of
the recursive Sakrison’s procedure for a continuous estimation problem is
obtained in this setting by embedding the discrete family of original proba-
bility distributions into an exponential family.

1. Introduction. Let Pq,...,P, be a finite family of different probabil-
ity distributions presenting alternative models for the distribution of each of
observations x1,%s, . ..,%,. Ifwy, ..., w,, are prior probabilities, then the perfor-
mance of a multiple hypotheses testing procedure 6, = 6,(x1,...,x;) under the
zero—one loss is measured by its Bayes risk X w;P;(6, # i). It is known that the
Bayes risk of the Bayes rule decreases exponentially fast as the sample size n
increases. Also the optimal rate of exponential decay of this quantity is indepen-
dent of positive prior probabilities and is determined by the information-type
divergence between probability distributions. This fact leads to a notion of an
asymptotically efficient multiple hypotheses testing procedure. Motivated by
this concept of asymptotic optimality, one may ask if this optimality is preserved
in the smaller class of following recursive procedures which are in general much
easier to calculate. When the multiple decision making (classification) problem
is being solved stepwise or recursively the allowable procedure 6, depends only
on the current observation x, and the previous value 6§, ;.

The recursive estimation problem for a continuous parameter is well studied.
See, for example, the monograph of Nevel’son and Hasminsky (1976), where the
relationship between this problem and the stochastic approximation method is
explored. One of the highlights of the corresponding theory is the construction
of a sequence of recursive estimators which is asymptotically fully efficient. The
first version of such a sequence was obtained by Sakrison (1965).

In the described setting with a discrete parameter our problem is related
to multiple hypotheses testing with finite memory [cf. Cover (1969), Hellman
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TESTING MULTIPLE HYPOTHESES 617

and Cover (1970), Cover, Freedman and Hellman (1976), Yakowitz (1974) and
Bucklew and Ney (1991)]. In most of these papers decision 6, is a stage-invariant
function of the current observation x, and the previous “state” §,_;, that is,
0n = f(6p—1,%n), where f itself does not depend on n. Also the mentioned authors
concentrate on the case m = 2. In our setting the number of possible states is the
number (m) of alternative probability models, but the decision at time n depends
on n. Thus we consider a finite time memory situation. When m = 2 this also
corresponds to the classical setting of the finite state memory problem, in which
case, as is shown by Cover, Freedman and Hellman (1976), the optimal recursive
rule at stage n differs from the decision at stage n — 1 only for extreme values
of the likelihood ratio dPy/dP;. If this ratio is bounded, there is no consistent
time-invariant recursive rule.

In this paper, in Sections 2 and 3 we prove similar results in our setup for the
recursive Bayes procedure, which is based on the joint distribution of procedure
derived at the previous stage and the current observation. This procedure turns
out to be consistent if the support of the distribution of a pair of the likelihood
ratios is unbounded, and in this case the (typically slow) rates of convergence
to zero of the Bayes risk are determined. When the pairwise likelihood ratios
are bounded, the procedure is inconsistent and we derive a sharp positive lower
bound for the risk of Bayes procedures. In Section 4, by discretizing the Sakrison
estimator constructed for the embedding of the original family of probability
distributions in the exponential family, an asymptotically efficient procedure
is obtained.

2. Consistency of recursive Bayes rules. Let p;,i = 1,...,m, be the
densities of distributions P; with respect to measure ; over a measurable space

X. The recursive Bayes rule 6, is defined by the current observation x, and the
previous decision 6,_; as follows:

ot {6 =i} = Uy {81 =0, winiGenPiB,1 =)
&b = max;, wppp@n)Px(8y—y =j)}.

Here the weights (prior probabilities) w; are assumed to be positive. It is often
convenient to let §; be the Bayes procedure based on the first observation x,

{81x1) =i} = {wipi(xl) = max wkpk(xl)}~

Also for the sake of simplicity we assume that, for any i # & and any real c,
(2.2) u({pi(x) = cm(x)}) =0.
Otherwise a tie, w;p;(,)P;(6,-1 = j) = Wy, P4 (%, )Py(8,_1 =), may have a positive

probability, and additional randomization is needed in (2.1) to define the value
of 6.
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It follows from (2.1) that

Py(6y =1)
(25 =" Pi{wipiCea)Pi(6,-1 =) = max wipGen)PiB,-1 =)}
J=1

X Py(8y_1 =J).

Thus the distribution of 3,, is determined by the distribution of 5 —1.

The main questions about the recursive Bayes procedure are its consistency
and, if this happens, the rate of convergence to zero of error probabilities.

To motivate the coming result, let us consider the simplest situation when
m =2, w; = wg = 0.5 and the recursive Bayes rule has equal error probabilities

Pl(gn =2)= P2(3',, =1) =Y.
According to (2.3) this happens if

pz(x) p1(x)
P( @) = ) Pz(p()‘z)

Let the distribution of likelihood ratio 4(x) = dPy(x)/dP;(x) under P; have the
distribution function F and under P; the distribution function H. Then we
demand that

1-F(z) = P,(¢X) > z) =Py (¢4(X) < 1/2) = H(1/z).
Thus if F has density f, assume that, for all 2,

2.4) / ~ dF ) = / " tdR).
z 0

Then in particular [;° ¢tdF(¢) = 1and H(z) = [; ¢tdF(¢)is a distribution function.
It is easy to check that if P is an absolutely continuous symmetric distribution
over the real line and P; and P; are the shifts of P by b and —b, then the formulas
above hold. Our assumptions imply that

y1=P1(6,=2)=P;(lx) > 1) =P (tx) < 1) =Py, = 1) < }

and because of (2.3), for any integer n,

yn=yn_1P1(e(x> z—y—":l—l)+<1 yu—1)P1<Z(x)> yy"-)

n~-1

=1-(1- 1-yn-1) _ _In-1 )
=1-01 yn_1)F< 5 ) yn—1F<1_y )—w(yn_l).

n-—-1 n-1

If the support of distribution F' is the whole positive half-line, then in the
interval (0, 0.5), ¥(y) < y and the function ¥(y) monotonically increases in this
interval. It is easy to show that our assumptions imply differentiability of 1 and

=1 (152)+(e25) (522 (5 ) e
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It follows from (2.4) that

(%5%)- <1i3y>3f<1{y>'

Therefore, for 0 <y < 0.5,

i =F(1=Y g
¢(y)-F( " ) F(l_y)zo.

V=gt (155) <0

so that v is a concave function. Thus the sequence y,, which can be viewed as
an approximation to the solution of fixed-point problem #(y) = y, converges to
the (unique) fixed point y = 0.

However, if the support of F is not the whole positive half-line (say, F has a
positive jump at some ¥ > 0), then if y; > ¥, sequence y,, converges to ¥ and 6,
is not consistent.

Thus the consistency property of the recursive Bayes rule is clearly related to
unboundedness of the support of the likelihood ratios. We formalize it as follows.

Moreover,

AssumpTION 1. There is a pair r,q,1 < r # ¢ < m, such that, for any
positive ¢,

P, (pq(x)/pr(x) > £) > 0.
THEOREM 2.1. Under Assumption 1the recursive Bayes rule g,, is consistent.

II, denote the matrix formed by elements m; =

Proor. Let IT =
< i, B < m. Define the matrix-valued mapping ¥ = ¥(I]) by

wpPr(6, = 0), 1
the formula

[‘I’(H) Z TP (P;(x)vru = max pz(x)ﬂ'b)

Because of (2.3)
Hn = \I’(Hn_l).

Any convergent subsequence [I, must converge to a fixed point ITo = (75,) of ¥,
that is,

(2.5) Y(IIp) = Iy
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Notice that ITp = I solves (2.5), and Assumption 1 implies that this is the unique
solution of (2.5). Indeed, assuming that 73 > 0 for some i # k, one obtains the

following from the proof of Lemma A.1 in the Appendix:
Z wkﬂ,?k = Z wk7r,?j P, (wkngpk(x) = mlax wﬂr?jpi(x))

> ; max wim) P; (wkw,?jpk(x) = max wﬂrg-pz(x))
sJ

> maxz w;;,7r3z > Z wkw,?k.
Y |k
Therefore 7r,?j =0fork #jand I, — I, that is, 3,, is consistent. O

Even if Assumption 1 holds and the recursive Bayes rule is consistent, the
convergence rate of error probabilities is rather slow. Indeed, returning to the
example before Theorem 2.1 we see that, under Assumption 1, 4/(0) = 1 and,
asn — oo,

"p(yn—l) = Yn
Yn—-1 Yn-1

Thus convergence of sequence y, = 1(y,_1) to the fixed point y = 0 is slow.
In particular this convergence, which can be arbitrarily slow, cannot be of an
exponential rate.

Let v, be any concave sequence of positive reals which converges to zero
and for which sequence (v, +1 — v,)/(vy — v, _ 1) decreases and tends to 1. Then
the function 4 linearly connecting points (v,,v,.1), n = 1,2,..., satisfies all
conditions above so that the corresponding sequence y, = v, indeed can tend to
zero arbitrarily slowly.

The following rates for error probabilities can be derived via Lemma A.2 in
the Appendix:

1 IfY(y) =y —ay?*! + e(y), where p > 0, e(y)y~?+D — 0, then under mild
additional assumptions about £(y) one has

— 1.

Yn ~ [apn]~1/P

[see De Bruijn (1958), Section 8.5, for p = 1].
2. If Y(y) =y — ayP*!/ |log |y| |2 +e(y), then

a 1/p
" [a—gan] '
Function v of this kind occurs when P has a density of the form
Bexp{—a cosh(Bu)}
2Ko(a) ’

where 2K (o), the so-called MacDonald function, represents the normalizing
factor [cf. Rukhin (1978)].

pu) =
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3. If y(y) =y — a exp{—c|log y|?}y%|log y| ¢, p > 1, then

v, @ = D[log n/c] @-p)/p loglogn
cp (logn)e-v/p J*

logy, =—[log n/c]

This function ¢ with p = 2,q = 2,c¢ = 0%/(8b%) and d = } corresponds to a
normal distribution P with mean zero and variance ¢ [cf. Rukhin and Shi
(1992)] or, more generally, a density proportional to exp{—c|u|?/®-1}.

Indeed the heuristic meaning of Lemma A.2 is that, for the purpose of the
asymptotics of sequence y,, difference equationy, = ¥(y, —1) =¥n -1 — @(¥n-1)
can be replaced by differential equationy’ = —p(y), where y is treated as a func-
tion of large continuous argument x (replacing discrete n). If 1/ is an integrable
function, the needed solution of this differential equation has the form

[

Ty e
If o(y) = yP*1, y(x) = (px)~1/P and this corresponds to item 1. When ¢(y) =
yP*[log|y|179, thenx ~ p~ly~P[log|y|I~? so thaty ~ p?~1(log x)~9/Px~1/P, which

leads to the formula in item 2.
At last, if p(y) = exp{—c|log y|?}y%|log y|~9, then

Y (d-D]l @/
log y(x) ~ — [logg] " )| ofpx/c]

)

which demonstrates the formula given in item 3.

3. Inconsistent recursive Bayes rules. In this section we consider the
situation when the underlying distributions have pairwise bounded likelihood
ratios so that the recursive Bayes rule is inconsistent.

AssuMPTION 2. Let py,..., pm be probability densities over (X, ) whose
ratios are bounded:
b < PO 1

-— ~-a.s.
M=) = by M

We assume that b;; are the largest numbers for which these inequalities
are true. Then, by comparing the two bounds for p;(x)/pj(x) = (pi(x)/ps(x))/
(pr(x) /pj(x)), one obtains for & #1i, j

3.1 bkj > bkibij~

Further, B will denote the matrix (b;3), w = (w1, . .., wn)T will denote the vector
of prior probabilities and (z,w) = Y2z w; denotes the inner product of two
vectors z and w. Also, the notation z > 0 means that all coordinates of the
vector z are nonnegative, and e = (1,...,1)T.
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Because of Lemma A.3 in the Appendix, the matrix B (as well as B7) is
nonsingular and there exists a vector w,w > 0, such that B~1w > 0.

THEOREM 3.1. Under Assumption 2, if
(3.2) BT) w0,
then, for any n,

(3.3) pn =Y wiPy(8, = k) < (B7'e,w).
k

PROOF. One has with R; = {x: 6,(x) =i},i=1,...,m,

Pn = Z Riﬁdu’

where f;(x) = w; p;(x). Therefore conditions of Lemmas A.3 and A.4 in the Ap-
pendix are met with a;; = b;w;/w;. Also, the determinants of matrices A and B
are equal |A| = |B|, and if A; is the k&, i cofactor of matrix A and B, is the same
cofactor of B, then Ay; = By;w;/w;,. Thus the inverse matrix A~! has the form

A-lo <Ak;) _ (Bkl wz)
Al |B| wy
and condition (A.7) is tantamount to (3.2).
Thus Lemma A.4 implies that

pn < (A7 w,e) = le)llgk’—<BT)—we> m]

Theorem 3.1 is false without condition (3.2). Indeed, by letting w tend to a
basis vector e, one obtains p, — 1 since 6 — k. However, ((BT)‘ ep,e) < 1.
If m = 2, then according to Theorem 3.1,

wi(1 —byg) + wa(1 — byy)
3.4 n <
(3.4) P | 1 —bi2bg;

provided that
w1 > bgwg > bigboiw;.

Also if wy < bajwz, pn < we; and p, < wy if we < bipwi. For instance, if

_ _1
wip=wsz =3,

p 1 b1z — by
"= 2(1 b12b21)
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As an example let P; be two Bernoulli distributions with probabilities
pi,i=1,2. Then

D2 1-py
by =22 by, =
21 P1 12 1_p2

and (3.4) reduces to an equality which shows that the bound (3.3) is sharp.
The next result gives an upper bound for p, for a given value of p,,_;.

THEOREM 3.2. Assume that, for a fixed n,

(3.5) Pn_1>1— mkin wp,.
Then
wibjp(1 —by) (1 — pp_1)byi(1 — bjp)
) < _ Wb, d) L2
©8 =08 [1 1 - bpby 1 bjpby;

Also, always

. <1l- ie
(3 7) Pn S 1 I}el;aé.;{ wkka

Proor. Let

Vi = ) (gn—l '—"j)’
2z = Py (ll)kykjpk(x) = max wlylipl(x))’

so that 0 < y; < 1, 0 < 23 < 1 and, for any j,

(3.8) Y =1
k
Then
3.9 Pn-1= Y WrYkk
k
and

pn = Z wryrizyj = tr(WYZT),

Jik

where W is the diagonal matrix with elements (wg), Z = (z3;) and Y = (y)).
Thus the problem of maximization of p, for a given value of p,_; is a problem
of quadratic programming in matrix variables under the additional restraint
BZ < E, where E denotes the matrix with all entries equal to 1. It is clear that
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for a fixed Z the search for the extremum in this problem can be restricted to
values of Y which are extreme points of the convex set defined by (3.8) and (3.9).

Denote r =1 — p,_;. Because of condition (3.5) it suffices to look at matrices
Y such that, for some &,

WiYkk = Pr—1— Y Wi =pp_1— L+wp =wy —r
Ul #k

and y; = 1 fori # k. Thus

or S [Z WiYiiZii + We Zykaki]
i J#k
< max w;zii + Wy — r)zg, +w 2 kj
s mé igk i2ii + (wp kk k;ykj kj

= max max Zwizﬁ+wk—r+rzkj
k  Jij#k oyt

i »J

The maximization problem of a linear function wjz;; + rz;; under constraint
bijzjj + bipzpj < 1, i = 1,...,m, is a problem of linear programming. Because of
(3.1) all restraints corresponding to the values of i # j, k are corollaries of the
two inequalities for i =j and i = k. Therefore (3.3) implies

w~(1—b~k)+r(1—bk-)]
< max w; —r+max|wj, r, — z 1,
P = [g : [’ 1 bby

which easily reduces to (3.6).

Inequality (3.7) follows from (3.6) if p,_; in the right-hand side of (3.6) is
replaced by p, (which is larger because of Lemma A.1). Since max tr(WYZT)
under conditions (3.8), (3.9) and BZ < E is a nondecreasing function of p,_1,
one can assume (3.5) to be valid when proving (3.7). O

It is easy to see that if, for example, n = 2 and p; = (B~le, w), then condition
(3.5) of Theorem 3.2 is met if, for any j,

Z brjwy > wj.
k:k £j

Because of (2.1), 5,_; = 6, with probability 1 if, for all ,

w;ypi(x) = max WY kiDr(x)
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and

w;yypi(k) < max Wiy kiPr(X),

which holds if and only if matrix Y = (y,; = P (5, =) belongs to the set

(3.10) y{Y: min OB 5 1 in may OHOR 5 g o m}.
k WrYki i kkF WiYij
It is easy to see that if Y is in Y, then gp = 6y for any p larger than n. In other
words no new data can make one change the previous decision.
On the other hand if Y does not belong to Y, then the proof of Lemma A.1
shows that p,_; < p,. If in addition

(3.11) (BT) 'w; > 0,

where w; = (wyyy, . .. ,wmymj)T,j =1,...,m, then because of Theorem 3.1
pn < Z (B~ 'e,w;) = (B~le,w).
J

Thus p, can exceed the bound of Theorem 3.1 only if (3.11) does not hold for
some j, in which case (3.7) provides a sharp upper bound for p,.

When m = 2 set (3.10), which can be identified as a subset of the unit square
{0 < y11,y22 < 1}, has the form

Y = {brow1y11 > wa(l — y22), bariwayge > w11 —y11)}.

We illustrate this by returning to the binomial example. Assume that
p2 <p1. If by < w;/wg < 1/by3, then

~ 1, x=1,

51(.%') = {2, X = 0,
so that y11(1) = p1 = 1 — g1 and y22(2) = 1 — p2 = ga. If w1g1p1 < waqaps, then
bo(x1,%9) = 1iff x; = x5 = 1 and y11(2) = p2, y22(2) = 1 — p?. Induction shows
that if

(3.12) w1g1pT < waqapy,

then y11(n) = p} and y2o(n) = 1 — p}. Matrix Y reaches set Y at the first moment
(3.12) fails.

The typical behavior of the sequence (y11(n), y2o(n)) for wy = we = 0.5 is
exhibited in Figures 1 and 2. Set Y corresponds to the right triangular region,
and the evolution of sequence (y11(n),y22(n)) is such that it moves east increas-
ing value y11(n) + y22(n) until it reaches set Y, where it stops. The degree of its
penetration in this set cannot exceed bound (3.7) of Theorem 3.2.
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FIG. 1. Graph of the probabilities of the correct decision for the recursive Bayes procedure for binomial
distributions (p; = 0.1, pg = 0.01).
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FI1G.2. Graph ofthe probabilities of the correct decision for the recursive Bayes procedure for binomial
distributions (p; = 0.35, pg = 0.05).
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A somewhat different situation occurs, for instance, when P; and P, are
exponential distributions with parameters \; and )y, that is, fori =1, 2,

pi(x) = ) exp(=N\x), x>0.

If \; < Ag, b1z = A1/)g, b1 = 0 and set Y coincides with segment y; = 1;
1 — (\w1)/(Oew3) < y93 < 1. One can show that

Ay
Agwg

yum) =1,  yen)—1-

4. Embedding in an exponential family. In view of results of the pre-
vious sections one might seek modifications of the recursive procedure which
are asymptotically efficient. Here such a procedure is suggested. The main
idea, which goes back to Wald, is to replace the discrete family of distributions
(P1,...,Py) by a continuous one.

Namely, introduce the exponential family with density

p(x,0) = exp { (6, t@®) — x(0)},
where
t(x) = (logp1(x),...,logpm(®)),

and the parameter § varies in the natural parameter space containing unit
basis vectors e;, i = 1,...,m. We assume that this is a minimal exponential
family. Clearly

plx,e;) = p;(x).
Let
“4.1) & =Vx(0) = Egt(X),

which is known to be a one-to-one mapping from the natural space. Thus by
setting 0 = 6(£) we employ the mean value parameterization of this exponential
family with densities

fx, &) = p(x,(x,000)).

To estimate a continuous vector parameter £, Sakrison (1965) suggested the
following recursive procedure:

On = 6p(xn,6p—1) = 81 "'I_l(‘sn—l)v log f(xn, 6n—1)/n, n=12...,
With some fixed value §y. Here
I©) = E¢V log X, )V logf (X, £)

is the Fisher information matrix, which is supposed to be nonsingular.
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Sakrison’s procedure can be interpreted as a sequence of successive approx-
imations of the Newton type to the solution of the likelihood equation. From
this point of view it is just a modification of a stochastic approximation proce-
dure which seeks the likelihood equation solution. Remarkably Sakrison’s rule
possesses all asymptotic optimality properties of the best nonrecursive rules:
it is consistent and its asymptotic distribution is normal with the covariance
matrix equal to I-1(¢).

Under our parameterization

Vlogf(x,&) = DO[tx) — ¢],

with D6 denoting the nonsingular matrix of partial derivatives of the function
0 = 6(¢£). Because of (4.1) this matrix coincides with the inverse of the Hessian
Dy x of vector function x. Since

E¢ [t00) - €)[t00) — €] = Dax1™,
one obtains
I(¢) = DO[Dy X1~ [D6]" = D6
so that
(4.2) bn = bn—1 + [t@n) — 6u—1] /n.

Thus in our situation if 6y = 0, procedure 6, coincides with maximum like-
lihood estimator $¢(x;)/n, which is known to be consistent and asymptotically
efficient.

We show that the discretized version of 6, leads to asymptotically efficient
classification procedure §; in our setting:

.1 . .1 .
nl-l-{%o - longiPi (65 #1) = nllngo - logm?x P;(6; #1)
(4.3) i
= i .1_3 H = Q.
-, Jnf, maxlog | "R dute) =

Indeed the lower limit of the maximum of error probabilities logarithms is
bounded from below by a according to a classical result of Rényi (1969) [see
also Krafft and Puri (1974)]. Thus (4.3) can be taken as the definition of the
asymptotic efficiency.

THEOREM 4.1. Let

6 = argminK(Ps, , P;),
1

where &, is defined by (4.2). Then 6}, is an asymptotically optimal classification
procedure in the sense that (4.3) holds.
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PrOOF. One has, for a fixed i,

Pi(6; # i) = P;(K(Ps,,P;) > K(Ps,,P}) for some k # i)

< 3 Pi(K(Ps,, P;) > K(Ps,, Py)).
k:k #£i

Therefore
.1 . .1
n1—1—>néo - logP;(6; #1) < fax nlingo - log P;(K(Ps,, P;) > K(Ps,, Py)).

For fixed i and j,i #jlet E = {Q:K(Q,P;) > K(Q,P;)} be the closed convex set
of all probability measures @ which are “closer” in terms of Kullback-Leibler
divergence to P; than to P;. Obviously P; does not belong to =; denote by P} its
projection onto =. This measure is defined uniquely by the property of minimiz-
ing the information number K(Q, P;) for all @ from = [see Csiszar (1984)]. Also

K(P},P;) < K(Q,P;) for all Q from .
Therefore

P,(K(Ps,,P,) > K(Ps,,Py)) < P,(K(Ps,,P;) > K(P},P))).

Because of the theorem for the probabilities of large deviations due to Efron
and Truax (1968), one has

1
; IOgPi(K(P:S,,aPi) > K(P:7 Pl))
— —K(P},P)=— Q:glgnK(Q,Pi)

= inflog / pil"s(x)p?e(x)d,u(x)= a.
s>0 X

The last formula follows from Bahadur [(1971), Theorem 4.2]. Now it is imme-
diate that

.1 .
nlingo - logP;(6; #i) <
and & is asymptotically efficient as in (4.3). O

APPENDIX

In this section we establish four lemmas needed in Sections 2 and 3.

LEMMA A.1. Let §, be the recursive Bayes procedure defined by (2.1), and set
oni = S Wi Pi(6, = k). Then, for any n > 2,

(A1) Pn 2 Pn-1.
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Under Assumption 1 the inequality in (A.1) is strict.
Proor. For any positive sy,...,8m,

Py (skpa(x) = maxs;p;(x))

= Py(Ry) = / Pr@) dpu(x)
(A.2) R

> maxs;s;, 1pi(x) dplx)
R, P

> maxs;s; 'Pi(Ry).
13

Under Assumption 1 inequality (A.2) is strict for £ = ¢q. Indeed, because of
this assumption and (2.2),

Py(Ry) > maxs;s; 'Pi(Ry) > s;s; 'Pr(Rg) > 0.
Also, (2.1) and (A.2) imply, with s;; = w;P;(6,_1 =),
Pn = ZPk (Skjpk(x) = mlaxsijpi(x))skj
J#k

+ ) Py(sipy(@) = maxsypi(x)s;
7

=Y s+ [Pk (siPx(x) = maxs;p(x)) sy
PP

— Pj(skjpk(x) = mlaxsup,(x))sﬂ]

> Zsjj = Pn-1-
J

The same argument shows that (A.1) is implied by (A.2) without Assump-
tion 1. O

The next result deals with the rate of convergence of error probabilities in a
symmetric situation.

LeEMMA A.2. Let v(y) be a function such that o(y) =y —(y) is an increasing

positive differentiable function on interval (0,y1). If yp.1 = ¥(yn),n=1,...,and
the sequence v,, is defined by the recurrent formula

Undt
_=]_’ n=1,2,...;v =Y1,
/,,Mlcp(t) 1=)1

then, for all n,y, < v,.
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If function 1 is concave and increasing and the sequence u, is defined by
the formula

Uni+1 = Un?'(Un) + Vp i1 — (V) n=12,..;u1=0,
then y, > v, — u,.
PrOOF. According to the mean value theorem for some 7,v, ;1 <7 < vy,

l_vn_vn+1 Un —Un+1
@ T o)

)

so that ¥(v,) = v, — ¥(vs) < Uy 1. In particular, yp = ¥(y1) = Y(v1) < v.
Now if y, < v, for some n, then

Yn+1=P(yn) < PWn) < vy 41
To prove the second statement of Lemma A.2, assume that
Yn 2 Up — Uy,
so that
Yn+1=9P(Yn) 2 Y(Vn — up).
Because of the concavity of 1 the inequality
(A.3) P(n) = Un'Un) 2 Vpe1 — Uns1

will prove Lemma A.2 by induction; but (A.3) holds by the definition of ,. O

Now let (X, 1) be a measurable space. In the following, f1, . . ., fi» are positive
u-integrable functions such that, for any i # 2 and any positive c,

(A.4) w{f; #cfx} > 0.
Suppose that all the ratios f;/f; are bounded, that is,

fix) 1
A5 ay < < =
Moreover, assume that a;, are the largest quantities satisfying (A.5), and let A
be the m x m matrix formed by these numbers, A = (a;z).

p-a.s.

LEMMA A.3. Under condition (A.4) matrix A is nonsingular.

Proor. It follows from (A.5) that, for all i, 2, a;zaz; < 1 and (A.4) implies
that, for i # k,a;zar; < 1=a;;au:.
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Let agg) = a;, and define recursively
a(n—l)
(A.6) P =gfV o

i

We assume here a1 # 0. Positivity of these and all other coefficients is
implied by the following inequality, which can be proven by induction: for & #

iJ,

n) () (n) (n)

The Gauss elimination algorithm shows that because of (A.6) matrix A is non-
singular. Actually it also shows that all principal minors of A are positive. O

One can prove that A~! is an M-matrix [see Bellman (1970), Chapter 16,
Example 13], that is, its off-diagonal elements are negative, or for a positive
vector w, (AT)~1w > 0.

LEMMA A.4. Under conditions of Lemma A.3 let R,k = 1,...,m, be a par-
tition of X. Set w = ([ f1dp, ..., [ fn dw)T and assume that

(A7) (A7) "e > 0.
Then

Z/R fodn < (A=, e).
5 R

ProOOF. One has

1
= | faidu<— [ fidp,
Ry Qik JR,

so that
Zaikzk < Z/ fidp = w;.
k VB

In other terms,
(A.8) Az <w, z2>0

and the determination of the maximum of linear function ¥;2; = (z,e) over the
convex set determined by (A.8) presents a classical problem of linear program-
ming.

Condition (A.7) guarantees that inequality

(z,e) < (A7lw, e)
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is a corollary of (A.8), and this proves Lemma A.4, which also follows from the
duality theorem. O
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