MULTIVARIATE FUNCTION ESTIMATION 177

REFERENCES

DE LEEUW, J. (1982). Nonlinear principal component analysis. In COMPSTAT 1982: Proceedings
in Computational Statistics (H. Caussinus, P. Ettinger and R. Tomassone, eds.) 77-86.
Physica, Vienna.

DoNNELL, D., BuJa, A. and STUETZLE, W. (1994). Analysis of additive dependencies and concurvi-
ties using smallest additive principal components. Unpublished manuscript.
FRIEDMAN, J. H. (1991). Multivariate adaptive regression splines (with discussion). Ann. Statist.

19 1-141.
KETTENRING, J. R. (1971). Canonical analysis of several sets of variables. Biometrika 58 433—451.
WaHBA, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia.

BELLCORE
445 SOUTH STREET
MORRISTOWN, NEW JERSEY 07962-1910

TREVOR HASTIE
AT&T Bell Laboratories

Professor Stone has done an admirable job in leading us through the difficult
mathematics needed to build a firmer theoretical framework around high-
dimensional nonparametric regression and density estimation techniques.
ANOVA decompositions of regression surfaces are no longer confined to the
case when the predictors are categorical; we can now play the same games
in function spaces. Gu and Wahba (1991) describe similar decompositions in
reproducing-kernel Hilbert spaces using tensor-product smoothing splines.

This comment moves us to the opposite boundary of the field and describes
some computational tools for expressing and fitting tensor-product spline mod-
els of this kind in the S language [Becker, Chambers and Wilks (1988)].

In S there is a formula language for expressing models, primarily aimed at
traditional ANOVA and linear models. For example, the formula ~ a % (b + c)
expands to ~ a+ b+ c +ab + a:c and expresses a model with main effects and
interactions. Typically the variables a,b and c are factors. The formula is con-
verted into a model matrix where the factors are coded via contrast matrices,
and their interactions as matrix tensor products of these. The contrast ma-
trix for a factor is a basis for representing the piecewise constant effect as a
function of its levels; this is the default behavior for factors, and in fact a de-
fault contrast coding is used. This notion is extended by allowing the following
in formulas: (i) variables representing matrices and (ii) expressions that are
calls to functions, which evaluate to matrices.

We now elaborate in the context of regression splines.

There are some primitive functions in S, for example, poly(x,...), bs(x,...)
and ns(x,...), for producing polynomial, B-spline and natural B-spline bases,
respectively. The function bs( ) (which we focus on here) has additional argu-
ments relating to knot placement and degree, and returns a matrix correspond-
ing to the specified B-spline basis evaluated at the values of x. For example,
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bs(x, knots = c(1.5, 3)) defaults to a cubic-spline basis with two interior knots.
More simply, bs(x, df = 6) will return a B-spline basis matrix with three inte-
rior knots selected automatically at the appropriate interior quantiles of the
supplied x. The argument df = 6 refers to the degrees of freedom of the basis,
or number of linearly independent columns (a column corresponding to the
intercept is excluded).

Using these basis functions in the formula language, we can express poly-
nomial tensor-product spline models in a natural way. For example,

~ bs(w,S) + bs(x,5) + bs(z,S) + bs(x,5):bs(z,5),

or, more simply,

~ bs(w,5) + bs(x,5) x bs(z,5)

represents a model with main effects plus a selected tensor-product interaction
term. Formulas such as these are used in the modelling software, as in the
following example:

gln(y ~ bs(w,5) + bs(x,5) xbs(z,5), family = binomial).

This fits a logistic regression model to the response variable y. The right-hand
side of the model formula is used to construct a model'matrix built up from the
specified main effect and tensor-product B-spline basis. The family = binomial
argument implies a logistic link function by default, but other links are possi-
ble, for example, family = binomial(link = probit). Among other families are
poisson for log-linear models, gamma, as well as specialized families such as
robust for fitting models resistant to outliers.

Although no explicit care is taken to orthogonalize the appropriate collec-
tions of terms in the model, this happens automatically. The columns of the
model matrix corresponding to the modelling formula are arranged in an hi-
erarchical order, and the successive orthogonalization is achieved when the
model is fit by iteratively reweighted least squares via the Gramm—Schmidt
method.

Models can have terms of mixed types, such as factor-by-spline interactions.
Facilities are available for plotting the fitted terms in a variety of different
ways. Stepwise model selection procedures are available at a high level. One
can specify the highest-order model, such as

full « glm(y ~ bs(v,5) x bs(x,5)  bs(z,5), family = binomial)

and then step(full) will search for the best-fitting submodel in a hierarchical
fashion. Note that in this case the number and placement of knots is fixed per
variable, and one is looking for the best ANOVA subspace.

The software and modelling tools are described in detail in Chambers and
Hastie (1991). As yet no software is provided for density estimation or condi-
tional density estimation, but these could easily be built on the current facil-
ities.
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I wish to thank Buja and Hastie for their interesting and stimulating re-
marks. In particular, Buja’s improvement over my Lemmas 3.3 and 3.4 is very
elegant and may be useful in other contexts. His joint work with Donnell and
Stuetzle on the analysis of additive dependencies in data sounds intriguing,
and I look forward to reading about it soon.

Hastie gives a brief but excellent description of the formula language in S
and the ease with which it can be used in the context of linear and general-
ized linear models to specify main effects as polynomial splines and selected
interactions in terms of the corresponding tensor products. He points out that
stepwise model selection procedures are also available in S for determining
which main effects and interactions to include; that is, in the notation of the
present paper, for adaptively choosing S. As he also notes, however, these fa-
cilities are not convenient for selecting the number and placement of knots.
The high-level stepwise model selection facilities that are currently available
in S are compatible with the spirit of the theory developed in the present pa-
per, but not with that of methodologies such as MARS that are adaptive at
the level of the individual basis functions, that is, that adaptively select the
individual knots and tensor product basis functions.

Recently, in Kooperberg, Stone and Truong (1993b), the theory developed in
the present paper has been modified to handle hazard regression, which can
be nonproportional and which includes a smooth model for the baseline hazard
function. The corresponding MARS-like adaptive methodology is described in
Kooperberg, Stone and Truong (1993a). Kooperberg has written a program in C
that implements this methodology and an interface based on S. The combined
software is available from statlib by sending an email with the body send hare
froh S to statlib@stat.cmu.edu. Concurrently, Kooperberg and Stone (1993)
described similar methodology and software for hazard estimation without
covariates. Kooperberg, Truong and I are now working on the theory and
methodology for logspline spectral density estimation, while Bose, Kooperberg



