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THE ORDER OF THE REMAINDER IN DERIVATIVES
OF COMPOSITION AND INVERSE OPERATORS FOR
p-VARIATION NORMS!

By R. M. DUDLEY
Massachusetts Institute of Technology

Many statisticians have adopted compact differentiability since Reeds
showed in 1976 that it holds (while Fréchet differentiability fails) in the
supremum (sup) norm on the real line for the inverse operator and for the
composition operator (F,G) — F o G with respect to F. However, these op-
erators are Fréchet differentiable with respect to p-variation norms, which
for p > 2 share the good probabilistic properties of the sup norm, uniformly
over all distributions on the line. )

The remainders in these differentiations are of order || - ||7 for v >
1. In a range of cases p-variation norms give the largest possible values
of v on spaces containing empirical distribution functions, for both the
inverse and composition operators. Compact differentiability in the sup
norm cannot provide such remainder bounds since, over some compact
sets, differentiability holds arbitrarily slowly.

1. Introduction. The theory of differentiable statistical functionals be-
gan with work of von Mises [e.g., von Mises (1936, 1947) and Filippova (1961)].
A nonlinear functional 7' is defined, for example, on distribution functions. Von
Mises differentiated T' at a distribution function F along lines. For T to have
a (Gateaux) derivative at F means that, in the direction of a function h,

(L1) T(F +th) = T(F) + eI (F) (k) +o(|¢]) as ¢ — .

Here T"(F)(") is a bounded linear operator on functions A, for example, of the
form

(1.2) T'(F)(h) = / gdh for some function g (depending on F).

It was well known that such differentiability is most useful if the o(lz]) is
uniform for 4 in some sets. The object was to analyze the behavior of T'(F,,)
for empirical distribution functions F,, and the F, do not approach F along
lines as n — oo. If the o(l¢]) is uniform for 4 in bounded sets for some norm
|| - ||, or equivalently,

(1.3) T(F+h)-T(F) - T'(F)(h) =o(||n|) as |&| — O,
then T' is Fréchet differentiable at F for || - ||. For distribution functions on
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2 R. M. DUDLEY

the line, the first natural choice for the norm was the supremum (sup) norm
[2]|c0 := sup, |A(x)|.

In robust statistics [Huber (1981), Sectlons 1.5 and 2.5] the derivative, or
specifically the g in (1.2), has been called the influence function [Hampel,
Ronchetti, Rousseeuw and Stahel (1986)]. Differentiability is also an issue in
semiparametric statistics [e.g., Gill (1989) and Bickel, Klaassen, Ritov and
Wellner (1993)].

In his landmark thesis Reeds [(1976), Section 6.4] considered two function-
als (or operators, since their values are also functions): the composition opera-
tor (F,G) — FoG, where (FoG)(x) = F(G(x)), and the inverse operator, H — H~1
where H~1(y) := inf{x: H(x) > y}. Here F and H are in a space D[0, 1] or D(R)
of right-continuous functions with left limits. The inverse operator takes a
distribution function into a quantile function. Then, applying the composition
operator with H~! as G, we get F o H™!, the quantile-quantile function.

In this introduction, let us consider differentiation at the uniform U[O0, 1]
distribution function Fi(x):=x, 0 < x < 1. For a fixed y, say y = %, the quan-
tile functional H — H~1(y) is not differentiable even at U[0, 1] along lines
in D[0, 1] (as reviewed in Proposition 2.7), although it is for C[O0, 1] (see Sec-
tion 3). Even on C[0, 1], the inverse operator is differentiable with the sup
norm on its range for functions in the range restricted to [a,b], 0 < a <
b < 1, but not on all of [0, 1]. Reeds then naturally considered the L? norms,
lB ]| :=( fol |h(y)Pdy)'/P, 1 < p < oo, on the range of the inverse operator. Then,
to get the quantile—quantile function, L? norms of G are taken on the domain
of the composition operator.

Easy examples [Proposition 2.8(b), (c)] show that under these conditions
the inverse operator and the composition operator with respect to F' are not
Fréchet differentiable for the sup norm on their domains. Among Reeds’ major
results are that in these cases the o(l¢l) does hold uniformly over compact sets
in the sup norm. Although Reeds’ (1976) thesis was unpublished, his work is
the main ingredient of the survey by Fernholz (1983).

Following the work of Reeds and Fernholz, while Fréchet differentiability
is used when it holds, statisticians have worked with compact differentiabil-
ity as apparently the best kind that held in enough generality. However, if
the sup norm is replaced by p-variation norms || - ||;p; (defined in Section 2),
Fréchet differentiability holds for both the composition and inverse operators
[Dudley (1991)]. Moreover, the norms || - ||;p; share the excellent properties of
the sup norm of being invariant under all strictly monotone continuous trans-
formations of the line onto itself, and they satisfy (for some values of p,p < 2
or p > 2 depending on which side of duality one is on) uniform central limit
theorems (Donsker properties) [Dudley (1992a)].

The present paper treats the size of the remainder in the Fréchet differ-
entiability and finds bounds for our two operators in (1.3), where o(||A||;5)) is

" replaced by O(||h||E’p]) for some v > 1. For the inverse operator we get (for

F=UI[0,1],s0 F1=F)
(1.4) I(F+g)~ —F ' +glp = O(llgllfy), fory=1+1/p,
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as a special case of Corollary 2.4. Theorem 2.2 gives a corresponding remainder
bound for joint Fréchet differentiability of the composition operator. The pow-
ers « are shown (in Proposition 2.5 and Theorem 2.2) to be optimal, not only for
p-variation norms but for an arbitrary norm on distribution functions. Prior to
Dudley (1991) and the present paper, the composition and inverse operators
under the given conditions had not been shown to be Fréchet differentiable
for any norm, to my knowledge. Note that for twice-differentiable functionals
one expects an exponent y = 2, so our operators are not that smooth if p > 1.

Actually, the remainder in differentiation of the inverse operator had been
studied earlier and in precise detail in the main case of statistical interest,
where g = F, — F (F, empirical), by Bahadur (1966) and Kiefer (1967, 1970).
Reeds (1976) and Fernholz (1983) did not cite this work of Bahadur and Kiefer.
Take any p > 2 in (1.4), giving any v < 3. From ||F, —F||) = Op(n~*/2) [Dudley
(1992a), Corollary 3.8] we get in (1.4) a remainder

as) 5t —F e Fy |, = 0p(n™ )

where v = 1+p~1. Letting p | 2 gives —v/2 | —%; or, as p T 2, results of Dudley
(1992b) also give —3 as limiting exponent. Here —3 is the best possible, as
Kiefer proved. See also Theorem 2.6 and Section 5.

The usual space containing distribution functions on [0, 1]—and the one
Reeds and Fernholz treat—is the space D[0, 1] of right-continuous functions
with left limits. However, D[0, 1] with supremum norm is nonseparable (has
no countable dense subset). In such a space compact differentiability has some
substantial drawbacks:

1. Compact sets—in a nonseparable normed space—are extremely small. The
notion that compact differentiability is good when Fréchet differentiability
fails may have come from separable spaces, where indeed the compact sets
are about as large as one can expect, short of bounded sets. However, for
any sup-norm-compact set K in D[0, 1] and for any nonatomic distribution
F, the probability that the empirical distribution function F; is in K is 0.
How inconvenient this is may be indicated by the variety of ingenious de-
vices statisticians have applied to getting around it, including smoothing,
“tangential” differentiability and use of almost surely convergent realiza-
tions.

2. Unlike the Fréchet case, compact differentiability does not give helpful
uniform error bounds like (1.4). To the contrary, the rate of o(i¢]) in (1.1)
depends on the compact set and can be arbitrarily slow, as Proposition
2.1 shows. In other words, in contrast to drawback 1, some compact sets
are inconveniently large. One can think of them as only extending out in a
separable and hence very small set of directions in the nonseparable space,
but, in those directions, sticking out far enough to slow down the o(|]) just
short of making it fail. When applied to empirical distribution functions
(as it can be but, by drawback 1, only via some modification), compact
differentiability would only give a remainder o,(n~1/2) even when a better
rate holds.
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On the other hand, in separable spaces compact differentiability may be
more useful although drawback 2 will still hold there.

There are many statistical functionals or operators for which compact dif-
ferentiability was the first to be proved. For some of these, Fréchet differentia-
bility (even allowing different norms) has not yet been proved. An important
example of such an operator is the product integral [Gill and Johansen (1990)].

One of Reeds’ main points was to separate analytical from probabilistic
parts of the work, although the asymptotic results obtained may not be the
best possible. The p-variation norms evidently come closer to giving optimal
results, although there are limitations; (1.4) is sharp as it stands, but when
applied to empirical distribution functions in (1.5) it is not: (1.5) holds (as
Kiefer proved) with p = co on the left and O,(n~3/4(logn)'/2) on the right.

The composition and inverse operators would seem to be of interest not
only in statistics but in analysis more generally. However, analysts seem not to
have developed the theory needed. They have treated the composition operator
almost exclusively for fixed F, as a special case of the so-called Nemitsky
operator, surveyed by Appell and Zabrejko (1990). Also, analysts seem to have
given little if any attention to differentiability of the inverse operator in cases
where H is not 1-1, but empirical distribution functions are never 1-1.

The main results will be stated in Section 2 and proved in Section 4. Section
3 compares different kinds of differentiability as applied to empirical distri-
bution functions, and Section 5 treats Orlicz variation and martingales.

2. Statements of results. There are a number of possible definitions of
differentiability. Let X be a vector space with a norm | - || and let T be a
functional defined on an open set U in X. (Here we have in mind for X a
function space containing distribution functions on R.) Let T' take values in
another vector space Y with a norm | - |. Note that values of the composition
and inverse operators are again functions.

T is said to be Gateaux differentiable at a point x¢ € U if there is a bounded
linear operator T"(x¢)(-) from X into Y such that, for each v € X,

(2.1) T (20 + 2v) — T'(x0) — tT"(x0) (v)| = 0(J¢]) as t— 0.

The chain rule for composition fails for Gateaux differentiability. Filippova
and von Mises considered Gateaux differentiability, with further probabilistic
hypotheses.

Let C be a class of bounded subsets of X containing all the finite sets. Then
T will be called C-differentiable at x if (2.1) holds uniformly for v € A for all
A € C [Sebastido e Silva (1956)]. If C is the family of all bounded sets in X, or
equivalently if C consists of the one set B; := {x € X: ||x|| < 1}, then T is said
to be Fréchet differentiable at xo. Then we have more simply

(2.2) IT (%0 +u) = T(x0) — T"(x0) ()| = o([lull) as [lu| — 0.

This is the main kind of differentiability in use among analysts. It is the
strongest possible kind of C-differentiability, since sets in C are bounded. (If C



REMAINDERS FOR FRECHET DERIVATIVES 5

contains an unbounded set, e.g., in a one-dimensional space X, C-differentiabil-
ity would imply that T is linear at least in a one-sided neighborhood of x;.)
There seems to be little doubt that Fréchet’s is the most useful form of differ-
entiability, when it holds. '

Alternatively, if C is the class of all compact sets in X, we get compact
or Hadamard differentiability, emphasized by statisticians since the work of
Reeds (1976) and Fernholz (1983). In the Introduction and in detailed results
below are shown the advantages of Fréchet over compact differentiability.
However, the Reeds—Fernholz theory can also be extended in a very different
direction. One can enlarge the class of compact sets for the sup norm to much
larger classes over which C-differentiability still holds: the class of compact
sets for the Skorohod topology or the still much larger class of “uniformly Rie-
mann” sets [Dudley (1991), Theorems 4.5 and 5.1]. In other words, referring
to drawbacks 1 and 2 of (sup-)norm-compact differentiability in the Introduc-
tion, if one is willing to accept the arbitrarily slow remainder rates (drawback
2), it is far from necessary to accept also drawback 1. The Skorohod-compact
sets do carry the normalized empirical distribution functions n/2(F, — F) with
high probability, uniformly in n. The slow rates for compact (and not Fréchet)
differentiability are given as follows:

PROPOSITION 2.1. Let (X, ||-||) be a normed linear space and x € X. Let T be
a function from a neighborhood of x into a normed space (Y, |- |), Gateaux but
not Fréchet differentiable at x. Then, for any sequence €, | 0 (however slowly),
there exist a sequence v, — 0 in X and numbers t, such that 0 <t, < 1/n and

|T(x +tavn) — T(x) — taT'(x)(vn)| > enta.

(Proofs are given in Section 4.) Compact differentiability for a given norm is
presumably of interest mainly when Fréchet differentiability fails. Then, how-
ever, since the set {0}U{vs},>1 from Proposition 2.1 is compact, the remainder
in equation (2.1) is o(l¢]) only very slowly on some compact sets.

In this paper, Fréchet differentiability will be considered with respect to -
variation norms ||f|tyy:=|fllco+|flly), where [|f[loo:=sup, [f®)], [|fly):=inf{K >
0: vy(f/K) <1} and

os(1) = sup { S (e) s 301 < -},

and where v is assumed to be a convex, strictly increasing function on [0, o[,
with (0) = 0, lim, o ¥(x)/x = 0 and lim,}c %(x)/x = +00. Such a 9 will be called
an Orlicz function. Here vy(f) is called the y-variation of f. || - ||jy; is indeed
a norm: subadditivity is proved, for example, in Musielak and Orlicz [(1959),
Section 3.03], and the other properties of a norm are clear.

The best known cases are where ¥(x) = x*,0 < x < 00,1 < p < oco. Here
xP is an Orlicz function for 1 < p < oo, while ||f||;) is the usual total varia-
tion of f. Then -variation is called p-variation and written v,(f), and we set

Iflle = Il = volOYP, I fllipd = 1 -
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The notions of Orlicz-variation and p-variation are not very familiar. I did
not know of them in advance, but found that they seemed to arise naturally in
the research being reported here and in Dudley (1991), (1992a) and (1992b).
One can arrive at them perhaps as follows. For the composition operator, one
has a remainder term f(G + g) — f(G) which one would like to be o(|f] + |g]|)
in some sense. In showing differentiability one might think f itself should
be differentiable, but a moment’s thought suggests that one only needs some
continuity property of f so that f(G +g) — f(G) is smaller than f itself. Having
a bounded derivative is equivalent to satisfying a Lipschitz condition |f(x) —
f(y)] < Clx —y|. For present purposes it will be enough if f satisfies a weaker
Holder condition of order a, |f(x) —f(y)| < C|x —y|* for some 0,0 < @ < 1,C <
oo. (This is one way of defining differentiability of fractional order «.)

Next, if we want a function space suitable for nonparametric statistics, we
would like a space, with a norm, invariant under all increasing homeomor-
phisms—in other words strictly increasing, continuous functions from the line
onto itself— just as the space D(R) of bounded, right-continuous functions with
left limits and supremum norm is invariant. Also, to deal with empirical distri-
bution functions and the like, we would like functions that are not necessarily
continuous. We can satisfy both these desires by taking the set of all functions
f o g where f is a-Holder and g is nondecreasing and bounded (not necessarily
continuous). The set of such f o g is exactly the set of functions of bounded
p-variation for p = 1/a [e.g., Dudley (1992a), proof of Theorem 2.1].

The test of a function space and norm, like any other mathematical objects,
is how well they serve their purposes, and the results given here and in Dudley
(1991) and (1992a) seem to show that p-variation spaces and norms serve well
for differentiability of some interesting functionals of empirical distribution
functions.

One may then ask why one needs the more complicated-looking Orlicz vari-
ation beyond just p-variation. There are two reasons. One is that Orlicz func-
tions allow one to refine and interpolate between the p-variation norms; for
example, x? can be multiplied by logarithmic factors. The best possible Orlicz
function may give somewhat better results than any particular x?, as will be
seen in Section 5. Second, one can take Orlicz functions v decreasing to 0 as
x | 0 faster than any power. Classes of bounded v-variation can then be larger
than classes of bounded p-variation. It turns out that each set in a very large
class of sets called uniformly regulated sets, among which are all compact sets
for the Skorohod topology (hence also for the supremum norm) in D[0, 1], is of
bounded -variation for some v [Dudley (1991), Theorems 2.2 and 2.6], which
is not the case for p-variation.

Returning to the present development, an Orlicz function v is said to satisfy
the Ay condition if, for some constant K < oo,4(2x) < Kv(x) for all x > 0.
For the space of measurable functions f on a finite measure space such that
J¥(f]) du < oo (Orlicz class), the Ay condition is only important for large
x, say x > xo > O [see, e.g., Krasnosel'skii and Rutickii (1961), page 23]. For
t-variation spaces, the condition is only needed for small x, say 0 < x < x,
[Musielak and Orlicz (1959)], but here, for simplicity, it is assumed for all



REMAINDERS FOR FRECHET DERIVATIVES 7

x > 0. Clearly, the functions x? satisfy Az, 1 < p < oo.
If an Orlicz function ¢ satisfies Ay, then by convexity we have a “quasi-
subadditivity” property: for any x,y > 0,

Y(x+y) = v((20+2)/2) < (¥(20) +$(29))/2 < K(p(x) +¢(y))/2.

Fréchet differentiability holds for the operators (f,g) — (F +f)o (G +g) and
f — (F +£)~! with respect to the || - ||iy-norm of f under suitable conditions
on F, G and g [Dudley (1991), Theorems 4.5 and 5.1]. Here, in some cases, the
o(-) condition will be improved to O(||f HED]) for some 1 > 1 depending on p and
other hypotheses. For the inverse operator there are bounds for the remainder
in terms of p- and 1-variation (Theorems 2.3 and 2.6 and Section 5).

Let V,(R) be the set of all real-valued functions f on R for which ||f||) < co.
In the differentiation of the composition operator, one of the two remainder
terms [Dudley (1991), Section 5] is f(G + g) — f(G). If f is Lipschitz, with
|fllz = K, for example, if f has a bounded derivative with ||f’|| = K, and if g
is bounded, then we have '

I1F(G+8) ~ (@)l < Kliglloo < (IFIIF + llglZ) /2-

I have found in the literature outside of statistics two papers on joint differ-
entiability of composition of nonlinear functions, with respect to norms: Gray
(1975) and Brokate and Colonius (1990). Both papers took g bounded and f
with bounded derivative, at least locally, with f and g both possibly Banach-
valued. Reeds (1976) and Fernholz (1983) treat the much deeper case where f
need not be Lipschitz and g varies in an L? space and so may be unbounded.
As far as I know, only statisticians have worked on these cases.

Let u be a finite measure. In a composition fog where f is bounded, the size
of large values of g is not important. It will turn out that for g the pseudometric

pleres) = (/ (min(1, lg1 - £2]))? du>l/p

works the same as the usual LP(u) distance for 1 < p < oo. The function
m(y) := min(y, 1) for y > 0 is nondecreasing, concave and so subadditive. By
the Minkowski inequality [e.g., Dudley (1989), Theorem 5.1.5], p, is indeed a
pseudometric. It is easily seen to metrize convergence in measure.

The other remainder term, F(G+g)—F(G)—F'(G)g, does not depend on f, so
the following will give an explicit bound for the dependence of the remainder
on f, and some optimality properties of the bound:

THEOREM 2.2. Let 8 > 0. Let G be an increasing function on [0,1] with

G(y)—Gx)> By —x),for 0<x<y<1l Let1<p<ooandl<s< oo Then
there is a constant C < oo such that, for f € V,(R) and g € L*[0, 1],

I£(G +8) - F(&)llo < Cllgl’® ™ ller < C(llell? + I£1,1),
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where n:=1+s/(p(1+s)) > 1. Conversely, if || - || is any norm on a space V of
functions containing the function h(x) = Lix>0}s Ulx) =x,0 < x <1, and there
are constants C, o and ~ such that

If o (U+g) ~foUly < ClglIIfI,

for ||If|| £ 1, then v < 1and o < s/(p(1+s)). In both parts of this theorem, || - “p
can be replaced by py(0,-) and/or ||g||s by ps(0,8).

Next, consider the inverse operator. Let G be an increasing, continuous
function from [0, 1] onto itself, having a derivative everywhere on the open
interval 0, 1[ which extends to a continuous, strictly positive function G’ on
[0,1]. Such a G will be called an increasing diffeornorphism of [0,1]. Let g €
R[0, 1], the space of all bounded real functions on [0, 1], continuous almost
everywhere for Lebesgue measure [Dudley (1991)]. Then it is known [e.g.,
Dudley (1991), Theorem 4.5] that the derivative of the inverse operator g —
(G+g)! at g = 0 is the linear operator g — —(go G~1)/(G’ o G~1), bounded for
the sup norm on g since by assumption infjp 1;G’ > 0. The remainder in the
differentiation is

Ry=(G+g) -G+ (g0GY)/(G'oG™Y) on[0,1].

Let us recall a definition of modulus of continuity. For a function f and
6 > 0, let w6, /) := sup{|fx) — f(y)]: |x —y| < 6}. We then have the following.

THEOREM 2.3. For any increasing diffeomorphism G of [0, 1], so that 0 <

B:=inf G < n:=sup G' < oo, and for any Orlicz function i satisfying A,
there are constants C;,Cy < 0o such that, for v = ||g||co,

/01¢(1Rg(y)|)dy <C {7 [U«p (%) + ¢(Cz”r)] + <2'yﬂ‘2w (%,G')) } :

For ¥(u) =uP,1 < p < 0o, we have

IRllp < C{ VP \lgllip + ﬁz (127 G’)}

If G satisfies a stronger smoothness condition, specifically a Hélder condi-
tion on G, then, taking y(x) = ¥, Theorem 2.3 yields the following.

COROLLARY 2.4. If in addition to the hypotheses of Theorem 2.3 we have
|G'(x)— G'(y)| < D(y —x)V/P for 0 < x <y < 1, where D is a constant, then there
is.a constant K < oo such that _

IRellp < Kligligsi’?, for g € V,[0,1], liglip < 1.
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Now, an example will show that for a given value of p and any norm || - ||,
IRg|lp < Kpligl|* implies o < 1+ 1/p, since a remainder in Gateaux differen-
tiability along one line is of order ¢#1*1/7. Thus, by Corollary 2.4, || - || = || - [l
achieves the largest possible power of the norm for the remainder in this case.

PROPOSITION 2.5. Let f =14,,0 <a <b < 1. Then for 0 < ¢t < min(b — a,
1-bd)and Ux)=x,0<x<1,

||(U+tf)—1 _ U+tf”p = C, 1P,

for some constant C,. Thus, for any normed space (y, |- |) of functions on [0, 1]
containing U and 1,,p), if the inverse operator is Fréchet differentiable at U
from (y,|-]) to LP[0, 1] with (U +g)~ - U +g|, = 0(g|*) as |g| — 0in Y, then
a<1l+1/p.

For a probability distribution function F' and its empirical distribution func-
tions F,, n'/2||F, — F||;; is bounded in probability uniformly in » and F for
p > 2 [Dudley (1992a), Corollary 3.8]; another proof is given in Section 5.
“Bahadur—Kiefer theorems” treat the size of the remainder R, in Theorem 2.3
when G = F and g = g, = F,, — F [Bahadur (1966) and Kiefer (1967, 1970)].
Most of the results treat the case where F is the uniform distribution func-
tion U on [0,1]. Here, G' = 1 on [0, 1], so w(-,G') = 0. So Corollary 2.4 gives
IR, llz < |Ra,llp = Op(n'=1/2X1+1/P), Letting p | 2, we get ||Rg,|l2 = Op(n™") for
any t < %. A more precise result, not claimed as new, gives the size of the
remainder for the L2 norm in probability:

THEOREM 2.6. For the L? norm of the Bahadur-Kiefer remainder we have
IR, ||z = Op(n=3/%).

Kiefer [1967, (1.6)] showed that, for each y, n3/R,, (y) has a specific nontriv-
ial limiting distribution (depending on y). It follows that O,(n~3/%) cannot be
improved. For the supremum norm, Kiefer (1970) found a llmltmg distribution
for n%/4||R,, || /(logn)/2 and proved for G = U that

lim sup |, on*/4(log n) 2(loglog ) ~1/4 = 2-1/

almost surely. Shorack (1982) gave another proof. Let o, :=n1/2(G, — G). Kiefer
(1970) proved that n3/4||Rg, ||loo/(/|an|loc logn)/2 — 1 in probability. Shorack
(1982) in one direction, and Deheuvels and Mason (1990) in the other, showed
that this convergence is almost sure. Thus the asymptotic magnitude of ||Ry, || oo
follows from that of ||ay||w. Kiefer (1970) also proved his results for G with
second derivative G” bounded above as well as G’ bounded below by 8 > 0,
replacmg Rg, by (G' o G™1)R,,. See also Csérgé and Révesz [(1978), Theorem
4, page 891].

Now let |- || be any norm on a function space containing the centered empir-
ical distribution functions F,, —F and such that n!/2||F, —F|| is measurable and
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does not converge to 0 in probability. (This seems a rather mild assumption on
| - I.) Then if ||F, — F|| = Op(n~"), we have g < % This and the second half of
Proposition 2.5 show that for p > 2 (unlike p < 2) a separation of analytic and
probabilistic methods does not given optimal results: For 2 < p < oo, Kiefer’s
correct order of magnitude (in probability),

1T = U+ (Un = U)llp = Op(n=%*),

does not follow by combining Fréchet differentiability of the inverse operator
in the norm || - || (even with the best possible power bound for the remainder)
with an estimate ||U, — U|| = Op(n~#).

Next, it will be seen that the inverse operator, even at such a smooth dis-
tribution F as the uniform, is not differentiable in a neighborhood of F (even
in the Gateaux sense). So the inverse operator is not C! and has no second
derivative. The last statement (at least) in the following proposition was es-
sentially known [Fernholz (1983), page 66, gives a related example], but it
recalls a notable fact.

PROPOSITION 2.7. Let U(x) =x, 0 <x < 1, and f(x):=1jp; /21(x). Then, for
any fixed t > 0, g — (U + tf + g)~! is not Lipschitz for the LP norm on the
range, 1 < p < oo, even along the same direction g = uf as u | 0, and so
is not Gateaux differentiable in that direction. For p = co the operator is not
continuous. For p =1 it is Lipschitz along the given line but still not Gateaux
differentiable. Allowing also t < 0 and for fixed y = %, g~ (U+g)~Uy)is not
Gdteaux differentiable along the line g = tf, t — 0.

So, by the way, despite the remainder bound, the inverse operator on D[0, 1]
at U does not satisfy (in any norm) the definition of “smooth” given in Wong
and Severini [(1991), page 610].

Next are easy examples showing non-Fréchet differentiability of the com-
position and inverse operators with respect to the sup norm, variously on
domains and/or ranges. Such examples must have been known although I do
not have references for them.

PROPOSITION 2.8. At F = G = U[0, 1], the following hold.

(a) The composition operator is not jointly Gateaux differentiable on D0, 1]
for the sup norm on the range: for some f, g € D[0, 1],

litf o (G +3sg) —tf 0 Gllco #o(|t| +|s|) as s,¢ — 0.

(b) The composition operator is not jointly differentiable into L? for the sup
norm on the domain

If o (G+g) ~foGllz #o(Iflloo + llglloo) @S [IFlleo + liglloo — 0.

“(¢) The inverse operator is not Fréchet differentiable at G for the sup norm
on the domain and the L? (or sup) norm on the range

I(G+8)™ ~G ' +gllz #0(llgllc) as liglleo — 0.
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3. Kinds of differentiability. This section will list several forms of dif-
ferentiability. The question will be which forms are better adapted to proving
asymptotic normality of suitable functionals of the empirical d.f. F,, say on
[0, 1]. Let us consider differentiation at a sufficiently regular distribution such
as the uniform distribution U[0, 1]. Three kinds of Fréchet differentiability are
as follows:

(FF) for functionals with finite-dimensional values, Fréchet differentiabil-
ity for functions between finite-dimensional spaces;

(FP) Fréchet differentiability for norms || - || stronger than the sup norm,
such as p-variation norms, on subspaces of D[0, 1] such that ||F, — F| is finite,
or better still O, (n~1/2);

(FS) Fréchet differentiability for the sup norm on D[0, 1].

Here (FS), when it holds, always implies (FP), but neither necessarily im-
plies nor is implied by (FF), since no relation is assumed between the norm
on the finite-dimensional space and any norm on distribution functions.

(FF) has the advantage, when it holds, that in finite dimensions we can
often hope for more than one derivative, giving multiterm Taylor expansions,
while the nonlinear functionals of interest on infinite-dimensional spaces tend
to have no more than one derivative, as seen in Section 2.

Three kinds of differentiability of compact type are as follows:

(CC) compact differentiability in C[0, 1] for the sup norm, applied to empir-
ical distribution functions by replacing them, for example, by piecewise-linear
rather than piecewise-constant functions;

(CD) compact differentiability in D[0, 1] for the sup norm, applied by way
of almost surely convergent realizations;

(CR) C-differentiability, where C may be the class of sets compact for the
Skorohod topology, or the still larger uniformly regulated or uniformly Rie-
mann sets as defined in Dudley (1991).

Here (CR) implies (CD) implies (CC) and neither converse holds. All the
compact forms share the disadvantage of slow convergence of remainders to
0, as shown in Proposition 2.1, when Fréchet differentiability fails. When all
three hold, (CR) has the advantage that normalized empirical distribution
functions nl/2(F, — F) belong, with high probability uniformly in n, to sets of
the classes mentioned in (CR), without the need for a.s. convergent realizations
as in (CD) or smoothing as in (CC).

The forms of differentiability will be compared for some functionals of in-
terest.

3.1. Specific quantiles and the sup norm on the range. The functional
F — F~1(y) for a fixed y, as seen in the last statement of Proposition 2.7, is
not even Géteaux differentiable on D[0, 1], so (CD) and (FP) and the stronger
forms (FS) and (CR) must all fail. (FF) applies as follows: If F and G are any
two distribution functions with F(x,) = G(u,) = o, F'(x,) > 0 and G'(u,) > 0,
then asymptotic normality of the sample o quantile of F follows from that for
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G by the one-dimensional delta-method. One interesting choice of G is stan-
dard exponential, when the order statistics are partial sums of independent
exponential variables with different scale parameters, as in a classic paper
of Rényi (1953). Rényi’s representation helps to treat the joint distribution
of several order statistics. The more standard choice is to take G as uniform
UI0, 1]. Then the distribution function at x of the rth order statistic for sample
size n and a general distribution function F is the beta(r,n —r+1) distribution
function at F(x) [e.g., Kendall and Stuart (1977), Section 14.2, page 347]. The
simple normal approximation to the beta can be much improved by a Cornish—
Fisher expansion [e.g., Pratt (1968), page 1467, Molenaar (1970), page 72, or
Holt (1986)]. The expansion can then be combined with a Taylor expansion of
F around x,,. .

The compact differentiability (CC) also applies to individual quantiles as
shown by Reeds [(1976), page 127] and Esty, Gillette, Hamilton and Taylor
(1985). Gill [(1989), page 107] proves compact differentiability in D, tangen-
tially to C, a form intermediate between (CC) and (CD) which applies to em-
pirical distributions. The compact forms seem to give less precise information
than (FF).

The supremum norm on the range of the operator F'— F~! can be treated
in the same way if one restricts to an interval [a,b], 0 < a < b < 1 [e.g., Esty,
Gillette, Hamilton and Taylor (1985) and Gill (1989)]. It has also been treated
on (0, 1) via classical (stochastic) methods [e.g., Cs6rg6é and Révész (1978)].

3.2. The inverse operator, and composition operator with respect to f, for LP
norms on the range. Reeds showed that here (CD) holds while (FS) fails. We
now have that (FP) holds with the error bounds given in Section 2. Also, all
the given forms of (CR) hold for these operators [Dudley (1991)]. The main
theme of the present paper is that (FP) is preferable because of the remainder
bounds.

3.3. The operator (F,G) — [F dG. Gill [(1989), pages 110-111] showed
that (CD) applies in this case, while (FS) fails. Now, (FP) also holds, much
as in 3.2, and gives error bounds stronger than those from (CD) and nearly
but not quite the strongest possible bounds [Dudley (1992b), Corollary 3.5].
The conclusion only follows for some (not all) p-variation norms on F' and G.
It would seem then that the (CR) forms could only apply to one of F, G, while
stronger conditions are put on the other; I have at this point no precise result
to report for (CR) in this case.

3.4. The product integral. This integral had been applied in other fields,
especially differential equations [Dollard and Friedman (1979)], but seems to
have been almost unknown to statisticians until recent years, when Gill and
Johansen (1990) proved that (CD) applies under suitable conditions. As with
Reeds’ work on the composition and inverse operators, it seems that again
statisticians were the first to prove a functional differentiability fact which
should be of interest to nonlinear analysts. Gill and Johansen’s work was an



REMAINDERS FOR FRECHET DERIVATIVES 13

outstanding success for compact differentiability.

The product integral is related to [FdG, where F and G are operator-
valued functions, on which see Krabbe (1961). Freedman [(1983), Theorem 5.1]
shows that a product integral exists for operator-valued functions of bounded
p-variation for p < 2. I do not know at this writing whether the (FP) differen-
tiability holds for some p.

In the (many) cases where Fréchet differentiability has not (yet) been
proved for suitable norms, there are a number of useful positive results for
compact differentiability, such as validity of the bootstrap [van der Vaart and
Wellner (1994)] and preservation of asymptotic efficiency of estimators of
(infinite-dimensional) parameters [van der Vaart (1991)]. About efficiency, slow
remainders (Proposition 2.1) may be a concern.

One useful property of a norm is the central limit theorem (Donsker prop-
erty) which has been proved for the ordinary empirical process in p-variation
norms for some values of p in Dudley (1992a). Vervaat (1972) showed that, for
any sequence {G,},>1 of nondecreasing stochastic processes on [0, c0), I(¢) = ¢,
and any sequence [6,] of positive random variables converging to 0 in probabil-
ity, (G, —I)/6, converges weakly in D[0, co) to a continuous stochastic process
¢ with £(0) = 0 if and only if (G; ! — I)/6, converges weakly in the same space
to —¢. Whitt (1980) noted that £(0) = 0 was needed. Vervaat and later others
applied his and further results to processes including partial sum and count-
ing processes. I do not know at this writing what can be done with p-variation
in such situations.

4. Proofs. We first have the following.

PROOF OF PROPOSITION 2.1. Since T is not Fréchet differentiable, there
are § > 0 and u; € X with ||ug|| < 1 such that u;, — 0 as £ — oo and

|T(x +ur) — T(x) — T'(x) (ur)| > 6lluall-

We can assume that § < 1 and ¢, > 1/n for all n. Take a subsequence u;, such
that ||us, || < 1/n? for all n. Let ¢, := ||us,||6/ex. Then 0 < ¢, < §/n < 1/n. Let
Up :=Up, [tn. Then ||v,|| =€,/6 — 0, and

(T (2 + tovn) — T(x) — T (x) (vn) || > ent- m]
Next, to help in the proof of Theorem 2.2, we have the following.

LEMMA 4.1. Let f be a real-valued function on R and let G be a real-valued
function on [0,1]. Suppose that, for some 3 > 0, G(y) — G(x) > B(y — x) for
0 <x <y < 1. Let J be the smallest integer greater than or equal to 1/3. Let m
be a positive integer, k =1, ...,m, and I, ; =[(k — 1)/m,k/ml. Then, for any
Orlicz function 1,

m—dJ

> sup { (F(6(x) - F(G) +£0)): 1 < 1 €Ins} < 27+ 1y(F).

k=J+1
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PROOF. Ifx; €I, ;, i =k,j, and j —k > 2J + 1, then x; — x; > 2J/m and
G(x;) — G(xz) > 2/m, so the intervals with endpoints G(x;) and G(x;) + g; are
nonoverlapping for i =j, k. It follows that the sum in the statement restricted
to indices J +1,3J +2,5J +3, ... is at most v, (f). Likewise for the restrictions
toindices J +i,J +i+2J+1,J+i+4J+2,...,fori=1,2,...,2J +1, and the
conclusion follows. O

Recall that vy (f) = vp(f) = ||f||ﬁ,) when ¢¥(u) = u?

PROOF OF THEOREM 2.2. For f € V,(R), f is continuous except for at most
countably many jumps, so f is Borel measurable, and functions f(G) and f(G+g)
are measurable. Let § := ||g|s and a :=s/(1 +s). We can assume § < 1, or take
C = 2. Then |g| < 6* on a set A C [0, 1] whose complement has Lebesgue
measure at most 61~ = §%, The same holds if 6§ = p;(0,g). Take a positive
integer m such that 1/(2m) < §* < 1/m. We can assume that 8 < 1. Let JJ be
the smallest integer greater than or equal to 1/8 and B :=A N [J/m,1—-J/m].
Now

) sa, 2J
4.1) /[0’ s If(G+g) —f(G)|"(x) dx < 2P||fII5 ( — )

Also, letting B,, 1 :=B N I, 3, with I,, ; :=[(k — 1)/m,k/m[ as before, we have

/|f(G+g (G)[pdx-Z/ IF(G+g) —F(G)P dx

k-J+1

< Z — sup{|f(G+g —f(G)f (x): x € B2}
k..J+1

< (2J+ 1) ”f"(p) (by Lemma 4.1)

< (27 + 1) 25°) £,

It follows that [y |f(G +£) — f(@IP dx < Cy[gl|2 ||, where

Ci:=4J+2+2P(1+4J) < L <5+ f) <2°r (11+ §) ,
B B B
so the first inequality in the statement holds, with C :=22 + 16/8.

Next, for any A,B, p > 0, we have AB? < A** + B!*# since 1 < (A/B)” + B/A.
The second inequality in the statement then follows. Also, we have p,(0,7) <
[Inllp for any L? function 7.

Now in the converse direction, take f = th as ¢t — 0. For fixed g, we get
7 < 1. Then let g = —61p9 5y as 6 | 0, so ||g|ls = ps(0,8) = 6'*1/¢ and

Pp(f° (U+g),fo U) =|fo (U+g) —foUlp= stp.
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The conclusions follow. O

PROOF OF THEOREM 2.3. For any real function f on an interval [a, b] let
05C(q, p) f :=(sup — inf), »)(f). For a given y let £:=G~1(y). Take a positive integer
m such that 1/(2m) < v :=||g|lcc < 1/m. The assumptions imply that 8 < 1.
Leta:=¢{ —1/(mp) and b:=£( + 1/(mpB). If a > 0 and b < 1, then by Dudley
[(1991), Lemma 4.2],

4.2) |Rg(y)| < o0sca,61(8)/8 + 0scia, 1G'/ (m32).

Again, consider the intervals I, ; :=[(k — 1)/m,k/ml. Let J be the least integer
greater than or equal to 1/8. Suppose J +1 < k < m — J. Then by (4.2), for
y €Iy, and I(m,k,J) :=[(k — 1 —J)/m,(k +J)/m[, we have a > 0,b < 1 and

|Rg(¥)| < B 08Cim, k,) & + 0SCi(m, 1,.»G' / (mB2)
4.3)

< B osCiim, b, & +w((2J +1)/m,G") /(mp?),

and we note that (2J + 1)/m < (8 + 2/8)/m. Recall that ¢ satisfies Ay and
is therefore quasi-subadditive. Then as in the proof of Lemma 4.1, there is a
K < oo such that

m—dJ

S sup {($(Re(»))): y €Iy} 5K{(2J+ oy (%) +m¢(A)},

k=J+1

where A :=w((8 +2/8)/m, G')/(mf3?). Thus
1-J/m
L $0B)) dy < Km(20 + 1)uy (g/8) + K (8).

Noting that m~! < 2, the latter integral is bounded as in the statement of
the theorem. Next, for 0 <y < J/m, we have 0 < (G+g)"1(y) < (J + 1)/(Bm)
since G(x) > fBx, 8o (G +g)x) > fx — 1/m > J/m for x > (J + 1)/(Bm).

Also, 0 < G~1(y) < J/(Bm), so |(G +g)~(y) — G‘l(y)l <+ 1)/(,Bm) while
sup|i@o G~ 1)/(G’ 0 G™1)| < 1/(mp), so |Ry(y)| < (J +2)/(mB) < (B~ + 3)/(mp).

Thus

[ smaody < (£) v (822) < Belmy, (24 2) o).

Since 1/m < 2v and a similar bound holds for the interval [1 — J/m, 1], the
first statement in the theorem follows. Then for v(x) = u?, taking pth roots
and since (A + B)}/P < AYP 4+ B'/P for A,B > 0,1 < p < oo, Theorem 2.3 is
proved. O




16 R. M. DUDLEY

PROOF OF PROPOSITION 2.5. It is easy to check that, for 0 < y < 1 and
0<t<min(l-5b,b—-a),

-t b<y<b+t,
Rem :=(U+tH) " (y) -y +tf(y) = a—y+t, a<y<a+t,
0, otherwise

(except at finitely many endpoints). Thus

¢ 1p p
||Rem||p = (tP+1 +/ uP du) - (1 + __1_) tl+l/p.
0 p+1

The second part of the proposition then follows directly. DO

PROOF OF THEOREM 2.6. Apply (4.3), where now 8 = J = 1 and @’ is
constant. So we have, for 2 <k <m—1andy € [(k~1)/m,k/m[=:1(m,k), that
|Rg(y)| < 0SCr(m, &,1)&- Let g = F,, — F and square both sides. I claim that for the
uniform distribution as here, F(x) = x for 0 < x < 1, the distribution of osc(s, 5,8
for 0 < a < b < 1 depends only on b — a. The number s of observations X; in
[a, b] is binomial(n, b — a). Given s, the observations are distributed uniformly
and independently in [a,b]. F, has a jump of height 1/n at each X;, and —F
is decreasing linearly with slope —1 on the interval. The claim follows.

So, consider & = 2, and set [a,b] = A :=1(m,2,1) = [0,3/m]. We have

(oscaFy — F))* = (osca (Fa~ oF+ (5o~ 1) F ))2

<2 (osca (Fa~ %""z—’zr))2 +2(5 - 1)2 (%) .

The expectation of the latter term is (6/mn)(1 —3/m). Now F,, — msF/(3n) can
be written as (s/n) (Gs — G), where G is the uniform distribution on A. Thus, by
the Dvoretzky—Kiefer—Wolfowitz inequality [Dvoretzky, Kiefer and Wolfowitz
(1956); see also Shorack and Wellner (1986), page 354], there is an absolute
constant C such that the conditional expectation of the former term given s
is at most Cs/n?, so its expectation is less than 3C/(mn). So for a constant
C',E((0scy(F, — F))?) < C'/(mn) and the sum over m — 2 intervals is at most
C’/n. We can deal with the intervals [0,1/m[ and [1 — 1/m, 1[ as in the proof
of Theorem 2.3, getting an upper bound of K||g||3, for a constant K. So

1 .
E (/ Rgn(y)zdy) = O(n*3/2) and |Rg, ||z = Op(n—-3/4). O
0
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PROOF OF PROPOSITION 2.7. Let b := 1. We have for ¢,u > 0,

¥ b+t<y<l,
U+th ' ={y-t, t<y<b+t,
0, 0<y<t
0, b+t+u<y<li,
—t—u, b+t<y<b+t+u,
U+@+wN) ) - U+tH ) ={ —u, t+u<y<b+t,
t—y, t<y<t+u,
0, 0<y<t.

As u | O for fixed ¢t > 0, we see from the range b+t <y < b + ¢ + u that the
operator is not continuous in the ||-||c norm. The difference equals —u1<y<pi},
which is linear in u, plus a term (¢, u,y) = (—¢ — )1{p4t<y<bstsu}, Plus another
term on a disjoint interval. For 1 < p < oo we then have ||n(¢,4, )|, > tu'/? (so
the “remainder” is larger than the “derivative™). Thus, for p > 1, the inverse
operator is not Lipschitz and is not Gateaux differentiable at U +¢f. Forp =1,
suppose it were Gateaux differentiable. Then, for some function (%, ),

In@,u, -) —uy@®, -l =o(ul) as |u|— 0.

Then ~(¢,y) = 0 (almost everywhere) for y > b+¢, but this yields a contradiction.
Lastly, (U +tf)"1(3) =  for ¢t < 0 and } — ¢ for ¢ > 0, showing non-
differentiability at £ =0. O :

PROOF OF PROPOSITION 2.8. (a) Let f = 1[0’ 1/2, 8 = 1 and s l 0. Then
If(G+s)x)—fx) =1 fori-s<x<i.

(b) For n = 1,2, ..., let g,(x) = 1/(2n) for j/n < x < (2j+1)/(2n),j =0,...,
n — 1, and g,(x) = 0 otherwise. Let f;, = g,. Then ||fy]lco = |I8nllec = 1/(2n),
foo(G+gw) =0 and ||f, o G|z = 1/(23/2n).

(c) For the same g, and for (2 +1)/(2n) <y < G+1)/n,j=0,...,n -1,
(G +g,)"y) =y — 1/(2n) while g,(y) = 0, so

IG+g.)"" — Gt + g, Iz > 1/(23/%n). O

5. Orlicz variation and martingales. This section will give a proof
[quite different from the one in Dudley (1992a), Corollary 3.8] that
nl/2||F, — F|| is bounded in probability uniformly in n for p > 2, and we
also mention an Orlicz function to come as close as possible to 2-variation. [In
the proof of Theorem 2.6, a kind of 2-variation was finite because the lengths
of the intervals, 1/m = O(n~/2), went to 0 fast enough.]

Let 11 (u):=u?/log log(1/u), for 0 < u < e*. It can be checked by derivatives
that 1, can be defined for u > e~ to be an Orlicz function satisfying A,. For
the Brownian process X,: ¢ — X; on a bounded interval 0 < ¢ < T < oo, Taylor
(1972) showed that v, (X,) < oo a.s., while if ¥;(u)/¥(w) — 0 as u | 0, for
example, ¥(u) = u?/(log log(1/u))*, a < 1, then v, (X,) = +c0 a.s.
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Monroe (1972) showed that any right-continuous martingale process M;
having left limits can be written as X7, for an increasing family of stopping
times T; < oo. Thus any such M; has bounded ;-variation on bounded in-
tervals 0 < ¢ < s a.s. [Monroe (1976), page 134]. If, moreover, the martingale
M, has mean 0 and EM? < o, then ET; = EM? [Monroe (1972), Theorems 5
and 11]. Thus for martingales M™ on 0 < ¢ < s having E(M™)?) uniformly
bounded, the stopping times T will be bounded in probability, uniformly in n,
and likewise for T; < T, 0 < ¢ < s. So the v;-variations of M™ will be bounded
in probability uniformly in n.

Let F, be empirical distribution functions of the uniform distribution F(¢) =
t,0 <t < 1. For each n, M™(t):=n/2(F,(t)—t)/(1-t),0 < t < 1, is a martingale
[e.g., Shorack and Wellner (1986), page 4 and page 133, Proposition 1]. Then
M®™ has mean 0 and variances bounded for 0 < ¢ < s := 3, uniformly in n.
Likewise, symmetrically, n'/2(F,(t) — t)/t, % <t <1, are reversed martingales
with uniformly bounded variances in the given range.

Now the following will be helpful. Krabbe (1961) treats the p-variation case.
Lacking a reference for general v-variation, I will sketch a proof:

LEMMA 5.1. Let 1 be any Orlicz function satisfying Ag. Then the functions
of bounded -variation on an interval form an algebra, and there is a K < oo
with

vy(gh) < K(y(llgllooh) + vy(||h |8,
for any functions g and h. For ¢¥(u) = uP,1 < p < o0, we have

lgtller < IR lloollglle + lIgllo 12 ]lwrs
so that ||gh||ip1 < I8 lip1llBllip1s for any two functions g and h.

PROOF. For any points x and y, we have

|gh)(y) — @h)x)| = |h(y)g(y) — g(x)) + g(x)h(y) — h(x))|
< |1 )lool8(y) — 8| + ||g|lcch(y) — h(x)|.

Since the A, condition implies quasi-subadditivity, ¢ can be distributed over
the sum, with a constant K. Then, taking sums of v of such increments over
nonoverlapping intervals, the result for vy follows.

For ¥(u) = uvP,1 < p < oo, the result follows instead from Minkowski’s
inequality. O

Now apply Lemma 5.1 to g(¢) = M™(¢) and A(¢) = 1 — ¢, and set a,(t) =
nY2(F,(t) — t) = (gh)#). For any function f on an interval [a,b] and Orlicz
function 1, denote the y-variation of f on [a,d] by vy(f)ie,51- Then

vy(io, 11 < V(o 1721 + Vy(iaye, 1 + Y((sup — inf)y 13 ),

and vy, (an)po, 1/2] is uniformly bounded in probability. Symmetrically, the same
is true for [%, 1]. Thus vy,(a,) are uniformly bounded in probability. For r >
2, |ul" = o(i1(w)) as u — 0. It follows that, for each r > 2, ||ayl|; are also
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uniformly bounded in probability, completing the alternate proof of Dudley
[(1992a), Corollary 3.8].

I have a proof that vy, (F, — F) = O,(n~%2) and, consequently, that in the
situation of Theorem 2.6, ||Ry, ||2 = Op((log logn)*/%/n%/4). The proof is omitted
since this is a little weaker than Theorem 2.6, which in any case is essentially
a known fact.

Lepingle (1976) also treated r-variation of martingales.

Acknowledgment. I thank Gilles Pisier for pointing out the possibility
of martingale proofs of the boundedness in probability of ||a,||ip;,p > 2. He
has told me of another proof which uses the notion of “Type 2,” as mentioned
in Dudley (1992a) and references there.
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