The Annals of Statistics
1994, Vol. 22, No. 1, 21-38

BARTLETT TYPE IDENTITIES FOR MARTINGALES!

BY PER ASLAK MYKLAND
The University of Chicago

Bartlett type identities are shown to exist for martingales. As appli-
cations, we give a cumulant-based proof of the martingale central limit
theorem, and we give an algorithm for calculating approximate cumulants
of the least squares estimator in the AR(1) process.

1. Introduction. The Bartlett identities for moments and cumulants of
log likelihood derivatives [Bartlett (1953a, b), Skdvgaard (1986), McCullagh
(1987)] are a very powerful tool in likelihood inference, leading to some quite
general results in that area. For a good description of some of their conse-
quences, see McCullagh (1987), Chapters 7 and 8.

This paper shows that these identities also apply to martingales. The mar-
tingale takes the place of the score function, and higher-order derivatives of
the log likelihood are replaced by measures of variation of the martingale.

Although the martingale identities are unlikely to yield results which are
as powerful as the likelihood identities, we believe that they are a useful tool
for both theoretical and computational purposes. As an example of the former,
we use them to prove the martingale central limit theorem (Section 4). As an
example of the latter, we present an algorithm for calculating cumulants of the
least squares estimator in the AR(1) process (Section 5). We also believe the
identities will be useful for computations in survival analysis; in fact, special
cases of the third Bartlett identity for martingales are given in Hjort [(1985),
Lemma A.2] and Gu [(1992), page 411] for use in Cox regression.

The identities themselves are presented in Sections 2 and 6, and in Section
3 we give a heuristic proof based on likelihood theory. The real proof is in
Section 7.

2. The Bartlett identities for discrete time martingales. In likeli-
hood inference, these identities concern derivatives of the log likelihood ratio
L,(6) with respect to 6 (¢ denotes number of observations or, more generally,
time). If the parameter 6 is scalar, the two first such identities are EL = 0 and
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EL? + EL = 0. It then continues
(2.1) EL3 +3ELL +EL =0,

esee

(2.2) EL*+4ELL +3EL? + 6EL2L. +EL =0

and so on by taking further derivatives of the equation E exp(L) = 1. Sim-
ilar identities hold for cumulants; the fourth Bartlett identity, for example,
becomes

(2.3)  cumy(L) +4 cov(L, L) +3 var(L) + 6 cum(L,L,L) +EL = 0.
In the case of several parameters, one can set

OPL
2.4) Ut({al’ cs0p)) = 90 tag N
231 ]

The Bartlett identities are now as follows: for any set T of indices, and subject
to regularity conditions,

(2.5) ZEUt(vl) - Ut(vp) =0
T
and
(2.6) Y cum (Ui(vn), ---, Ur(wp)) =0,
T

where the sum extends over all partitions v | - - - [vp of the set T. Our notation is
roughly as in McCullagh (1987); see also Speed (1983) and McCullagh (1984).
As can be seen from these references, cumulants can be defined in terms of
moments in a similar fashion: If Wy, ..., W, are random variables, then

@D em(Wy... W)= 3 (-1 p-[[E| [[W
{1,...,q}

i=1 JEY;

Conversely, moments are given from cumulants by

14
(2.8) EWy---Wy)= > ] cum(W;,j€w).
{1,...,q} i=1

Note that if the elements of T are not distinct, one has to pretend that they
are in order to get the correct coefficients in the sum. A nice explicit notation
for displaying low-order Bartlett identities is given on page 202 in McCullagh
(1987).

As far as the identities for martingales are concerned, we first discuss the
discrete time d-dimensional zero-mean martingale ¢; = (¢}, ..., e;i), where

t
(2.9) =) X3
n=1
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The optional variation of this martingale for an index set v = {ey, ..., ap} is

t
(2.10) [, 0] =) Xi - X,

n=1
Similarly defined is the cumulant variation

t
(2.11) K(6, ..., 0%), =) cum(X2, ..., XR? | Fyoy),

n=1

where (F;) is a filtration with respect to which ¢ is a martingale.
The crux of our results is then that (2.5) and (2.6) hold, where the U’s can
be either :

2.12) Us({aw, ... ap}) = (1P~ (p = 1)1, ..., 0],
[note that U({a}) = £¢], or
U({a}) = ¢,
U({o1, ..., 0p}) = —k(€>, ..., 0%),, forp>1.

(2.13)

Before going into general results, it is worth considering the low-order iden-
tities for a scalar martingale. The two first identities are not exactly news,
being E¢; = 0 and (four different variations over the theme) var(¢;) = E[¢, £};.
The third and fourth identities, however, are more interesting. For example,
the cumulant identities for cumulant variations are

(2.14) cumg(£;) — 3 cov(4, k(£,£);) — Ex(£,£,£); = 0

and

cumy(£;) — 4 cov(4, k(¢,6,£);) + 3 var(k(¢,£),)
(219 — 6 cum(£, £, 5(6,£);) — Ex(£,6,£,£); = 0,
whereas the cumulant identities for optional variations are
(2.16) cumg (&) — 3 cov(4, [¢,€];) + 2E[¢,¢,4), = 0

and

cumy(£) + 8 cov (&, [¢, £, £]:) + 8 var([¢, £):)
(2.17)
— 6 cum(4, &, [¢, €];) — 6E[¢,£,£,£); = 0.

There are, of course, regularity conditions for this to hold. We shall explore
these in Section 6. In the process, the results will be related to general cadlag
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martingales, thus covering, for example, the martingales occurring in survival
analysis.

The main result of the paper is Theorem 3 in Section 6. Specialized to
discrete time martingales, it yields the following result.

COROLLARY. Let ¢; be the zero-mean martingale given in (2.9), and let U be
defined by (2.12) or (2.13). Suppose, for all n < t, that E|X;" ---X,°| < oo for
all {a1, ...,aq} C T, and that E|U,(v1) - - - Un(vp)| < oo for all partitions v of
T. Then (2.5) holds. If, in addition, E|Uy(v1)- - Upn(vp)| < oo for all partitions
v of all subsets of Y, then (2.6) also holds.

3. Relationship to the likelihood identities. The proof which we are
giving for the martingale identities uses stochastic calculus and has little to
do with likelihoods. To provide an explanation of why we still refer to them as
Bartlett identities, we give a heuristic derivation of them based on likelihood
theory. This is done by setting up artificial inference problems.

We consider a one-dimensional discrete time martingale with mean zero,

t
3.1) b= X,
n=1

the argument being similar in the d-dimensional case.

Consider first the identities for optional variations. A derived martingale
[which can also be used in proving the CLT, cf. Hall and Heyde (1980), Chapter
3lis

t
3.2) m(6) = [J(1+6X,).
n=1

If we suppose that the X,’s are bounded, 1 + 0X,, is positive for small 0. Since
m:(#) has mean 1, it can therefore be viewed as a likelihood function for 6.
Also, ’

Inm,(8) = }t:ln(l +60X,)

n=1

t oo
= — —1_1_ P XP
(3.3) =Y Y (- SOPXE

n=1 p=1
= Z(—1)P~110P (e ....0:,
) p ‘,__/
p times

where 6P in this instance denotes the pth power. If we are estimating 6 on the
basis of the likelihood (3.2), (3.3) then gives that the pth derivative of the log
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likelihood at 6 = 0 is

9P
705 0 m(0)| =(-1P(p-1fe ..., 4,
6=0 NARGLAL
p times
which is the same as (2.12). One then gets (2.5) and (2.6) from the Bartlett
identities for likelihoods.

The argument for the cumulant variations is similar. Let K,(6) be the con-
ditional cumulant generating function of X, given F,,_;, that is,

(3.4)

92
(8.5) Ky(0) = = cum(X,,X,|Fn- 1)+ cum(X,, X, Xy | Fr1) +

Since (again supposing that X,, is bounded)
(3.6) Elexp(6Xy — Kn(0))|Fn1] =1
for 6 in a neighborhood of 0, it follows that

3.7 mt(B) = ﬁ exp(0Xn -K, (0))

n=1

is a likelihood in such a neighborhood. Hence
(3.8) In m,(6) = 6¢; — o%(e £), - -o 3k(6,0,0); —

is a log likelihood, and the derivatives at 8 = 0 are ¢, — (¢, £);, — (£, £,£);, ..
This corresponds to (2.13), whence the Bartlett identities for likelihoods yield
(2.5) and (2.6) for the cumulant variations.

4. A proof of the martingale central limit theorem. As an example
of an application of the Bartlett identities, we show how we can use them to
derive central limit results.

Consider a triangular array of discrete time martingales

4.1) Z XN 1<t<ty.

We are proposing to give a proof of the following well-known theorem [see, e.g.,
Hall and Heyde (1980), Theorem 3.2, page 58; and Helland (1982), Theorem
2.5, page 82].

“ MARTINGALE CENTRAL LIMIT THEOREM (Asymptotically ergodic case). Sup-
pose, as N — oo,

(4.2) [N, V], —p 02,
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o? being nonrandom, and that the following asymptotic negligibility condition
holds:

4.3) E max |XV|—o0.

1<n<iy
Then € converges in law to N(0,0?).

PROOF. Assume first, for all nonnegative integers, p,q and r, the uniform
integrability of products of the form

q
.9 (@) (jmax wN) (.6,

1<n<ty

We shall undo this condition afterwards.
We first establish the limiting behavior of joint cumulants of e{;’, and optional

variations [V, ..., ¢V],,. Since, for k > 2,
k-2
(4.5) .[e", v V| < (max lX,ﬂ"l) [V, V],
N, s’ 1<n<ty
k times

it follows from the uniform integrability of terms of the form (4.4) that such cu-
mulants are always well-defined and that the limit of any such cumulant is the
cumulant of the limit. Since (4.2)(4.3) and (4.5) also imply that [V, ..., ],
—p 0 for k£ > 3, one can conclude that all cumulants involving optional vari-
ations of order at least 2 converge to zero, with the exception of E[¢¥, N s
which converges to o2.

Turning next to the cumulants of £, consider first cum,(¢}) for p > 3. The
identity (2.6) for optional variations reexpresses this cumulant as a sum of
cumulants, each of which involves at least one optional variation. Also, no
term is of the form E[¢V,¢V],,. Hence, by the above, all these terms tend to
zero, and so cum,(¢) ) — 0. On the other hand, var(&) = E[¢V, N],, — o2 and
E¢Y = 0. Since (¢ ¥ is uniformly integrable, it follows that £, converges to
N(0, 02).

It then only remains to deal with the assumption of uniform integrability
for terms of the form (4.4). Assume first that

N
<
4.6) . sgp [Dax Xy <C,

C being nonrandom. One can then, without loss of generality, also assume
that [V, V], is bounded by a nonrandom quantity, since £, can be replaced

by Y, where

4.7 v = inf{t: [V, ], > 0% + 1} Aty
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This is because (4.2) implies that P(ry # ¢ty) — 0. The uniform integrability
of (4.4) then follows from Burkholder’s inequality [see, e.g., Hall and Heyde
(1980), Theorem 2.10 (page 23)].

Fmally, (4.6) can be assumed without loss of generality by embedding
ZN .. ﬂtN in a martmgale ,0 < t < ty, which lives in continuous time and
has contmuous sample paths [cf. Heath (1977)]. This martingale is stopped
at the time oy when |2V — 7, It J| exceeds C (oy being ty if this never happens)

|£] being the integer part of £. One then replaces the martingale o, .. &, N by

LY or -+ -+ E aoy- This can be done since
Ploy#ty) = P(|EY, -2, | > C)
< lE [ — 2o
4.8) S E |2 = Tou |
< %Emax 2
-0,

[on] being the smallest integer exceeding oy. Here we have used that since
lon| is measurable with respect to FX [(FN) being the filtration generated

by (ZM)],

4.9) (Iefaul ZLUNJl | ) lﬂNJI

This completes the proof. O

5. Inference in the AR(1) process. Consider the process
(51) Xt.,.] =0Xt+€t+1, t=0, 1,2, ey

where |6| < 1 and the ¢’s are i.i.d. with mean zero. The least squares estimator
of 6 is given by

ét _ Ef;é Xan+1 0= 4
= = = =g
S0 X3 Yo X7

where /; is the martingale given by ¢; = Ef;éXneMl.

Suppose one wants to find approx1mate cumulants of v/#(9;—6). This reduces
to finding cumulants of 4; and Zn_ 2. We shall describe how this can be done
using the martingale Bartlett identities.

The calculations involved in finding these cumulants are of a nontrivial
complexity. The third cumulants of ¢ and v/#(d; — 6) are known [cf. Phillips
(1978) and McCullagh (1987), Example 3.13 (page 83), for Gaussian ¢ and
Mykland (1993) for general ¢], but the fourth cumulant is only known in the
Gaussian case [Phillips (1978)]. Higher-order cumulants are not known.

and ét—
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We shall here demonstrate that one can use symbolic manipulation soft-
ware to find formulas for all the relevant cumulants as a function of ¢,6,X,
and F (F being the distribution of ¢). In other words, one can, for example,
algorithmically find the symbolic expression for the function (¢,0,X,, F) =
cum;(¢;). This is different from finding the expression for v at a fixed nu-
merical value of the argument ¢ [finding, say, (100, 8,X,,F) as a function of
three symbolic arguments]. This latter task can presumably be accomplished
by representing X; as ¢’X, + X _, 6" "¢,. It is not clear, however, how this
approach could be used to algorithmically find % as a symbolic function of
t,0,Xo,F).

To describe the algorithm for doing this, let # # 0, and set

t—1
(5.2) g}a, B, v, 6) _ Z 0a(t—-1—-n)+7(t _ n)BX,‘,’(sﬁ;l _ Ee&)
n=0
and
t-1
(5.3) ft(a, By _ Z got—1-n)+y (t _ n)ﬂX,'Z.
n=0

Cumulant variations are now given by (for p > 1)
K'(e(al:ﬂl:'h»&l), . ,e(apvﬁpﬁm&p))t
(5.4)

=cum(e’, .. .,eﬁp)f}(“”"'m"’ﬁ‘+"'+ﬁ"’7‘+"'”").

On the other hand, f;’s can be represented recursively in terms of 4’s and other
f¢’s, as follows (see Section 8 for a derivation). For v > 1,a # v,

ﬁ(a, B, ‘7)=0~/—a (1 _ 07—&)—1

X [eattﬂX'V 0‘7‘X76g 0+ Z( ) l)ﬁ—kft(a,k,‘y)

k=0
(5.5) B -1
S ( ) (,) 1) (gleki 1D 4 gk i)
k=0 J—O
_ 6ﬁ OZ ( )(Z(‘Y»OJ ,Y=J) +f(’7 OJ)Ee“/—J)]
Jj=0

where 63,9 is the Kronecker delta. For a = v,
ﬁ(ﬂt» B,a) =X3¢0atﬂ(0, B,0)

a-1 6+1
(5 6) + Zl i 1 IB + 1 B .(g(a)i:j» a"'j) +f‘(a»i:j)Eea—j)
: & ,3+ 1 i B+1-i\%¢ t

J=0 i=1

__5@02( )(Z(OI,OJ, —j)+f(a 0N —J)

Jj=0
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where B;, is the kth Bernoulli number [see, e.g., Gradshteyn and Ryzhik (1980),
Sectionis 0.121, 9.61 and 9.71 (pages 1 and 1026-1080)]. Boundary conditions
are given by the values of £;**?;

g+l 5 Bl
©80 _ ¢t & 1 (8 G-k
¢ fe —ﬂ+1+2+§k+1<k Brnt™™,
with ft(o’ 0.9 _ ¢ and, for a #0,
ft(a ,6,0)
(5.8) i (k)[ gotk+1) EAG@+1) (t 1) ( _j)!ga(t+1+k—’j+l)] _1
k=0 (1 0a)k+1 Jj=0 (t + 1 "‘J) (1 0a)k_j+l ’

where the S% are Stirling numbers of the second kind [see, e.g., Abramowitz
and Stegun (1964), Section 24.1.4 (pages 824-825)].

Assume first that Xj is nonrandom. The algorithm for computing cumulants
is then roughly as follows:

ALGORITHM 1. This computes

(ay, B1, M1, 61) (ap, Bp, ¥p» 6p) (1,115 01) (Cq» Mg» tg)
(5.9 cum (etalﬁl’)‘l 1,.“,4 p» Bp> Vp P,f;(l'rll L1,..',f;(q g Lq)'

Step 1. If (p,q) = (1,0) or if one of the /’s has the value 0, the algorithm
terminates and returns the obvious value.

Step 2. If ¢ = 0, use (5.4) and the Bartlétt identities (2.6) with cumulant
variations to reexpress the desired cumulant as a sum of terms of the form
(5.9). Then call Algorithm 1 recursively for each term. The algorithm returns
the sum of these values and terminates.

Step 3. Reexpress f; €ums ) with the help of (5. 5) or (5 6). Expand the desired
cumulant as a linear combination of cumulants. Cumulants then involving X
or fv™9 gre 0, unless they are of order 1 [in the ease of £;™?, (5.7) and
(5.8) are then used]. For the rest, call Algorithm 1 recursively for each one.
The combined results are returned, and the algorithm terminates,.

To see that this algorithm converges, consider

(5.10) p=p+q+Y (Bi+27)+ ) (m+2u).

It is easy to see that Step 2 or 3 decrements p by at least 1 before recursively
calling the algorithm. This shows the result since the algorithm will terminate
at the latest when p = 1.

~ If one does not want to assume that X, is nonrandom, one can set up a
‘dummy time —1, with F_; as a 0-1 o-field. One can then treat 0, X, — EX,,
Xy — EX,, ... as a martingale which does not evolve after time zero, and the
algorithm extends easily to take care of this. Alternatively, of course, one
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can use the formula for computing cumulants from conditional cumulants
[Brillinger (1969), Speed (1983)].

The algorithm can be carried out in MACSYMA or Mathematica [see, e.g.,
Heller (1991) and Wolfram (1991), respectively]. For example, we used it in
MACSYMA to find the fourth cumulant of ¢; to first order:

cumy () = ¢{9(E<?)? var (£%)(1 - 6%)2
+ 60(Ee?)*6%(1—6%)~°

(5.11) + cumy(e) (1 — 6*)~1(Ee* + 66%(1 — 6%) "1 (Ee?)?)
+ 12(E%)2E(0%(1 - 0°) 2 + 20(1 - 62) 71 (1 - 6°) 1) }
+ oft). :

A procedure similar to Algorithm 1 can be used to find moments. In Step
2, we then use (2.5) rather than (2.6), but still with the cumulant variations.

6. The Bartlett identities for general martingales.

6.1. Variation measures. Our discussion in the following draws on the
“general theory of processes.” The main reference that we shall use for this is
Chapter 1 of Jacod and Shiryaev (1987); in particular, we shall use without
further definition a number of concepts as they are defined in that work, such
as cadlag (page 3), local martingale (page 11), semimartingale (page 43) and
compensator (pages 32-33). We also assume the “usual conditions” of right
continuity and completeness (page 2, Definitions 1.2 and 1.3). These can often
be dispensed with, however; see the remarks at the end of this section.

DEFINITION. Suppose that Y; = (Y}, ...,Y?) is a cadlag semimartingale.

The optional variation for Y; and an index set v = {ay, ..., 0} is the cadlag
version (modification) of the process defined by

LY = i Y -Y?
(6.1 [Yo, ... Yol max(kqnlti)logg( ta Y5 )

where 0 = ¢y, 1,2, ... are partitions of [0, ¢]. We shall at times refer to [Y*1, ...,
Y], by the symbol [Y;v];.

The following result should clarify the structure of the optional variation.
PROPOSITION 1. The optional variations are well defined for any cadlag

semimartingale Yy, in the sense that the limit in (6.1) is independent of the
sequence of partitions and has a cadlag modification. The optional variations
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are semimartingales, and their form is

(6.2) p=L[Y =Y

(6.3) p =2 [Y%, Y5 = (Y*e,YP), + Y AYZ AYP
s<t

(6.4) p=3: (Y™, . ., Y*], =) AYM...AY?,

s<t
Y; ¢ being the continuous martingale part of Y{.

For the notion of continuous martingale part, see Jacod and Shiryaev [(1987),
Proposition 4.27 (page 45)]. Note that (6.2) is obvious and (6.3) is a standard
result [Jacod and Shiryaev (1987), Theorems 4.47 (page 52) and 4.52 (page
55)]. The proof of (6.4) is similar; for completeness we have included the ar-
gument among the proofs in Section 7. Note that if the partitions are taken
tobe 0,t1 At,ta AL, ..., for all ¢, the convergence in (6.1) can be made uniform
on compacts in probability (see the proof of Proposition 1).

There are two more variations to be defined.

DEFINITION. Let ¢ = (¢}, ...,£8) be a cadlag local martingale. If v =
{a1, ..., ap} is an index set, the predictable variation (£*1, ..., %), or (;v), is
the compensator of [{;v);. The cumulant variation k({*, ..., L%); or k({;v); is
given by

(6.5) k(€4 ) =Y (1) g - D)[(Gvr), -, (Bug)]es

where the sum extends over all partitions vy|- - - |vg of v.
The cumulant variation x(¢;v) relates to (¢;v) the way cumulants relate to
moments [cf. (2.7)].

The criteria for existence are as in Section 3b (pages 32-35) of Jacod and
Shiryaev (1987), and we can invert (6.5) using the cumulant identity (2.8) [see,
e.g., Speed (1983) and McCullagh (1984, 1987)].

PROPOSITION 2. If |[v| > 2, then ({;v); is defined if [4;v]; is of locally inte-
grable variation, while k(4;v); is defined if [L;w]; is of locally integrable varia-
tion for all w C v,|w| > 2. Under the conditions stated for their existence, ({;v);
and «(£;v); are predictable processes of locally integrable variation. Also, under
the conditions stated for the existence of «(f;v);,

(6.6) (o) = _[6(bv1), ..., 6(G0p)]es

where the sum extends over all partitions v,|---|vp of v.

Using formulas (6.2)—(6.5) on a martingale of the form (2.9), the definitions
clearly reduce to (2.10) and (2.11), in the latter case with the help of cumulant
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identities énd since
t .
(6.7) (@, ... %) =Y E(XP - X3P Fosy).
n=1

The opposite extreme occurs when 4; is quasi-left continuous, in which case
k(£;v); = (£;v);. This happens, notably, in the survival analysis setup. For the
Nelson—Aalen estimator, for example [see, e.g., Aalen (1978) or Fleming and
Harrington (1991)], the “score function” is

t 13
(6.8) b= / Y, 1dN, - / s ds,
0 0

N, being a éountin,g process with intenSify Y:\: (Y being predictable and )
nonrandom). Up to the time when Y; becomes zero, ¢; is a martingale, and its
variations are given by

: - ¢t .
(6.9) e, ....€: = / Y;? dN,
—— Jo
p times
and
.t
(6.10) (... 0= / Y1), ds,
Nt e’ 0
p times

the latter i)eing also the value of I (N ) YR
In the special case where /; is a continuous martingale, [{;v]; = k(f;v), =
(&) = 0 for |v] > 2.

6.2. The Bartlett identities. Consider the process
(6.11) Mt(T) = ZUt(Ul) "'Ut(’Up),
T

where U; is defined either by (2.12) or (2.13). The basic result is now that
M,(T) is a local martingale.

THEOREM 1. Suppose that ¢; is a cadlag local martingale and that U, is
defined by (2.12). Then M,(Y) is a local martingale.

THEOREM 2. Suppose that {;: is a cadlag local martingale and that U, is
defined by (2.13). Assume that [£;v]; is of locally integrable variation for all
v C T,|v| > 2. Then M(Y) is a local martingale.

. Getting (2.5) and (2.6) to hold now requires £, = 0 and is otherwise purely
a matter of integrability conditions. First of all, EM,(T) = 0 if the set

(6.12) A= {M.(T),r stopping time, 7 <t}
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is uniformly integrable [cf. Jacod and Shiryaev (1987), Proposition 1.47 (pages
11-12). The following is then obvious, the cumulant part following from the
moment part with the help of the method outlined in Example 7.1 (page 222)
of McCullagh (1987).

THEOREM 3. Let ¢y = 0. Let Mi(T1),0 < s < t, be defined by (2.12) [re-
spectively, (2.13)], and assume that the conditions of Theorem 1 (respectively,
Theorem 2) hold up to time t. Suppose that the set A in (6.12) is uniformly
integrable. If, for all partitions v of T,

(6.13) E|U(v1) -+ Up(vp)] < o0,

then (2.5) holds. Similarly, if (6.13) holds for all partitions v of all subsets of
T, then (2.6) holds.

Finally, note that with respect to the “usual conditions” mentioned at the
beginning of this section, these are clearly unnecessary in Theorems 1-3
provided ¢; and the (optional or cumulant) variations can be taken to be
cadlag anyway.

7. Proofs for Section 6. A main tool in the proofs will be Itd’s formula.
This result comes in several versions; we shall use the general semimartingale
form. For reference, see Jacod and Shiryaev [(1987), Theorem 4.57 (page 57)].
Another feature which will be common to the proofs is that we shall assume
that all index sets have only distinct elements. This assumption is notationally
convenient and without loss of generality.

PROOF OF PROPOSITION 1. As mentioned just after the statement of this
result, we only need to prove the proposition for p > 3. We shall prove the
stronger statement of uniform convergence on compacts in probability, that is,

ST (Ve ne - You) = [T Ave

i a€v s<u a€v

(7.1) sup

0<u<t

—p 0.

Itd’s formula yields that

d[[(ve-vp) HAY"‘+}:H( x) dy?

aev aEv Bev aEv
(1.2) +> I (Y:‘_ - Y7) d(YPe, Y70,
S S
+ > JIave J] 2 -Y7).
Iz‘CZv acw Bev—w

lw<]v|
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As the Y¥’s are cadlag, the processes g5 = Y* — Yy converge to zero and are
almost surely bounded. Thus, if A, is cadlag and of finite variation,

) ,
(7.3) f got---g% dA, — 0 uniformly in u € [0, ]
0

almost surely. Now write
(7.4) Y3 =B + kS,

where BY is cadlag, adapted and of finite variation and £ is a local square
integrable martingale [cf. the Corollary on page 104 in Protter (1990)]. By
(7.3) and Lenglart’s inequality [see Jacod and Shiryaev (1987), Lemma 3.30
(page 35)], )

(7.5) sup

0<u<lt

—p 0.

Bev a€v

u
) /o I] & ax?
a#B

In addition, the integrals of the third, fourth and remaining part of the second
term on the right-hand side of (7.2) converge to zero uniformly in « € [0,¢] a.s.
by (7.3). Thus, (7.1) is proved. O

PROOF OF THEOREM 1. Itd’s formula yields that M;(T) is a semimartingale
whose differential is given by

dM,(T) = AM,(Y) + Y M, (T —v) dUs(v)

vCT
(7.6) - > M, (T -v) AU:(v)
vCT
+1 Y M, (T - {o,8}) dig=°, 050,
o, BeT

atB

where v C T indicates the sum over all subsets of T except the empty set. To
deal with these terms, note first that dU;(v) = AU;(v) for |v| > 3 and that

1.7 dUt({a,,B}) = AUt({a,ﬂ}) - d(fa,c’eﬁ,c».
Also,
(7.8) AM(Y) = Z M, (T -v) ZAUt(Ul) YNIACHY

vCT v
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¥, being the sum over all partitions of v. Hence, if m(., -) is the Mébius function
for the relevant partition lattice and if 0, is the finest partition of v, then

AM,(T)= Zth_(T —-v) Alg);

x Z(_l)lvxl—l vt (_1)qu|—1(|vl| — 1)1 e (|vq| - 1)!

(7.9)
=S M, (T -v) Al 3 m(0,,w)
vCT w<v
=> M, (T-{a}) Af
aeT
by the Corollary on page 360 of Rota (1964). Combining all this yields that
(7.10) dM,(T) = > M, (T - {a})de,
aeT

whence M;(Y) is a local martingale [Jacod and Shiryaev (1987), Theorem 4.31
(page 46)]. O

PROOF OF THEOREM 2. Begin by noting that (7.6) and (7.8) remain valid
with the new definitions of U;. We begin by attacking (7.8). For |v| > 2, U;(v)
is predictable, and since £ and [4;v]; — (£;v); are local martingales, Proposition
4.49 in Jacod and Shiryaev [(1987), page 52)] yields that [¢~, U(vy), ..., U(vy)l
and [[£v] — (4v), U(vy), ..., U(yvy)); are local martingales when ¢ # 0 and
v, ..., |ug| > 2. Setting

g(w) =Y [U(w), ..., U(ur)]
(7.11) i3

=Y (-1 [k(u), ..., 6(Lur)]es
u
it therefore follows that, for |v| > 2,
> AU (v1) -+ AU (vg)

= Z AL Agi(v - {a})

aEv
(7.12) + Y Algw]: g (v —w) + Alew]e + Agi(v)
forse
=Y Altw): Age(v —w)
wCv

+A[6v]; + Ag;(v) + differential of local martingale.



36 P. A. MYKLAND

Substituting (7.12) into (7.8), and putting the resulting expression into (7.6)
yields

(7.13) dM,(T) = 3 My (T - ) dZ(v),
vCY
where
dZ,(v) = > Altw) Bge(v — w) +d(Gv): + Age(v)
(7.14) wCv

— dk(€v); + Ax(€); + differential of local martingale.

Here we have also used Proposition 1 to reexpress A[¢;v]; in terms of d[¢;v];,
together with the fact that [£;v];— (¢;v); is a local martingale. Using Proposition
1 on (6.5) also yields that

(7.15) dn(f;v)t - AR([;’U)t = d(ﬁ;v)t - A(Z;’U)t

On the other hand, however, (6.6) and the definition of g; yield, by a combina-
torial argument, that

(7.16) > Alw): Age(v — w) + Allv): + Age(v) = 0.

wCv

Substituting (7.15) and (7.16) into (7.14) now yields that dZ;(v) is the dif-
ferential of a local martingale. Theorem 2 then follows from (7.13) and from
Theorem 4.31 of Jacod and Shiryaev [(1987), page 46]. O

8. Some notes on Section 5. Expanding X, = (6X,, +&,.1)" yields that,
for v > 1,
ft(a,B,'y) =g I:gattBX‘;Y _ Xt'yé 5,0
8.1

33 (B) () cap-rgern s eropon)

k=0 j=0
where £*®79 2 0, For a #, this yields

ﬁ(a,ﬂ,‘Y) = 07-—01(1 _ a'y—a)—l

B-1
x [oattﬂxg ~ X850+ Z; (z) (—1)B-flekm

B v

+ ZZ( )(j) _1)Bk(feokd 1D 4 fles kD)

k=0 j=0

(8.2)
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while for o = v and 3 =0, we get
a-1 o ) ) .

(8.3) ta = 0atX3‘ + Z (J) (et(a»o,.l,a—j) +ﬁ(a’0’J)E€a_J).
Jj=0

Substituting (8.3) into (8.2) gives (5.5), whereas summing over ¢ in (8.3) gives
(5.6).

An alternative way of solving the linear equations (5.5)—(5.8) would be to
consider

(8.4) gga’ By = f;(a, B,v) _ Eft(a, B,7)

and to calculate g*?" and Ef,*#" separately; gg""? '? then satisfies equa-
tions (5.5) and (5.6) in place of £{**? and with X, set to 0. The boundary

conditions become g*#® = 0. Eff*#" can be calculated directly from the
values of the cumulants of X,.

If one is only seeking to find approximate cumulants, in the sense of neglect-
ing terms going to zero faster than polynomially, one can use this algorithm
with the approximation

Eff*P? ~ g, Xf0 PO,

where 7 is the stationary distribution. This is how (5.11) was actually com-
puted.
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