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AN EXACT DECOMPOSITION THEOREM AND A UNIFIED VIEW OF
SOME RELATED DISTRIBUTIONS FOR A CLASS OF EXPONENTIAL
TRANSFORMATION MODELS ON SYMMETRIC CONES!

BY HELENE MASSAM
York University

A class of exponential transformation models is defined on symmetric
cones {) with the group of automorphisms on {2 as the acting group. We
show that these models are reproductive and the exponent of their joint
distribution for a given sample of size ¢ can be split into ¢ independent
components, introducing one sample point at a time. The automorphism
group can be factorized into the group of positive dilation and another
group. Accordingly, the symmetric cone €2 can be seen as the direct product
of R* and a unit orbit, and every x in ) can be identified by its orbital
decomposition. We derive the distributions of the independent components
of the exponent, of the “length” of x, the “direction” of x, the conditional
distribution of the direction given the length and other distributions for a
given sample. The Wishart distribution and the hyperboloid distribution
are two special cases in the class we define.

We also give a unified view of several distributions which are usually
treated separately.

1. Introduction. Reproductive exponential models with density of the
form b(x) exp (fu(x) + ¢x +loga(d, ¢)), where x and ¢ are in R* and where 6
and u(x) have common dimensions k;, has been studied in Barndorff-Nielsen
and Blaesild (1983a, b). It is shown there that these densities with respect to
the Lebesgue measure have in fact the form

(1.1)  f(x,0,m) = b(x) exp {B(u(x) — (W' (m),x —m) —u(m)) —N(G)},

where (x,y) denotes the appropriate inner product of x and y in the given
space, m is the mean of x and 8(u(x) - - - — u(m)) denotes the inner product in
the Euclidean %;-dimensional space.

Recently, in Massam (1989b), it has been proved that for these distribu-
tions, the quantity X7, {u(x;) — (u'(m),x; — m) — u(m)} in the exponent of the
joint distribution f(x,, ...,x4,0,m) of the sample (x1, ...,x,) can be split into
q independent components,

S Ri=q(u(x;) — (u'(m),%q — m) — u(m))
Ri=u(x;) + (i — Du(®x_1) —iu(®), i=2...,q,
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370 H. MASSAM

where %; = i~1(x; + - - - + x;). Each one of the R;,i = 2, ...,q incorporates one
more sample point at a time. This result was known before for only the three
one-dimensional reproductive distributions, the normal, the gamma and the
inverse Gaussian. In Massam (1989b), two more examples are given, the
Wishart distribution and an exponential model on the Lorentz cone

A,,={x=(xl,...,x,,)eR"|x1>0,x§—x§—-~~~—x,2,>0},

denoted the L-distribution.

The first purpose of this paper is to define a family of reproductive exponen-
tial transformation models on symmetric cones 2 and show that they are of
the form (1.1) and therefore have the splitting property (S), that is, the expo-
nent in the joint probability density function for a sample of size g splits into
q independent components. The first component involves only the average of
the g points while each one of the remaining ¢ — 1 components incorporates
one more sample point at a time. There are only five irreducible symmetric
cones and therefore only five families of distributions as we define them. These
families are not new; they are the Wishart distribution on R,C,H and O (the
space of real numbers, complex numbers, quaternions and Cayley numbers,
respectively) and an exponential model on the Lorentz cone, studied in some
detail in Letac (1994). These distributions also appear in Jensen (1988) as the
distributions of the maximum likelihood estimate of the covariance matrix
when the hypothesis is linear in the covariance and the inverse covariance.

The distribution of the quantities R; will lead us to define the generalized
beta and Dirichlet distributions on symmetric cones while the structure of the
group of automorphisms on 2 will allow us to define a maximal invariant and
corresponding orbits and to derive the corresponding distributions. When Q
is the Lorentz cone, the distribution of the direction conditional on the orbit
will give the hyperboloid distribution [see Jensen (1981) for a study of this
distribution]. When {2 is the cone of positive definite matrices, we obtain the
distribution of a point in the cone given its determinant.

The second purpose of the paper is to give a unified view of the five distri-
butions on symmetric cones and their related distributions such as the gen-
eralized Dirichlet for Q and the distributions on the unit orbits defined by
decomposition of the group of automorphisms on 2. This is done with the ul-
terior goal of finding out whether some properties of the distributions on the
cone can be transmitted to the conditional distributions on the unit orbit. The
splitting property (S) is one of these properties.

In Massam (1989a) a splitting property similar to (S) was given for the
non-reproductive three-dimensional hyperboloid distribution, which is a dis-
tribution derived from (1.1) by conditioning on the unit orbit, in a very special
case. In Casalis and Massam (1994), we prove that we do have, in general, a
property similiar to (S) when we condition on the unit orbit, but with condi-
tional independence only.

To define the class of distributions on symmetric cones, we need to give a
summary of the mathematical properties of these cones. This is done in Sec-
tion 2; the material is taken from Faraut (1988). In Section 3, we define the
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distributions and show they are of the form (1.1) and therefore have the split-
ting property (S). In Section 4, using the theory of exponential transformation
models, we derive the generalized Dirichlet distribution and the distribution
obtained by conditioning on a maximal invariant statistic, and we derive other
distributions related to a sample from the conditional distribution given the
maximal invariant.

2. Symmetric cones and their properties. We give here, without proof,
the results and properties needed to define a class of exponential distribu-
tions on symmetric cones and to derive other related distributions. All results
are taken from Faraut (1988), where proofs and detailed explanations can
be found.

2.1. Symmetric cones and their automorphism group. Let E be a finite-
dimensional real Euclidean space and let (x | y) denote the inner product of x
and y. Let  be an open convex cone, its dual Q* is defined by

2" ={yeE|(x|y)>0,vxeR-{0}},

where Q denotes the closure of Q.

An open convex cone (2 is self-dual if Q = Q*. The automorphism group
is G(Q) = {g € GL(E) | g02 = Q}. The open cone (2 is said to be homogeneous if
G(Q) acts transitively, that is, if, for all x and y in Q, there exists g € G(f2)
such that gx = y. An open cone Q is symmetric if it is homogeneous and
self-dual. Let G be the connected component of the group G(2) containing
the identity idg; G acts transitively on 2. Two examples of symmetric cones
are the cone II,, of positive definite m x m matrices and the Lorentz cone
Ap={x=(x1,...,%2) | 21 > 0,22 —xZ — - .- —x2 > 0}. In Section 3, we define on
II,, and A,, respectively, the Wishart and the L-distribution. The group G on
II,, is

G={po(g),g € GL(m,R) | p(g)x = gxg'}.
The group G on A, is G = R* x S0'(1,n — 1), where
SO'(1,n—1)={A € GL(R") |det A=1,Ay > 0,Al; , 1A’ =11 ,_1}

and I; ,—; is the diagonal matrix with first element 1 and other diagonal
elements equal to —1. The characteristic function ¢ of ) is defined on Q as

p(x) = / e *1dy,
Qn

where dy is the Lebesgue measure in E. One can prove that ¢(x) is well defined
and that, for all g in G,

o(gx) =|det g | ! p(x).

Two important consequences of this are as follows:
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1. p(Ax) = A""p(x), that is, ¢(x) is homogeneous of degree —n, where n is the
dimension of E.

2. p(x)dx is an invariant measure under G; this is the invariant measure
with respect to which we will define the distribution on Q [see (2.12) for
the expression of ¢(x)].

2.2. Jordan algebras and Euclidean Jordan algebras. Let F be the field R
or C. An algebra V over F is said to be a Jordan algebra if, for allx and y in V,
the product xoy of x and y satisfies xoy =yox and x o (x2 o y) = x2 0 (x0y). The
space of symmetric m x m matrices with product xoy = %(xy +yx) is a Jordan
algebra and so is R* with the product

(2 1) (xl’xz’ ~'~’xn)°(y1,y2, ~",yn)
= (X1y1 + %22+ + X Yn, 21(y2, - ¥n) +y1(%2, ., 20)).

We assume that V has an identity element e such that, for all x in V, x =
xoe =eox. Let C(X) be the algebra over C of polynomials in one variable with
complex coefficients. For an element x in V, define C(x) = {p(x), p € CX)}.
The subalgebra C(x) generated by x and the identity element e is equal to
C(X)/I(x), where I(x) = {p € C(X), p(x) = 0} is an ideal generated by a poly-
nomial called the minimal polynomial of x. A complex number ) is an eigen-
value of x in V if there exists v in C(x), nonzero, such that xv = \v. Then v
is called an eigenvector of x. The rank of V is r = max {m(x) | x € V}, where
m(x) = inf{k | (e,x, ...,x*) are linearly dependent}. An element is said to be
regular if m(x) = r. The set of regular elements is open and dense in the alge-
bra V. For regular elements x in V, the minimal polynomial can be written as

fX,x) =X —a1(x)X" ' +az(x)X" 2+ + (-1)a,(x).

An element ) of C is an eigenvalue of x if and only if X = ) is a root of f.
The a;’s are unique and homogeneous of degree j. We will use two of these a;’s:

1. ay(x) is called the trace of x and is homogeneous of degree 1.
2. a,(x) is called the determinant of x and is homogeneous of degree r.

An element x is invertible iff detx # 0. When it exists, the inverse of x is
denoted by x~! and is such that x cx~! =x~! ox = e. For the algebra of sym-
metric m x m matrices with the product given above, the trace, determinant
and inverse are defined as usual. For the Jordan algebra R* with the product
x oy given above,

1_ (xl’—x2’ ---,—xn) .
@ =-s)

trx=2c,detx=x%—xZ—---—x2 and x~

We can define two maps on V: forx and y in V.

L(x)y=xy and P(x)=2L(x)%-L(x?).
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We will not use these maps explicitly except in formal calculation. It will help
to remember that, for the algebra of symmetric m x m matrices,

P(x)y =xyx and, in general, P(x)e==x2.
We will use the following properties:

(2.2) The differential of the map x — logdet x is x~1.
(2.3)  The differential of the map x —x~!is —P(x)~1 = —P(x71).
(2.4) det (P(y)x) = (det y)? det x.

The proof of (2.2) and (2.3) due to Faraut can be found in Casalis (1990). A
Jordan algebra V is Euclidean if there exists an inner product (z | v), defined
by a positive definite associative bilinear form on V, such that for all x,%,v in
V,(L(x)u | v) = (u | L(x)v). From now on, we will take (x | v) = tr(uv).

The isotropy group is the subgroup K = {g € Glge = e} of G. The subgroup
K is equal to G N O(E), where O(E) denotes the orthogonal group of E and
plays a crucial role in the polar decomposition of G given in subsection 2.4.

2.3. The Pierce decomposition of a Jordan algebra V. An elementcin V is
said to be idempotent if ¢2 = c. The only possible eigenvalues of an indempotent
care 0, ; and 1, and the corresponding eigenspaces are denoted V(c,0), V(c, 1),
and V(c, 1). The decomposition

V=V(0eV(e, %) ®V(c,1)

is called the Pierce decomposition of V with respect to c; V is the direct sum
of the three eigenspaces of ¢. In the Jordan algebra of m x m real symmetric
matrices, an idempotent is an orthogonal projection. In R* with product (2.1)

the only idempotents are e = (1,0, ...,0) and c = (%,xz, ... ,x,,), where 22 +

x2 +---+x% = 1. One can show that tr(c) = rank V(c, 1). If rank V(c,1) = 1,
¢ is said to be primitive idempotent. Two idempotents @ and b are said to
be orthogonal if ab = 0. A system (e, ...,e,) of orthogonal idempotents is
complete ife; + - -- +e,, =e. A Jordan algebra V is said to be simple if it does
not contain any nontrivial ideal and this is so if and only if V(c,1) # {0},
for any nontrivial idempotent c. In a simple algebra, we have the following
fundamental properties:

1. Two complete systems of orthogonal primitive idempotents have the same
number r of elements. This number r is equal to the rank of V.

2. If{ey, ...,e;} and {f1, ...,f;} are two systems of orthogonal primitive idem-
potents, there exists an automorphism A such that Ae; =f;,i=1, ...,r. [Re-
call that an automorphism in a Jordan algebra satisfies A(x o y) = A(x)oA(y).]

3. If (a,b) and (c,d) are two couples of orthogonal primitive idempotents,

dim V(a, %) n V(b, %) = dim V(c, %) n V(d, %)



374 H. MASSAM

This fixed dimension is denoted d.

4. V = @®;<xVjs, where Vi = V(ej, 3) NV(er, 1) when j # k, V;; = V(e;, 1) and
dim Vj; = 1. [A proof of this can be derived from Braun and Koecher (1966),
XI, Lemma 3.3, page 320.]

It is then clear that we have the following relationship between the dimen-
sion n of V, its rank r and the fixed dimension d:

-1
(25) n=r+ dr(r—z—) .
These numbers n,r and d are characteristics of the symmetric cone Q and
therefore of the class of distributions we are going to define on it.

2.4. Decomposition of G and polar decomposition of x in Q. For the orbital
decomposition of Q in Section 4, we will need to use the polar decomposition
of any g in G. Any element in G can be written as g = P(y)k, for some y in Q
and % in the isotropy group K. This is easy to see if we observe that, for any
g in G, ge = y2 = P(y)e, for some y in (, [the first equality is due to the fact
that any symmetric cone is the interior of the cone of squares in a Euclidean
Jordan algebra—see Faraut (1988), I1I11.3 and II1.4]. Put & = P( y)_lg, then
ke = e; therefore &k € K = G(Q), and g = P(y)k. This decomposition is unique.

Let us turn to the polar decomposition of x in Q. Let ¢y, ...,c, be a given
complete system of primitive orthogonal idempotents in V. The spectral the-
orem states that for any x € V there exists a complete system of orthogonal
idempotents ¢y, ...,c, such that x = Z];-ﬂaj’.cj. The isotropy group K acts tran-
sitively on the set of complete systems of orthogonal primitive idempotents.
Therefore, any x in V can be written

.
x = ka, keK, a=2ajcj, a; €ER,
-

ajER},

a1<---<a,},

where {a;,j=1,...,r} = {aj’-,j= 1,...r}
If we set

R= {a = Zr:ajcj

J=1

R, = {a = zr:ajcj

j=1
M={keK|Va€R,ka=a},

one can prove that the Jacobian of the map (#M,a) — ka = x from K/M x R,
to V is equal to

(2.6) 222 [](ax — aj).

Jj<k
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Since the symmetric cone  is the interior of the cone of squares in V, for
x € Q, each a; can be written a; = €%, t; € R. So any point x in 2 can be written

(2.7) x=k) éVc, keK,teR
Jj=1

Moreover the measure ¢(x) dx, invariant with respect to the group G, is as
we shall see later proportional to (det x) "/"dx. Using (2.6) and (2.7) one then
obtains the following integral formula with respect to the G-invariant measure
(det x)™/"dx:

/ f(x)(det x)™/"dx
Q

. tp —t;
_onre / ke) TTsinh | * =5 |dk dt, - - - dz,,
[ re)T [ - ] 1

Jj<k

(2.8)

where c is a constant to be determined, d& is the normalized Haar measure
of K and e’ is a short notation for X_,e%c;. We will use this formula when
computing a conditional distribution given a maximal invariant statistic in
Section 4.

We also need to introduce the triangular subgroup of G. Let x be in V.
According to Property 4 in Section 2.3, x can be written as x = Xj<;x, where
%jr, € Vi. The triangular subgroup T of G is the set of elements ¢ in G such
that, for all x in V, (¢x30);; = 0, if (i,j) < (%,¢) for the lexicographic order, and
(¢xi);; = Aijxi; Vi,j with positive numbers A;; which do not depend on x. In the
algebra of m x m symmetric matrices, an element ¢ in 7' is such that x = axc/,
where o is a lower triangular matrix with positive diagonal elements. One
can prove that, for any x in Q, there exists a unique ¢ in T such that

2.9) x =te.
We will use this decomposition in the derivation of the generalized beta and

Dirichlet distribution.

2.5. The gamma function of a symmetric cone and some formulas for differ-
entials. The usual gamma function for Q = R* is I'(s) = [;° e~*x*"dx. For a
general symmetric cone Q and s = (sy,...,s;) in C", one can define the gamma
function for Q by

Ta(s) = /ﬂ e~ A, (x) (det x) /" dx,

where Ag(x) = AT -+ AF if x = Ajep + -+ + Arcr
For s = (0,...,0) in C" and p in C, Agp(x) = Ap(x) = (det x)? and the
preeeding integral becomes

Ta(p) = /Qe‘t‘(")(det x)P~"/"dx,
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where dx is the Lebesgue measure on Q. This integral converges absolutely
for Re(p) > (r — 1)d/2 and is equal to

2.100 Tq(p) = (2n)""/2T'(p)T (p - g) ...r(p —(r- 1)%’).
We also have, for any y in Q and Re(p) > (r — 1)d/2,

@.11) /Q ¢ (det x)P~"/"dx = T p)(det y)~P.

In particular, for p = n/r, we obtain the expression of the characteristic func-
tion

(2.12) #(y) = [ e dx=Ta(%)(dety) ™",
Q r

from which we derive immediately the G-invariant measure (det x)~"/" dx.
Similarly, we can define the beta function of the symmetric cone Q by

(2.13) Ba(p,q) = / (det x)p—"/’(det(e _x))q-n/rdx.
Qne-Q)

This integral converges for Re(p) > (r — 1)d/2 and Re(q) > (r — 1)d/2 and is
equal to

La(p)Ta(e)
(2.14) Bq(p,q) = ——+——*.
(P:9) = To(p+a)
In the course of our calculations, we will also need the following formulae:
(2.15) for any xin Q, det P(x) = (det x)**/7; -
(2.16) for any g in G, det gx = (det g)"/" det x;

(2.17) for any g in G, the differential d(gx) = (det ge)™/"dx.

For more properties on differentials, the reader is referred to Farrell (1985)
and Wijsman (1990).

3. A class of reproductive exponential transformation models on
a symmetric cone 2. Given a symmetric cone (2, let G be the connected
component of G(Q?) containing the identity. The measure du(x) = (det x)~"/"dx
is G-invariant. Let us define the following natural exponential family, for some

p > (r—1d/2:

F, = {I‘Ql(p) e~®Y)(det x)P(det y)? du(x),y € Q}.
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Let us now consider both p and y as parameters. The density of a distribution
in this family with respect to the Lebesgue measure is

@1 f(xy.p)= fglGj(det x) /" (det x)? exp[—(x | )] (det y)*

(3.2) = l(p) (det x)~/r expp{ log det x — %(x | y) +log det y}.

)

We will show now that this density is of the form (1.1) and therefore, by
Massam [(1989b), Theorem 2.1] has the splitting property (S) mentioned in
Section 1.

THEOREM 3.1. Given 2 and G as before, p > (r - 1)d/2, the distribution
defined on Q with density [1/Tq(p)le~*Y)(det x)”(det y)* with respect to the

G-invariant measure du(x) = (det x)™"dx has density, with respect to the
Lebesgue measure on Q, equal to

f(x,m,p)
1 1/2
= ——_|det D? ~ W —m) - ~-N(p)},
I‘Q(p)l et u(x)| exp {p(u(x) (' (m) | x —m) — u(m)) (p)}
where u(x) = log det x,m is the mean of the distribution and N(p) is a quantity

independent of m. Given a sample (xy,...,xy) from this distribution, the expo-
nent

q
E=)  (u(x) - (@'(m) | % —m) —u(m))
i=1
of the joint distribution of (x1, ...,x,) can be decomposed into q independent
components E = Ry + X1 ,R; with

Ry =q(log det %, +log det y) — ;—tr ¥y%, +C,

R; =log [(det x;) ( det(gi_l))i—l

(det fi)i ’

where C is a constant. The cumulant generating function (i.e., the logarithm
of the moment generating function) of the quantities

Ba(p+s,(i—1)(p+s))
Bq(p, (i - 1)p)

det(x;) det(xy + -+ - +x;_1)i"?

1
o8 det(x1 o +x,-)‘

is log
PROOF.

Step 1. We prove that |det D%u(x)|}/2 = (det x)~"/". Let u(x)- = logdet x.
From (2.2) and (2.3), it follows that D2u(x) = —P(x)~1. Since P(x)~! = P(x~1)
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[see Faraut (1988), I, 3.1] and det P(x~1) = (det x~1)**/" [see (2. 15)], we obtain
| det D%u(x)| = | det x‘1]2"/ r, for any x in ©, and the result follows.

Step 2. (u'(x) | x) = (Dlog det(x) | x) = r, for all x in Q. This follows imme-
diately from (2.12) and the fact that (x | =D log ¢(x)) = n for all x in Q [see
Faraut (1988), 1.3.4, page 111.

Step 3. The mean m is equal to py~—!. Indeed, the cumulant generating func-
tion of a distribution in F},, with respect to the measure ,(dx) = (det x)?~"/" dx
is k(-) such that

exp (k(-y)) = /Q exp (— (x| ¥))(det x)P~"/" dx
=I'q(p)(dety)™, from (2.11).
So k(—y) = —plog det(y) + log T'q(p) and m = dk(—y)/d(—y) = py~! = pu'(y),
or equivalently, y = pm~! = pu'(m). Then log dety = log det(pm=!) =

log(p" det m~1) =r log p —log det m, since det x is homogeneous of degree r.
Moreover,

})(x | pD(log det(m))) = (x | D(log det(m)))

= (x —m | D(log det(m))) + (m | D(log det(m)))
=(x—m|u'(m)) +r, from Step 2.

It is easy to see that

f(x,y,p) = ( ) = (det x)~"/"(det x)?(det y)Pe~*1

becomes
flaz,p) =22 (> )"” exp p{ log det =~ 3 (s pD1og det(m)))
+ log det y}
) (d;t az) )"/’ exp p{u(x) — (& —m | u(m)) - r+log det(p)
~ log det(m) }
W_I?(_%).IL exp {p (u(e) - (= m | (m)) - u(m)) — pr
+ pr logp}

= | det D2u(3t:)|1/2 exp {p(u(x) - W' (m)|x—m) - u(m)) —N(p)},
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where N(p) = pr — pr log p +log I'q(p).

The first part of the theorem is proved. It now follows directly from Theo-
rem 2.1 in Massam (1989b) that R; and R;,i = 2, ...,q, are independent [recall
that (x | y) = tr xy] and the R;’s, i = 2, ..., ¢, have cumulant generating func-
tion

N(p+s)-N(p)+N((i-1)(p+s)) —-N((i - 1)p) - (N(i(p +s)) - N(ip))
;i +10gBQ(p+s,(i—1)(p+s))'
Bq(p, (i - 1)p)

Rewriting X; as (x1 + - - - +x;)/i, we obtain

=rs log -G—:ISE‘_;T)

det x; det(x1 4+ +xi_l)(i-—l) . iri ]
det(xg + -+ +x;)! (i-1)-b

R; =log [

and the second part of the theorem follows. We can rewrite the last result as

det x; det(xy +---+x;_1)%V]°| Bq(p+s,(i—1)(p+s))
33) E - = - .
det(xy + -+ +x;) Bq(p, (i — 1)p) o
There are five irreducible symmetric cones. We partially reproduce, as Ta-

ble 1, a table from Faraut (1988) giving these cones and their characteristic
numbers n,r and d. The different cones are as follows:

1. II,,(R), the cone of m x m positive definite symmetric matrices with entries
in R;

2. II,(C), the cone of m x m positive definite Hermitian matrices with entries
in C;

3. II,,(H), the cone of m x m positive definite Hermitian matrices with entries
in the space of quaternions;

4. A,(R), the Lorentz cone of R”;

5. II3(0), the cone of positive definite Hermitian 3 x 3 matrices with entries
in O, the algebra of Cayley numbers.

The form of the density in F, gives immediately the density on each one of
these cones Q once we know what is meant by (x | y) = tr xy and det x.

TABLE 1
Q n r d
I,R lmm+) m 1
Hm((c) m2 m 2
IL,H) m@m-1 m 4
Ay n 2 n-2
IO 27 3 8
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For Q = IT,,(R), the trace and determinant are the usual ones for matrices.
For the cones of Hermitian matrices on R, C and H, in order to find det x and
tr x we define some real representation of the matrices x in II,,(R), IL,,(C) or
II,,(H) as follows.

Any element a = ag + ia; of C can be represented by the 2 x 2 matrix

Ha) = [‘;‘? ':;] , which is the matrix of the endomorphism b — ab from C to C.

Similarly, any element a = ag + ia; + ja; + ka;, in H can be represented by the
4 x 4 matrix

Qo —a; —a; —ag

_l1a a—a a;
r(a) - a. a a — .
j k 0 —Q;

ar —@; a; Qo

)

which is the matrix of the endomorphism b — ab from H to H. Any m x m
matrix x = (x),i,j = 1, ..., m, with coefficients in R, C or H can be represented
by a 6m x ém matrix x5 defined by blocks as x5 = [r(x;;)], where 6 = 1,2 or 4
depending on whether the elements x;; are in R, C or H, respectively.

It is easy to see that the following property is true: (xy); = x5ys and therefore
if p is a polynomial with real coefficients,

P(x)=0 <= P(x5)=0.

Thus the minimal polynomials of x and x5 are identical. One can also show
[see Casalis (1990)] that the dimensions of the eigenspaces of x5 are multiples
of 6. Since x; is real symmetric, it can be diagonalized as

Mls 0
DA = el ’
0 Amls

where I is the identity matrix of dimension é. The determinant and trace of
Xs are

m m
detx,s=]:[)\§S and trx5=6Z)\,-,
i=1 i=1
respectively.

From the construction of the matrix x5 and the fact that its eigenspaces
have dimensions which are multiples of §, it follows that

m
det x = H X = (det x5)Y/9,
i=1

= 1
trx= E A= gtrxg
i=1
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and, for each cone Hm(R) I1,,(C) or I1,,(H), the rank r is equal to m.
Taking y = (26%)71, the den81ty

fl&y.p)=F ( )(det x)~"/" (det x)P (det y)Pe~t @

immediately gives, within a multiplicative factor, the Wishart distribution on
R for 6 = 1. The complex Wishart distribution for 6 = 2 [see, e.g., Krishnaiah
(1976)] or the Wishart distribution on the space of quaternions for § = 4 [see
Mgller (1984) or Anderson (1975)].

Let us now consider II3(0) the space of 3 x 3 Hermitian matrices on the
algebra of Cayley numbers Q. The space O is a vector space RxV, Where Visa
seven-dimensional Euclidean space with an orthonormal basis (e;, i = ,D),
on which we can define a noncommutative, nonassociative multlphcatlon such
that if a = (ag,a1,02, ...,a7) = (ag,a) and b = (by, by, ...,b7) = (by, b) are two
elements of O,

ab = (agby — ab,agb + bpa +a Ab),

where aAb = Z;Llﬂi(a) A II;(b), II;(a) is the orthogonal projection of a on V;,
the subspace generated by (e;, e;,1, €;,3) and “A” in V; denotes the usual vector
product. The endomorphism b — ab from O to O can then be represented by

( Qg —a1 —Agz —Aa3 —a4 —QA5 —QAg —(17\
ay Qo —a4 —@7 Qaz —Gg as asg
az a4 Qo9 —as —a1 agz —a7 Qg
r(a) = az a7 as Qo —ag —a2 a4 a1
as —Q@z @ Qag Qo —a7 —ag as
a5 ag —az3 Qa2 Qa7 Qo —G1 —Q4
Q¢ —@5 —a7 —@4 Qa3 Q@1 Qg —Qg
a7 —Q3 —Qg Qa1 —A5 Q4 Qg Qg

The conjugate of a is @ = (ap, — a), the square norm of a is a@ = @a = N(a) =
+a?, Re(a) = ay.
The cone II3(Q) is therefore the set of matrices

a] C E
X = cagal,
b (76!3

where ;3,03 and a3 are real and a, b, and ¢ are elements of Q. The square of
x is well defined but since the multiplication in O is not associative, we define
x3 with Jordan product

x3 = %(x2x +xx%).
It (;an then be verified [see Casalis (1990)] that
P3(x) =23 —ax? + fx — v =0,
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where

a=oa) +ag +ag,
,3 = ajag + agag + 3] —N(a) —N(b) - N(c),
Y= Qiagag — alN(a) - agN(b) - a3N(c) +2 Re(abc)

It follows that the rank of IT3(Q) is equal to 3, tr x = a;+ag+ag and det x = .
One can observe that v is obtained formally by calculating the determinant
in the usual way. The family F, of densities is now well defined on II3(0).

For Q = A,, let ¥ = (y1, —¥2, ..., —¥n) be the parameter. Then tr xy =
2B(x,y) and det x = B(x,x), where B(x,y) = x1y1 —X2¥2 —* * - — Xn ¥n. Expression
(3.1) becomes

B(x,x)~"/2
(2r)=-220(p)L'(p - (n - 2)/2)

If we replace y by y/2 we obtain the distribution on A, as defined in Letac
(1994) and used in Massam (1989b).

The models in the family F,, are obviously exponential transformation mod-
els on  with acting group G and with density

B(x,x)PB(y,y)? exp (- 2B(x,y)).

'f“,,l(_p)' exp (— (x | y))(det x)?(det ),

with respect to the G-invariant measure (det x)™™" dx. Under this group G,
there is only one orbit in Q. However, we will show that the group G on Q2 can
always be decomposed into the direct product of R* and another group, so that
we can define a set of orbits in 2 and give an orbital decomposition of x into x =
us, where u is a maximal invariant statistic and s = x/u. In the next section,
we will investigate the distribution of u,s and s given u. We will also look at
the distributions of quantities related to the R;, i = 2, ...,q, in Theorem 3.1.
These will lead to the generalized beta and Dirichlet distributions.

4. Some distributions derived from the family F,.

4.1. The generalized beta and Dirichlet distributions. We observed in (3.2)
that the sth moment of
_ det x; det(xl I +xi_1)i'1 is BQ(p +8, (l - 1)(p + S))
(det(ey+---+x;)) Bq(p, (i — 1)p)

In the case where the x; are positive m x m matrices with real entries, D; can
be rewritten as

D; =det U,(I - Ui)i_l, where U; = (x1 +-- +x,~)_1/2xi(x1 4+ +x,~)l'1/2,

i

and x/2 is a lower triangular matrix with positive diagonal elements such that
x1/2(x1/2) = x. This could also be expressed by setting x; +- - - +x; = t;I, where ¢;
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is an element of the triangular subgroup of G, and defining U; by x; = ;U;. It is
a classical result that U; has the multivariate beta(p, (i — 1)p) distribution [see
Muirhead (1982), Theorem 3.3.1]. Similarly, we can define a generalized beta
distribution for any symmetric cone 2 and even more generally a Dirichlet
distribution.

If an element x in Q has the distribution with density (3.1) on , with
respect to the Lebesgue measure, we will say, for convenience, that it has the
W(p,y) distribution.

Consider ¢q independent variables x;, ...,x,, each x; with the W(p;,y) dis-
tribution. We show later how we can generate g — 1 variables sy, ...,8,-1 with
a generalized Dirichlet distribution.

THEOREM 4.1. Let x3,...,%, be q independent variables, where each x; has
the W(pj,y) distribution on the symmetric cone ). Let z, be the sum z, =
X1+ -+ +%g, and let t be the unique element in the triangular subgroup of G
such that z, = te. Define the variables sy,...,sq as x; =ts;,i=1,...,q. Then 2,
is independent of (sy,...,s,-1) and the joint distribution of (s,...,s,—1) with
respect to the Lebesgue measure on

q-1
Qq—l,e = {(81,...,8q_1): s; €Ni= 1,...,9—1and Zsi Ee—Q}

i=1
is
r 7 p;
—SZM(det sl)p‘_"/’ - (det sq_l)pq—l—n/r
4.1) i=1 La(pi)
x det (e —8] = — sq_l)Pq—n/r.

PROOF. The joint density of x4, ...,x, with respect to the Lebesgue mea-
sure is

(det xl)p"_"/r -+ (det xq)p"_"/r

P1+4pg

1
:'1=1 Tq (Pi)
x exp [ — (x1+--+xq | y)] (det y)
Using (2.16) and (2.17) we find that the Jacobian for the change of variables,
(x1, ...,%q) — (te,s1, ...,84—1) is equal to (det te)a~1n/7. Observing that s, =
e —8§; — -+ —8,_1, the density with respect to dte ds; ---ds,_; is
1
g:; Iq (Pi)

(det s;)” ™" (det s,_1)" ™" det(e—51 — - —84_1)"" """

X e"(tel}')( det y)p1+“'l’q ( det te)P1+"'+Pq —q(n/r)+(@—n/r
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which can be rewritten as

IQ[Zq_lp'] p1—n/r -n/r -n/
ot &=l (qet ;)™ oo (det sp_q1)P! det(e —sy— - —s,_1 )" "
:;:11-\ (Pi)( 1) ( q 1) ( 1 q 1)

1
* Lq [ i Pi]

It is now clear that te = x; +--- +x, and (sy,---,8,-1) are independent, that
x1 + -+ +x, has the W[X], p;,y] distribution and that (sy,...,s,—1) have the
generalized Dirichlet density on Q,_;, with density (4.1). Since x; + - + x4
has the W(Xp;,y) distribution, the W(p,y) model is reproductive. From this
and the fact that E(x) = py~!, it follows that the first part of Theorem 3.1 is
a direct consequence of the results in Barndorff-Nielsen and Blaesild (1983a).
(Our proof of Theorem 3.1 is more constructive.)

Applying Theorem 4.1 to two variables only, one generates immediately the
generalized beta distribution on ©; .. O

(tely) D1+p2+---4pg—n/r P1+---4Dg
eV (det te) (det y) ,

THEOREM 4.2. Let x, and x; be independent variables with distribution
W(p,y) and W(q,y), respectively. Let x, + xg = te, where t is the unique element
in the triangular subgroup of G satisfying this identity. The variable s, defined
by x, = ts| has the generalized beta(p,q) distribution on Q, . with density

1

—————(dets p—n/r det (e — s q-n/r.
Balp, q)( 1) (e—s1)

Theorem 4.2 is an immediate consequence of Theorem 4.1.

If (x1, ...,x4) is a sample from the distribution W(p,y), then by Theorem 4.2
we have that, for eachi =2, ...,q,s; defined by x; = ¢;s;, where t;e = x1+- - - +x;,
has the generalized beta(p, (i — 1)p) distribution. The variable s; is the variable
appearing in the quantity R;, i = 2,...,q, in Theorem 3.1, which could be
rewritten as follows.

COROLLARY. Let (%1, ...,xq) be a sample from the distribution W(p,y) on
Q. Then the exponent E = X}, (u(x;) — (u'(m) | x; — m) — u(m)) of the joint
distribution can be split into q independent components:

q(log det x, +log det y) — %tr Xy =R1+D,
log (det(si) det (e — s,-)i_1> =R;+D;, i=2,...,q,

where s; = ti‘lxi,i =2,...,q,tie=x1+---+x;,D is a constant and D;,i =2, ...,q
are constants depending on i, and where R, and R;,i =2, ...,q, are as defined
in Theorem 3.1. Moreover s;,i = 2, ...,q, has the generalized beta(p,(i — 1)p)
distribution.
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4.2. Distributions of the maximal invariant and of the direction in the or-
bital decomposition of x in Q. Consider the cone 2 and the connected sub-
group G of G(Q), containing the identity, and let x have the W(p, y) distribution
with density

1
——(det x)Pe~“)(det y)P
FQ(p) ( ) ( y)

with respect to the invariant measure du(x) = (detx)~"/" dx. Similarly to what
is done in Barndorff-Nielsen (1988) or Barndorff-Nielsen, Blaesild and Eriksen
(1989) in general for exponential transformation models, we will derive the
distribution of the statistic u(x) = (det x)!/", which is maximal invariant under
the action of a subgroup G of G that we will define later and the distribution of
the direction s(x) = x/u(x). We will also show how the hyperboloid distribution
as defined in Jensen (1981) is a special case of the conditional distribution of
s given u. We will also derive the distributions of the sum s., of sy, ..., s, the
“length” R, = (det s.4)'/" and s.4/R, given R,. From now on, Ry is the quantlty
just deﬁned This notatlon has been used to follow the notation in Jensen
(1981) and should not be confused with the gth component R; mentioned so
far in this paper.

We will now give an orbital decomposition of x. According to the polar de-
composition of the automorphism group (see Section 2), any g in G can be
written as g = P(y)k for some y in 2 and 2 € K = GN O (E). Let us decompose
g further into

P(y)k
- 2/r
= (dety) / W € R* x GT,

where G = {P( Vk/(det )", yeQ ke K } is a subgroup of G, as can be
readily verified. Indeed, from (2.15) and (2.16) and the fact that det 2 = 1 if
k € K it follows that det 2 = 1 if » € G'. The identity element belongs to G'
and if P(y)k/(det ¥)?/" belongs to G', its inverse P(y~1)k~1/(det y—1)*>/" also
belongs to G'.

Consider the function u"(x) = det x. It is invariant under G'. Indeed

det[ P() k(x )] ((—1-—1;-—)2’—/’ det (P(y)k(x)),

(det y)2/r

by homogeneity of degree r of the determinant function. Let 2 = P(y)k/(det y)2/ r
in G' be given, for some y € Q and & € K. By (2.15) and (2.16),

o (h(2)) = 8"”32 det k(x)

and since k € K, det k(e) = 1 and u"(hx) = det x = u"(x). The statistic u(x) is
therefore invariant under G' and we can define orbits in 2 by det x = constant.
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The statistic u(x) is a maximal invariant statistic under G' and (u,s = x/u) is
an orbital decomposition of x. The unit orbit is the set H; = {x € 2 | det x = 1}.
Clearly 2 is the direct product of R* and H; and therefore the G-invariant
measure du(x) = (det x)~"*/"dx factorizes into the product dp(u) x do(s), where
dp(u) is an R*-invariant measure on R* and do(s) is an invariant measure on
H,. To find this factorization, we use the polar decomposition of x = k2;=1e‘fcj
given in (2.7) and the integral formula (2.8), giving

d
ty — ¢
4.2) (det x)™/" dx = 2" [ [sinh [%]] dk dt, - dt.
i<k

To split this into the product of a measure for « and a measure for s, we change
variables. Since the c; are orthogonal idempotents one can easily prove that
det x = II_je% = exp (X_,¢;). Therefore log u” = X_¢. Let us introduce the
new variables

sj=tr—tj Jj=1...,r—-1,
t1+"'+tp_1+tr]
= .

u=exp[

The Jacobian is J = |0(s1, - -, 8,1, u)/Ct1, -+ b1, 8| = (/.
So dt; ---dt, = (du/u) dsy - --ds,_;. Moreover, for j <k <r, t, —¢tj =sj — s
and therefore

(det x)~"/" dx
dr-1
“ e T [sinn [25%]] IT [sinn 3] "L dndsy - ds, -,

J
2
Jj<k<r

i=

which gives us immediately the required splitting du(x) = (det x)™"/" dx =
dp(u) x do(s), where dp(u) = du/u and do(s) is the cofactor of du/u in the
right-hand side of (4.3). Letting y = ¢, where « = (det y)/" and ¢ € H;, the
density of x w.r.t. dp is [1/I'o(p)ls™Pu’ expl—ru(s|€)] and therefore the density
of u wrt. dpis

1
Ta(p)

Let us show that the integral in (4.4) is independent of ¢ and therefore that
the density of u is independent of ¢. Indeed, for any & € G, there exists an
h; € G such that (s|h¢) = (h;s|¢), where by =h~ ' ifh =k € K and h; = h if
h = P(y), with y € Q, det y = 1; since ¢ is invariant under G, we have

/H exp [ — ku(s|h¢)] do(s) = /Hl exp [ — ku(his|¢)] do(s)
=/l';1 exp [ — ru(sl¢)] do(s).

(4.4)

KPu'P /[;l exp [ — ru(s|¢)] do(s).
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Moreover, G' acts transitively on H; for any ¢, ¢’ in Hy, there exists an A € G'
such that ¢’ = h¢ and therefore le expl—ru(s|)]da(s) = [ expl—ru(s|¢)]do(s),
that is, the density of u is independent of £.

We can also regard the family of densities of x as a transformation model
with acting group G': This is clear if we write the density of x as

KPu'® exp [ — ku(s|¢)] dp(u) do(s)

1
Ta(p)

and recall the following: first, that any ¢ in H; can be written as ¢ = he for
some & in G'; second, that for any 2 € G' there exists #; € G' such that
(s|h€) = (h1s|€); finally, that o is invariant under G'. Now since « is invariant
under G' it follows that the marginal density of u is independent of G'. This
is a special case of a general result concerning the density of the maximal
invariant in an exponential transformation model, given in Barndorff-Nielsen,
Blaesild and Eriksen [(1989), Theorem 2.1; henceforth abbreviated as BNBE].

To compute le exp [—xu(s|€)] do(s), we need to express (s|¢) in terms of
$1, ...,8-_1. We have

S1 Sg—8 Sp—9—81 Sp_1—8
tr=logu— 242"y, 21, 217l
r r r r
$S1—S3 Sy S3—S§ Sr_1—8
t2=logu+..l__2__2+3__2+...+_r_1__2,
r r r r
S1—Sr_1 Sg—Sp_ Sp_2 —Sp_1  Sp_
t,_1=logu+ 1 r1+ 2 r1+'”+ r—2 r-1 rl,
r r r r
81 S Sr—2  Sp—1
tr=logu+ =+ 2 4. 42221,
r r r r
therefore,
r r—1 s 1 r—ls.
x=kzetjcj=ku Zexp[——'%+;Z(si—sj)]cj+exp(2;’)cr .
J=1 J=1 i i=1

A special case—the Lorentz cone and the hyperboloid distribution. The in-
tegral I = fH, exp [—ku(s|f)] do(s) is not very pleasant except in the case of the
Lorentz cone. Then indeed r = 2. The only variables are z and s.

Since I is independent of &,

‘/I;l exp|—ru(s|¢)]do(s) = /Hl exp[—ku(sle)]do(s).

Moreover, 2 € K is an automorphism and preserves the trace [see Faraut
(1988), 11.4.3] therefore (sle) = trs = tr k(e®/2c; + e~*1/2¢y) = tr(e®/%c; +
e %1/2¢5) = 2 cosh(s;/2) . Following the pattern of integration in (2.8), we
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then have
/H exp[—xu(s|¢)]do(s) = /H exp|—xu(sle)] do(s)
1 1

- oo n—2 _ ‘El : _s_l n-2
(4.5) = /K /0 c2 exp( 2ku cosh 2)(smh 2) dkds;

_ 2 g5 [* exo( - 51 (ginh S\~
= /K c2"“ dk /0 exp( 2ku cosh 2)(smh 2) ds;.

Since [_dk =1 for the normalised Haar measure, we have

/Hl exp [ — ru(sl¢)] do(s)

=c2*1 /Ooo exp ( — 2ku cosh %) (sinh ‘521)2("_2)/2' d(%)

. T(z2+}
=c2 1(_";1‘)((—'32_)72121%%)}'{("_2)/2 (2nu)
G

=c W&n/m—l (2'“‘)»

where K, is the modified Bessel function of the third kind of index v [see
Abramovitz and Stegun (1970), formula 9.6.23, for this integral representation
of the modified Bessel function of the third kind]. We still have to compute
the constant ¢, which depends only on the Jordan algebra containing 2. The
simplest way to compute this constant is to look upon it as a normalizing
constant for the marginal density of «. The condition f(;” f(w)du/u =1, where

f(u) = fﬁiﬁ(”“)zp /H exp [~ ru(s)] do(s),
yields

2" 1I'((n - 1)/2)
vrLa(p)

2" 'T((n-1)/2) ,@p * -
- 9~ (p—(n/2+1) / 2u)P~"2K,, o, (260)d (2
F(%)I‘Q(p) A ( nu) (n/2) 1(2ku)d(2ku)

\2p—(n/2+1 du
/0 (ku)® Kin/2-1(2k)—~

=1

Since

0 ouip[ B+l p—-v+1l
fot"K,,(t)dt-2“ I‘<———2 )I‘(———2 )

[formula 11.4.22 in Abramovitz and Stegun (1970)], the normalization condi-
tion gives
L) |
7r(n/2)—1221"(%) -
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Thus
2 1\, (n/2)—
oo 2].—‘(2)11' /2)—-1 ,
27T ((n — 1)/2)

and the density of u with respect to dp(u) = du/u is

QDA e/D-1 Ko (260)
(4.6) f(u) = Fg(p) ('“‘) (Nu)(n/m—l )

The conditional density of s given u, with respect to do, is easily obtained by
dividing the density of x by the marginal density of u,

(ku)®=2/2 exp [—Ku(s|¢))]
22(2m)=D/2K 191 (2ru)”

f(slu) =

For u = 1, when we condition on the unit orbit, we obtain exactly the den-
sity for the hyperboloid distribution given in Jensen [(1981), formulae (6) and
(8)], where s £ = %(slf). The hyperboloid distribution has been obtained as a
conditional distribution in a similar way in BNBE (1989).

The general case. Since we cannot compute the integral in (4.4) directly,
we consider the moments of det x or, more conveniently, of det x det y. The
moments are

E((det x dety)s) = f(?]C)_)— /Q ((det x) (det y))p+se—(xly)(det x)—(n/r) dx

_ Ta(p+s) T D(p+s—id/2)

Ta(p) 1o L(p-id/2) ’

from which it follows immediately that det x det y is distributed like the prod-
uct of r random variables U;, where 2U; has a chi-square (2p —id) distribution.
This result is well known in the special case of the Wishart distribution, where
y=(2%)1, d =1 and r = m: then det xX~! is distributed like the product of
m random variables with the chi-square (2p — i) density, i =0,...,m — 1.

We can also obtain the explicit expression of the density of det x det y by
using the inverse Mellin transforms. Using again the notation " = det y, from
the expression of the moments above, we obtain immediately the density of
k"u” with respect to d(x"u")/k"u” = rdu/u in terms of the G-function

h(n’u’): 1 G{)?(Hrurlp’p_g,”.,p—(r—l)g),

I, T(p—id/2)

where Gy is a generalized hypergeometric function [see Mathai and Saxena
(1973)] for a thorough treatment of hypergeometric functions and their ap-
plication in statistics). The density of u with respect to the measure du/u is
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therefore

(27r)(n—r)/2r 0 r,r
To(p) Gy | K'u

and the conditional density of s|u with respect to do is

(ku)™ exp [—ru(s|¢)]
@) PG lp.p — §,.. 0 (7= DF)
There are several interesting special cases when G is particularly simple.

Of course, we can derive the hyperboloid distribution in the case of the Lorentz
cone, in yet another way when r = 2 and d = n — 2. Letting u = 1, (4.8) becomes

k% exp [ — k(s|¢)]
(2m)/22G2(x2|p,p — d/2)’
with G2(x? | p,p — d/2) = 2k%~%/2K; 5(2x), and we obtain the density of s as
(k)*2exp [~ K(sl¢)] _ (k)™ *exp [~ n(s[¢)]
(2r)d/222K,/5(26)  (2m)®/D-122K , 19) 1(2k)

which is of course the same as the density derived previously in the special
case of the Lorentz cone and the hyperboloid distribution.
When r =4,

d d
(47) P,P—E»---»P“("—I)E)»

(4.8)

G40 x|a,a+ }-,b,b + l = 47Tx(a+b)/2K2(a_b 4x1/4 .
04 2 2 )

Then if x is a 4 x 4 symmetric matrix with the Wishart W(p, £) distribution,
the conditional density of x = s given that det x = 1, with respect to do, is

&% exp [ — k(s|¢)]
(2m)n—n/2427 k42K, (4k)
Since n = (4 x 8)/2, k€ = 257! and x* = det (£71/2) = (1/2%)det =77, the
preceding density can be written as
det ©1/2exp (—tr s£1)
2772K, (2 det 5-1/4)

These results can be summarized in the following theorem.

THEOREM 4.3. Let x have a W(p,y) distribution on a symmetric cone ).
Then (u,s), where u = (det x)/" and s = x/u, forms an orbital decomposition of
x: The group G factorizes into R* x G, where

Gl = {G_E%)lﬁkforsomeye Q,k EK=G00(E)}~
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The G-invariant measure (det x)~"/" dx factorizes into (du/u)do(s), where du Ju
is invariant on R* and do(s) is invariant on the unit orbit defined by det x = 1.
The density of the distribution of u = (det x)Y/", with respect to du/u, is

(27r)(n—r)/2r ro( - d d
To(p) Gy | k'u \p,p— 5P~ (r- 1)-2—).

The conditional density of s = x/(det x)!/" given u = (det x)'/7, with respect
to do(s), is

(ku)™exp [ — ku(s|¢)]
(2m)®=n/2rGQ (ku"|p,p —d/2, ...,p — (r—1)d/2)

Moreover, det x det y is distributed like the product o}' r random variables U;,
each U;, being such that 2U; has the chi-square (2p — id) distribution.

To carry on with the unified treatment of different distributions, we now
consider a sample (sy, ...,8,) from the conditional distribution of s given u =
1, henceforth denoted for convenience as the H-distribution. We will show
that in a manner exactly parallel to what is happening for the hyperboloid
distribution, the density of s.4/R, given R, has the same density but with
precision parameter « replaced by Ryk.

4.3. Distribution of the resultant length and direction for a sample from the
H-distribution. We denote the density (4.8) for u = 1 as

P exp [ — k(s]¢)]
(277)(”_')/27‘062(5") ’

where we use the notation G (x" | p,p —d/2,...,p — (r— 1)d/2) = GR(x")
since the parameters are always the same from now on. Consider a sample
(s1, ...,8,) from this H-distribution. Let s.q = 51+ -+, and R, = (det s.4)'/".
The joint density of (sy,...,s;) with respect to the G' invariant measure
®do(s) is

h(s) =

WP exp | — Ryr(5.q/Rl6)|
[(27r)<n—r>/2r]q[G62(n')]q '

h(sl,...,s,, =

Obviously s.4 € Q, s.4/R, belongs to the unit orbit Hy, R, is a maximal invari-
ant under G' and (Ry, s.4/R,) forms an orbital decomposition of s.4 in Q.

Let ¢ be the mapping from HY to H; x R* defined by (s, . ..,8q) = (s.4/Ry,
R,;), and let v be the image by ¢ of ®%0. Then v is invariant on H; x R*. To
decompose v into the product of the invariant measure ¢ on H; and a measure
¥, on R* we first need to prove that the action of G on H, is proper (so that
an invariant measure on H; is unique up to a positive multiplicative constant)
and that the mapping ¢ is proper.
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Let us first prove that ¢ is proper. Since (s, ...,8q) = (s.q/Rq,Rg) is an
orbital decomposition of #(sy,.. ,sq) E‘,’.ls,, it is equivalent to prove that
t: H] — Q is proper, that is, the inverse image of a compact set in € is com-
pact Since ¢ is continuous, the inverse image is closed; let us prove it is also
bounded. Suppose that || Xs;|| for (s1,...,sq) € H? is bounded. Let x = X\g;,

with ); > 0, be the spectral decomposition of x € Q. On Q, |x|| = (tr x2)” =
(2)\?)"2 and tr x = X); are equivalent norms. Indeed, since ); > 0, we clearly
have £); > (£)2)" and by Schwarz inequality, we have tr x = tr xe = £); <

(Z22)"(tr e)*2. So |Zs;|| bounded is equivalent to tr Xs; = ¥ tr s; bounded
and, therefore, by the equivalence of norms each ||s;|| is bounded, which proves
that ¢ is proper and therefore ¢ is proper.

Let us now prove that the action of G' on H; is proper. The isotropy group
K of e, the identity element in Hj, is a compact subgroup of G'. By Propo-
sition 2.3.11 of Wijsman (1990), it follows that the action of G' on G'/K
is proper (G' is a locally compact group). Moreover, from Lemma 2.3.17 of
Wijsman (1990), since K is the isotropy group of e in H; we have that the 1-1
correspondence ¥,: G'/K — H; defined by ¥.(gK) = ge is a homeomorphism;
therefore the action of G' on H; is proper.

We can now apply Theorem 7.5.1 of Wijsman (1990). Indeed, ¢ is a proper
mapping so that the image v of ®0 is a measure on ;G' acts transitively
and properly on H; so that an invariant measure on H; is unique up to a mul-
tiplicative constant and G' acts trivially on R*; it follows from Theorem 7.5.1
that there exists a measure ¥, on R* such that v = o ® ¥,. Therefore the
image of

H F;;:zr_’r)/zr’;(rsé'(i)r]) do(s;)

by the mapping ¢ is

((2,,)<n_rf/r2p,G8:(n,))q exp [— qu(flilﬁ)] da(;g—:) dig(Ry).

The density of R, with respect to di, is obtained by integration w.r.t. do,

K'P q
f(R,) = ( TGS (nr)) /H exp [~ wRy(s1)] do(s).
From (4.4) and (4.7) we deduce that
F(R) = e ) .
(mpo=rrer)™ @en)™ (32w’

It follows that the conditional density of s.,/R, given R, with respect to do,
is equal to

5

. R,x)" ,
R, - (%)(n_g/gjgw T oo (- Run[352]e]).
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The density of s.,/R, given R, is obviously an H-distribution like the distri-
bution of s but with precision parameter « replaced by R,«. In the case of the
Lorentz cone, this is obviously the same result as in Jensen [(1981), Theo-
rem 2]. In the general case, we formulate the result as the following theorem.

THEOREM 4.4. Let (s, ...,84) be a sample from the H-distribution on the
unit orbit in ). Let s.,/R,; and R, be the resultant direction and “length,”
respectively, of the sum s.q = sy + -+ +84. Then the density of Ry with respect
to diyy is

K'P ] IGR(Ryk")

f(Ry) = (27r)(n—r)/2r[(27r)("">/2rG62("') (Rgw)™

and the conditional distribution of s.,/R, given R, has density, with respect
to do, equal to

i

_ (Rq"‘)rp s.
Rq] - (2m)-n/2rG2 (Rgn’ ) exp ( ~Bqr [—Iilg] )

It should be noted that the fact that s.,/R, given R, has a distribution of
the same form as that of s on H; but with precision parameter xR, instead of
k is due to the following: if s on H; has density

Py(ds) = a(x) exp [ — k(s|¢)]o(ds),

where 0 = (x,8), (k)™ = [exp [ — w(s|0)]o(ds) and (sy, ...,s,) is a sample
from this distribution, then

Po(dsl, ce ,dsq) = a(n)q exp

— kR, (;—;’lﬁ)]a(dsl) - o(dsg)-

As was done before, the image of ®%0 can be decomposed into o x 5. The
conditional density of s./R, given R, is immediately obtained as

a(kR,) exp [ — KRy (s€)]o(ds).
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