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EXTREMAL PROBABILISTIC PROBLEMS AND HOTELLING’S
T2 TEST UNDER A SYMMETRY CONDITION

By IosIF PINELIS
Michigan Technological University

We consider the Hotelling 72 statistic for an arbitrary d-dimensional
sample. If the sampling is not too deterministic or inhomogeneous, then
under the zero-means hypothesis the limiting distribution for 72 is x?i. Itis
shown that a test for the orthant symmetry condition introduced by Efron
can be constructed which does not differ essentially from the one based on
xﬁ and at the same time is applicable not only to large random homoge-
neous samples but to all multidimensional samples. The main results are
not limit theorems, but exact inequalities corresponding to the solutions to
certain extremal problems. The following auxiliary result itself may be of
interest: x4 — vd — 1 has a monotone likelihood ratio.

1. Introduction. For an arbitrary sample Xy, ..., X, in R% let
X =n"!yx2,X; and C = n~1x" X, X7 — XX, where the superscript T denotes
matrix transposition; it is assumed that R? = Mg, 1, where My , stands for the
set of all real d x n matrices. The Hotelling statistic is defined by the formula
T2 = cot?0, as in Efron (1969) and Eaton and Efron (1970), where 6 is the
angle between the vector v =(1, ...,1) € M , and the linear hull L(X) of the
rows of the matrix X € My , whose columns are X, .. X,, This definition of
T2 differs by the factor n — 1 from the usual one, (n — 1)X Te- 1X, suitable for
Gaussian independent identically distributed (iid) random vectors X; in R%.

Following Efron (1969) and Eaton and Efron (1970), consider

2 _
R_1+T2

where Ily is the matrix of the orthoprojector from M , onto L(X). If X;, X5, . ..

are, for example, iid and nondegenerate in R?, then both nT? and nR? tend to
x2 in distribution.

In what follows, as in Efron (1969) and Eaton and Efron (1970), the sample
is only assumed to satisfy “the orthant symmetry condition”:

(le oo ,Xn) =D (EIXI’ v ’Ean)a

where ¢; are iid with P(¢; = +1) = 2, independent of X, and =p means equality
in distribution. Put € = (¢4, ...,€,). Then [see Eaton and Efron (1970)]

(1.1) nR2 =p EHX.ET.

1
=cos? 9 = —ulIxy7,
n
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358 I. PINELIS

Efron (1969) and Eaton and Efron (1970) discovered that the distribution
of nR? is conservative with respect to the limiting x3 distribution in the
sense that

(1.2) Ef(vnR) < Ef (xa),

for f(u) = u®™, m = 1,2, ..., where R = VR?, x4 = \/x% and x3 is a random

variable having the x2 distribution.

In this paper, we first show (Theorem 2.1) that it is possible to extend (1.2)
to the class of functions considered in Eaton (1970, 1974). This enables us to
extract the bound

(1.3) P(vnR > u) < cP(xg >u), u>0,

where ¢ = 2¢%/9 is the best possible constant that can be obtained from (1.2).
Technically, it is of course the transition from (1.2) to (1.3) that is the most
difficult part of this paper.

2. Statement of results. Let C%, denote the class of all even real func-
tions on R having a finite convex second derivative f” (see also Proposition
A.1 in the Appendix).

THEOREM 2.1. For any convex f € C%,, (1.2) is true.
THEOREM 2.2. With c = 2¢%/9, (1.3) is true.

(See also Proposition A.2 and the preamble to it in the Appendix.) These
theorems are particular cases of the following two.

Let A stand for any nonnegative definite matrix in M, ,, and set { =
(&4, ..., &), where the &’s are any independent symmetrically distributed ran-
dom variables with E¢? = 1.

THEOREM 2.3. For any f € C2,,,,

Bf (VeAeT) < Bf (VEAET).

THEOREM 2.4. If Il is an orthoprojector n X n matrix, then
P(elle” > u) <cP(x®2>u), u>0,
where ¢ = 2¢3/9, r = rank IL

Setting A = xTx, where x = (x1, ...,%;) € My n, xxT = 1, one obtains the
following two corollaries.



EXTREMAL PROBABILITIES FOR T? 359

COROLLARY 2.5. For any f € C%,.,,

Ef(e1xy + -+ €n%n) < Ef (€121 + - + Enxn).

COROLLARY 2.6. For any u > 0,
P(lerxy + - +enn| > u) < 2¢(1 — 3(u)),

where ¢ = 2¢3/9, ®(uw) = [*_ p(t)dt, and o(t) = (2r)~1/2e/2,
In turn, Corollary 2.5 implies the following corollary.

COROLLARY 2.7. Iff € C%,,, and xxT =1, then, for ¢ ~ N(0, 1),
Ef (e11 + - - + €n%n) < Ef ().

Another approach to the last inequality, based upon the majorization tech-
nique, was given in Eaton (1970). Corollary 2.6 is an improvement of the
conjecture in Eaton (1974): If xx” = 1, then

o(u)

P(lerxy + - +€nXn| > u) < e u> V2.

In view of an inequality of Hunt (1955) [see also Eaton (1974)], Theorems 2.3
and 2.4 and Corollaries 2.5-2.7 remain true for any independent zero-mean
random variables 7, ...,n, with |5;| <1, instead of €, ..., €,.
Using Theorem 2.2, it is possible to obtain rather precise information on
the quantiles of the Hotelling statistic under the orthant symmetry condition.
For any real-valued random variable ¢, denote

x5(¢) =inf{u e R:P((>u) <6}, O0<é<1l.
Set
c=26%/9, xs=x5(xa), Es=xs(R),

where R is the statistic defined in the Introduction.

THEOREM 2.8. If 6§ < 0.5, then x5 > (d — 1)V/2 and

2.1) X5 <Xs/c»
- Inc
2.2) X5 <Xs+ m,
2.3) xs <x5+0(1),
(2.4) X5 < X5 [1 + %0(1)] ,

(2.5) x5 <x5(1+0(1)),
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where o(1) — 0 uniformly ind,n, X, ...,X, when 6 | 0.

(See also the numerical example and the preamble to it at the end of the
Appendix.)

In the proof of Theorem 2.8, we use the following theorem.

THEOREM 2.9. The famlly (Z4: 1 <d < ), where Z3 = xg — (d — 1)V/2, for
1<d < oo, and Zo, ~ N(O, 2) has a monotone likelihood ratio; more exactly,

fa@)fr(s) > fr(t)fa(s), 1<d<r<oo, —c0o<s<t<oo,
where f; is t{he density of Z,.
Specifically, we use the following corollary.

COROLLARY 2.10. This family, (Z;: 1 < d < o), is stochastically decreas-
ing:

P(Zy>t)>P(Z, >t), 1<d<r<oo,teR.

In particular, for r = oo, this gives
(2.6) Plxa—Vd-1>t)>1-9(tvV2), teR,d>1.
3. Proofs.

PROOF OF THEOREM 2.1. Set A =TIy, & ~ N(0, 1) in Theorem 2.3 (proved
later), use (1.1) and note that

3.1) Vig ~N(0,1)] = £IeT =p x2,

where II is any orthoprojector n x n matrix and r = rankII. O
PROOF OF THEOREM 2.2. See (1.1) and Theorem 2.4, proved later. O

PROOF OF THEOREM 2.3. Let u, := max(u,0). For f € C2,, consider the
Taylor expansion

(3.2) F(@) =£(0) +£"(0)'% + 5 / (Ju| — €)% df"(z)

where f” is the right derivative of the convex function f” (note that f” is
nondecreasing). We need two lemmas.

LEMMA 3.1. Iff € C2,,, b > 0and gy p) = f((u2+b)"/?), then gy s € CZ,...
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PROOF. In view of (3.2), any f € C2, is a mixture of functions of the
following three types: (I) the constants; (II) u — au?, a € R; (III) u — a(ju|-t)3,
t >0, a > 0. Hence, we can assume that f belongs to one of these types. Only
functions f of type (III), if any , need nontrivial treatment in this context, so
we must prove only that g’ is nondecreasing, where g(u) := (21/2—¢)3, z :=u?+b,
b >0, ¢t > 0. Calculations show the following:

() z < 2 = g¥(u) = 0, where g® is the fourth derivative of g;

(i) z > 2 = g¥(u) = 92~ "/2[(z — 5¢2)b + 4t%2| > 9bz~%/? min(z — 2, 4¢2) > 0;
(i) z2=£2 #0 = g"”(u+0) —g"(u—0) = 6t~3u|> > 0;
(iv) 2=t=0=>b=u=0,g"(u+0)—g"(x—-0)=12>0. O

LEMMA 3.2. Iff € C2%,,, then Ef(e;) < Ef(¢,), where &, is the same as in
Theorem 2.3.

PROOF. Remarks in Eaton (1974) and (3.2) imply C%, C F, where F is
the class of all even differentiable functions f such that, for w(x) = f(a + b+/x)
+f(a — by/x), w'(x) is nondecreasing in x > 0; a,b € R (in fact, C2, = F; see
Proposition A.1 in the Appendix). Hence, w is convex on [0, ), and, for a = 0,
b = 1, one has 2Ef(e;) = w(1) < Ew(¢2) = 2Ef(¢;), by Jensen’s inequality. O

Now we can complete the proof of Theorem 2.3. Let f € C%,. Note that
eAeT = (aey + B)? + b, where the values of b > 0, a, 8 do not depend on
€1. Observe that if a function g belongs to C%,, then so does the function
u — glau + B) + glau — P), for all o, 8 € R. Hence, the function h(u) =g rlau +
B) + &b, f(au — ) belongs to CZ,,, by Lemma 3.1. By virtue of Lemma 3.2,

]Ef((aAsT) Y 2) =Eh(e)) <Eh(g,) = ]Ef( (EAET) Y 2),

where £:=(£1,¢€9, ...,€,). By successively replacing the remaining ¢;’s by &;’s,
we complete the proof of Theorem 2.3. O

PROOF OF THEOREM 2.4. This proof is based on the series of Lemmas
3.3-3.6. We need the following notation:

Cr=+= 21 >

Jo s te=s"/2I{s > 0} ds

E(xr — )3

7=7(u)=7r(U)=———(XC J:
r

=/ (s —u)3s™1e™*'/2I{s > 0} ds;
u
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I{A}:=1if Ais true and equals 0 otherwise;

7=9(w) =, (u) = ~37"(u) = P 2)

=/ s"“le“"z/zl{s > 0} ds;
u

7 7")(u)=di7—(-u) (@ =)

Qr(u) =inf { Ef ( ) :feC?%,,, [ is convex and strictly positive on R}

flu)
W, (u) -lnf{E((X' )t3+ te (o, u)}
_Q(u) |
Ar(u) = P(Xr Sk

Now we can state the following auxiliary results.

LEMMA 3.3. Forallr>0,j=0,1,2,3,4,

(3.3) (-1)/4y2(u) >0, ueR,
3.4) (—1) j’y(ﬁ(u) ~ 6u"5+je"‘2/2, u — oo,
(3.5) Y®(u) = 6u"1e""2/2I{u >0} =-6q"(u), u#0;
here and in what follows, a ~ b means a/b — 1.
PROOF. Equalities (3.5) are trivial. The first of them and L'Hépital’s rule,

used successively four times, imply (3.4). Since Y9 > 0 and v?(x) — 0 as
u — 00, (3.3) is also true. O

LEMMA 3.4. Forr>1land u > (r— 12 qu)g"(u) < q'(w)2

PROOF. Seth=q—q?/q". Then h — 0 as u — oo,
=—(¢")2%q [1 + 1] >0,

according to Lemma 3.3. Hence, h < 0. O
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LEMMA 3.5. Forallu >0,

(3.6) P(elle” > u?) < @, (u)
(3.7) = min [1, é W,(u)]
1, if 0<u<r,
(3.8) {5 ifvFsus,
Wo(u), if u> p.
Furthermore,
3.9) we (Ve vree).

PROOF. Inequality (3.6) follows from Theorem 2.3 (cf. the proof of Theorem
2.1) and Chebyshev’s inequality. Using (3.2) and arguments similar to (2.8) and
(2.9) of Eaton (1974), one can obtain (3.7). Observe that, for any nonnegative
random variable £ (in particular, for £ = x;), the function p — InE¢£? is convex
on (0, c0). This, together with the identity

(3.10) Ex/ = (r+j—- 2Ex/2, j>2-r

(used with j = 3 and j = 4), implies (3.9).
It remains to prove (3.8). Define

31(t)
u(t) =t — 2052
Q) O
Then /'(t) = 2(8381 — B2)/2 > 0, again by the log-convexity, this time by that
of B, :=E(x, — t)f in p. In view of (3.4), u(t) — oo when ¢ — oo; s0

t o u=pu(t)

is a one-to-one increasing correspondence, under which, in particular, the
numbers ¢ > 0 correspond to u > u(0) = p,, and vice versa. Set

F(tu) = E(x — )3 =C 1(t) t<u,

-t =~ T (w-t)¥
where C. is the constant defined in the beginning of the proof of Theorem 2.3.
Since (0/0t)F(¢,u) = C(u — t)~*y'(t)(u — u(?)) and v’ < 0,

W.(u) = F(u(u),u)

@.1D =min{F(t,u): t € (—oo,u)}, u>p,.

In particular, W,(u) < F0,u) = u~3ry, < min(1,r/u?), Yu > p,, in view of
(8.9). This implies (3.8) for u > p,. If now u < py,, then W,(u) = F(0,u) > r/u?,
which completes the proof of (3.8), as well as that of the lemma. O
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The most difficult step in this paper is to prove the following lemma.
LEMMA 3.6. For any u > 0, A (u) < 2¢3/9.

PROOF. First take u > p,. The crucial observation is that [in view of (3.8)
and (3.11)]

(3.12) Q:(u) < F(r,u),
where
Ti=7(u)=u+ = 3q
and, as before, ¢ = q(u), ¢’ = q'(u). Consider the T‘aylor expansion
1) =) — (= ) () # 3w = 7 () = (= )" ()
——(u - 7)4 /01 037(4)(7' + (u - 7')0) do.

If 0 < s < u, then s/u < expl(s — u)/ul, u? — s? < (u — s)2u; hence, using the
first equality in (3.5), one has, fors=7+@w —7)9,0< 6 < 1,

@ (g s\r-1 u? — g2
oy < () e ()

<exp{—(s—u)[u—r;1J}
- exo{(1- 0},

by virtue of the definition of 7 and the identity ¢"(u) = —[u — (r — 1)/ulq’(w),
where

3q q//
q/2 :

ay =

Thus,
(3.13) 7(7.) < Z ( — 7')1 |'Y(J)(u)| ( - 7') (4)(u)J(au)

where

1
J(a):= / %1~ 4o,
0
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Set
. . 6q4“j i
fi= (—1)1 [’YO)"'WJs J=0,192'

Lemma 3.4 and (3.9) imply (1) ¢q” < ¢ on [u,, 00); furthermore (2) fi— 0as
u — o0, and (3) v = —6q. Using the last three facts, one obtains the following,
step by step:

0<f3, f<0, O0<-fa<fi, fi<0, O0<-fi<fy, fo<O.
So, f; < 0, that is,

u—r)3-f

(3.14) [¥(u)| < 6q - ( 3

for j = 0,1,2; in view of the definitions of v, 7 and g, (8.14) holds for j = 3,4
(when it turns into an equality).

By Lemma 3.4, a,[= 3q q"/q"%] < 8, foru > v/r — 1; also, J(a) 1 since e~ 1
in a, for each 6 € (0, 1); hence J(a,) < J(3) = 2(e® — 13)/27 if u > p[> v —1,
see (3.9)]. Gathering now (3.12)~(3.14) and the definitions of A,(x), F(¢,u) and
7, we complete the proof of the lemma for the case u > u,.

Consider next the case r'/2 < u < y,. Then, by Lemma 3.5,

A,(u) = Cru—é:](;_)_’

where C, was defined in the beginning of the proof of Theorem 2.4. Set

g(u) = —ug(u)X (u) = 2q(u) — we /2,

where A(u):= In A;(u). Calculations show that g'(u) < 0, for u € (0, (r + 2)*/2);
so this is true for u € (0, y,], according to (3.9). Hence, ug(u)\' () 1 on [r!/2, u,1.
Therefore, A, attains its maximum on [r/2,;,] at one of the endpoints [if A,
attains its maximum on [r!/2, 4,] at some uy € (r/2, 4,), then N (up) = 0 and
N(u) > uoq(uo)N (up)/[uqw)]l = 0, for u € (ug, u,); this is a contradiction].

By what has been proved, A,(u,) < 2¢3/9. Using the identity g,,2(0) = rq,(0),
one obtains, by induction,

[a(0) :=1a:(0) < 5 ()"

We can assume that g(r1/2) > 0, that is,

1/r\r/2
e > 3(3)
[otherwise, for u € (r1/2, u,], one has g(u) < 0 (since g'(x) < 0) and so ) (&) > 0,
Ar(w) < A(p) < 2¢3/9). These remarks show that the only remaining pos-
sibility is g(0) < (2e3/9)q(r'/?), or, equivalently (see the definitions again),
A/(r'/?) < 2¢3/9, which completes the consideration of the case r'/2 < u < p,.
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Consider, finally, the case 0 < u < r'/2, Then, by Lemma 3.5,

A,(u) = m;lgu—) < Ar(\/;) < 2?93,

as just shown. O

Now, we can easily complete the proof of Theorem 2.4. It follows immedi-
ately from (3.6), Lemma 3.6 and the definition of A,. O

PROOF OF COROLLARY 2.5-2.7. The proof is trivial.

PROOF OF THEOREM 2.8. Inequality (2.1) is implied by Theorem 2.2. In-
equality (2.6), a particular case of Corollary 2.10 (proved later), shows that
x5 > (d — 1)!/2 when 6§ < 0.5. Set g(u) = cq(u + h) — q(u), where

2¢8 Inc
h=h = vd-1.
W= ow >
Then

&) =—q')+cq'(u+h)(1+h")
> —q'(u) +cq'(u+h),

d-1 2 2
gwu%’/2>1-¢ (1 + i—l) exp {22— _(u +2h) }

>1—cexp{—(u—d—;—1)h}=0.

Hence g'(z) > 0, and so, g(u) < 0, Vu > (d — 1)1/2, which gives (2.2).
Again using (2.6), one has x5 — (d — 1)'/2 — 0o as 6§ | 0 and thus obtains
(2.3) and (2.4). Finally, (2.5) is obvious. O

PROOF OF THEOREM 2.9. Take 1 <d <r < oo and set a = (d — 1)!/2 and
b=(@-1)"Y2 Then
! _ 2
_ (d-r)u <0

(‘“2&3) " @ b wra)ard) =

ifu > —a; hence, f3(t)f,(s) > fr(t)f4(s) when —a < s < t; if s < —a, then fy(s) = 0,
so this case is trivial. It remains to note that f,.(t) — f.(t) asr — oo, V¢ € R. O

PROOF OF COROLLARY 2.10. If a family has a monotone likelihood ratio,
it is stochastically monotone [see Keilson and Sumita (1982)]. O
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APPENDIX

Consider, as defined in Eaton (1970, 1974), the class F' of all even differ-
entiable functions f such that, for w(x) = f(a + byx) + f(@a — by/x), w'(x) is
nondecreasing in x > 0; a,b € R.

PROPOSITION A.1. C?% . =F.

PROOF. Remarks in Eaton (1974) and (3.2) imply C2%, C F, so we need
to show only that F C C2,. Take any f € F. Set f,(u) = Ef(u + ¢ /m),
m = 1,2, ..., where £ is a bounded symmetrically distributed random vari-
able with a sufﬁmently smooth density. If, say, & ~ N(O 1), then E¢4 = 3, and
the Taylor expansion gives
(A1) Efin(a +b&1) — fm(a) —fu(a)d?/2 = [fP(a) +0(1)]3b%/24,
where b — 0. Since f;, is a mixture of functions belonging to F, the argument in
the beginning of the proof of Lemma 3.2 shows that Ef,,,(a + ;) > Efy,.(a + bey),
a,b € R. Comparing (A.1) with the analogous formula with ¢, instead of &;, we
see that £ > 0, and so f//'(u) is nondecreasing in u. Hence, setting A3f(u) =
fw+3)—3f(u+2)+3f(u+1) — f(u), one has, Vu > 030 € (0,3), A3f(u) =
filtu +6) > fo'(u) > fu'(0) = 0. Note that f,(u) — f(u), Vu € R as m — oc.
Thus, A%f,,(u) is bounded in m for any u € R, and, therefore, so is f.//(x). By
Helly’s theorem, f,/ — h weakly on each compact set in R for a subsequence
of values of m — oo and a nondecreasing function 4. This and (3.2) with f,, in
place of f imply that

() = F(0) + But 4 3 / (ju| - 8)2dn(), ueR,
t>0

for some B € R. Since, at the same time, f,(u) — f(u), it is easy to observe
that dh(t) = df"(t), and so f"” is nondecreasing, that is, f € C%,. O

It can be seen that (), defined in the proof of Theorem 2.4, is the smallest
upper bound for P(v/nR > u) that can be extracted from Theorem 2.1. The
following proposition therefore means that the constant 2¢3/9 = 4.463... in
(1.3) is the best possible that can be obtained from (1.2).

PROPOSITION A.2. Q,(u) ~ (2e%/9P(x, > u), u— oo.

PROOF. By Lemma 3.5, Q-(u) = W,(u), for u > p,. Now set t = u~1(u), so
that u = u(¢), where u(¢) was defined in the proof of Lemma 3.5. Using (3.11),
the definition of F(¢,u) and (3.4), one can conclude that

Q-(u) _ F(tu) N %(E)r~2exp{u2_t2}

P(x- > u) - Crq(u) 2

2 2 3
~3 exp|(u —t)u] = 5 exp{ 7((:)) (¢ )} 0
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TABLE 1
d 1 2 5 10 20 50 o0
%5 1.96 2.45 3.33 4.28 5.61 8.22 vd +1.16
X5/ 2.54 3.00 3.85 4.78 6.10 8.69 vd +1.61

Inequality (2.4) means that the larger the dimension is, the better (2.1)
works (the same tendency takes place when é§ decreases); Table 1 compares
the values of x5 and x5/, computed for § = 0.05.
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