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TESTING A TIME SERIES FOR DIFFERENCE STATIONARITY

By B. P. M. McCABE AND A. R. TREMAYNE

University of British Columbia and University of Sydney

This paper addresses the problem of testing the hypothesis that an
observed series is difference stationary. The alternative hypothesis is that
the series is another nonstationary process; in particular, an autoregres-
sive model with a random parameter is used. A locally best invariant test
is developed assuming Gaussianity, and a representation of its asymptotic
distribution as a mixture of Brownian motions is found. The performance
of the test in finite samples is investigated by simulation. An example is
given where the difference stationary assumption for a well-known data
series is rejected.

1. Introduction. The work of Box and Jenkins (1976) has been instru-
mental in the popularity of the autorgressive-moving average (ARMA) class
of statistical models for stationary time series. The ARMA class of models can
also deal with data exhibiting homogeneous nonstationarity, since such data
can be reduced to stationarity by differencing. Hence, a cornerstone of
practical time series modeling is the acceptability of the difference stationary
assumption, that is, that a series can be modeled using the ARIMA
(stationary ARMA after differencing) class.

In standard significance tests of the null hypothesis of difference stationar-
ity [see, e.g., Dickey (1976), Fuller (1976) and Phillips (1987)], the null of a
unit root is typically tested against the alternative of stationarity. However,
there is a strong need to be able to distinguish the difference stationary class
from other types of nonstationary model. A failure of the Dickey—Fuller test
to reject the null hypothesis of difference stationarity could be due to the low
power of such a test against the actual (nonstationary) data-generating
process rather than the acceptability of the presence of a unit root. Since
modeling strategies such as the cointegration methods popularized by Engle
and Granger (1987) rely crucially on the presence of unit roots, the sole use of
standard unit root tests against stationary alternatives may result in poor
approximations to the underlying data-generating processes.

In recent years, in parallel with the development of methods of nonlinear
time series analysis [Tong (1990) and Granger and Terasvirta (1993)], it has
become apparent that many series are not difference stationary and may be
nonstationary in a nonhomogeneous way. In this paper we provide a locally
best invariant test of the null of difference stationarity (a unit root) against
the alternative of a randomized unit root. If the null hypothesis is accepted,
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then the analyst may proceed with an ARIMA analysis, while if it is rejected
a nonstationary, and perhaps nonlinear, modeling methodology should be
entertained.

In this paper we propose a test for coefficient constancy which is locally
best invariant on Gaussian assumptions. A representation of the asymptotic
distribution of the test statistic as a mixture of Brownian motions, with the
normality assumption previously used being replaced by a suitable mixing
condition is found. The test is now no longer locally best invariant, but the
statistic does provide a valid significance test of wide applicability. Following
this, we report the results of simulation experiments which provide critical
values for use with the test. Some limited evidence on its empirical power
properties is also given. The last main section applies the test to the IBM
data set provided as Series B by Box, Jenkins and Reinsel (1994).

2. The model and some simple properties. In the stationary case, a
suitable justification for use of the ARMA class of models is provided by the
famous Wold decomposition. Cramér’s (1961) extension to Wold’s theorem
[see, e.g., Priestley (1981), page 858] implies that any nonstationary stochas-
tic process may be written as an ARMA process with coefficients that are
allowed to vary with time. The special case of random coefficient autoregres-
sive (RCA) models has been well examined in the literature. Nicholls and
Quinn (1982) study the stationary case, and Tyssedal and Tjgstheim (1988)
provide practical application of this class of model; these papers contain
many other references. Also, Tong (1990) devotes a number of passages to
RCA models and he points out that other important classes of nonlinear
models like autoregressive conditional heteroscedastic models and bilinear
formulations can be regarded as special cases.

Consider an autoregressive representation with time varying coefficients
which are modeled as realizations of a sequence of random variables. In the
first-order autoregressive case, this leads to a model of the form

Ye =0y 1t &,

where ¢, is a suitable innovation and a, a sequence of random variables
(which may be correlated with &,). This is, of course, not the only way to
model time varying coefficients, but it is mathematically convenient. Further,
should the ARIMA specification be rejected, the search for an alternative
model may be conducted within the RCA class.

Suppose that y,,,,...,yr are observable random variables generated,
condition on y,, according to
(2.1) w, = aqw,_ |+ &, t=1,...,T,

where w, =y, —y, and w, = 0. The random coefficients «, are assumed
independent of one another with a constant mean of unity and variance w?,
and the innovations &, are zero-mean independent random variables with
variance o 2. The processes &, and «, are assumed mutually dependent with

covariance Yyw? at time ¢ and independent otherwise; it is further assumed
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that the two processes are not contemporaneously linearly dependent, so that
ly| < o2,

The mean of w,, conditional on w,_,,w,_,,..., is w,_; and the conditional
variance of w, is w’w? ; + 2¢w’?w,_; + 0% When &, and «, are Gaussian,
the joint density of the w, is

T
kBTl (0wl + 2¢0’w, ; + 0'2)_1/2
t=2

T
2 -1
X exp —% Z (w, —w,_,) (wzwf_l + 21//w2wt_1 + 0'2)
t=2

X o lexp(—zwi/o?),

by the usual conditioning argument. In what follows, most products and
summations are from 2 to 7' and so the limits on such symbols are hereafter
omitted unless they differ from this.

3. The derivation of the locally best invariant test. The testing
problem of interest, that is, testing w? = 0, is invariant to scale transforma-
tions. Accordingly a maximal invariant, distributed independently of o2, is
given by

z, =w,/wy, t=2,...,T.

For convenience z; and o? are both set to unity. To find the joint distribu-
tion of z,,...,2,, define a dummy variable D = w,. The Jacobian of the
transformation is |D|” !, and the joint density of the z, and D is

G(zy,...,2p,D)

=k IDI" ' T](w222 D? + 2¢w?z, D + 1) '/

(3.1) % 1 212/, 2.2 12 2 -1
exp{_EZ(zt_zt—l) D (w 2, 1D* + 2¢0°2, 1D + 1) }

Xexp{—%Dz} = G(w?, D),

introducing a compact notation with the arguments which are now of concern.

Ideally, one would now wish to find the distribution of the maximal
invariant by integrating out D and then differentiating the log of the
resultant density with respect to w? to find the locally best invariant (LBI)
test [see Ferguson (1967), page 235]. Unfortunately, it does not seem possible
to integrate (3.1) with respect to D directly.

An alternative approach is to interchange the order of the integration and
differentiation operations. Of course this requires that both the original and
resulting integrals be uniformly convergent. The following lemma shows that
this is legitimate.
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LEMMA 1.
3[ G(w? D) dD = [ 9G(w*, D) dD,
where d =d/dw? and w? < M, M being some finite number.

The proof of this lemma is given in the Appendix. To derive the LBI test, it
remains to differentiate the joint density with respect to w?, set it to zero and
integrate out the dummy variable D. Finally, the resultant expression should
be divided by the null density to provide the appropriate test. This leads to
the following theorem.

THEOREM 1. In model (2.1), when {a,} and {&,} are (possibly contempora-
neously correlated) sequences of iid normal random variables and T (= 2n) is
even, the LBI test of w®> = 0 against w? > 0 is given by Z* = Z + Z,, where

Z=(T+2)Te * Y (w, - wt—1)2wt2—1 ~To ? Y w},,

Z, =y¢f(T)vV2m [ Z(wt - wt—l)zwt—1¢_3g(T +2) - Zwt—l‘P_lg(T)] .

In these expressions f(2n) = [2" Xn — D71, g(2n) = 2r)/27r) and ¢? =
Y(w, — w,_)* + w?. The test rejects for large values of Z*.

Proor. Differentiating (3.1) with respect to w? and equating to zero gives
k _
- Eexp{—%D2[Z(zt —z, )+ 1]}|D|T (D*Lzl, +2¢DY 2, )

k _
+ Eexp{—%D2[ Z(zt - zt—1)2 + 1]>|D|T I{Z(zt - zt_1)2D2
X (22,D? + 29z,_,D)}.
Define ¢2 = [X(z, — z,_,)? + 1]7! and set T = 2n. To integrate with respect
to D, we require certain moments of a normal random variable X having

mean zero and variance ¢ 2. The odd-order moments are zero and the even
ones are well known. The absolute odd-order moments are

E[Ix*"+ 1] = o2 12mn1(2/m) Y2
On performing the integrations we get
k ,
Sl Z(z =2 )22 1977420 2 (n + DI+ 20 (2, — 20)°

Xz, 192" 3g(2n + 2)\/%]

k
— E[sz_1¢2n+22n+ln!+ 2¢22t_1¢2n+1g(2n)m]'
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Dividing by the null density 2 $2"2"(n — 1)! yields the LBI test as
H(T+2)To* T (2, — 2,-1)° 221 + $o*A(T) (T + 2)
xVem ¥ (2, — 2-1) 24
—3[T$* X221 + vbf(T)a(T)V2m Lz, 4]

Substituting z, = w,/w, and rearranging completes the proof. O

When T is odd a different statistic arises. The proof is similar to Theorem
1 and is thus omitted, but it is presented in McCabe and Tremayne (1989) as
their Theorem 2. The LBI test in this case is just Z, the term Z; no longer
being required. The statistic Z* differs from Z in the important respect that,
through Z,, it does depend on i, which reflects the strength of the covariance
between «, and ¢,, although we shall see later that this does not affect the
asymptotic behavior of the statistic. Thus Z may be used for all T, at any
rate asymptotically.

The factorial expressions inherent in Z* given in Theorem 1 can be
simplified by employing Stirling’s approximation and replacing m!
byv27m m™e ™. By writing f(2n)g(2n + 2) as

n(n + 1)(2n + 2)1/{22"[(n + 1)1]%)
and so on, we can reexpress Z* as
Z¥=7Z+ 2y
(3.2) 1/2 2 -3 172 -1
X[T(T+2) Y(w —w ) w0 =TV Yw, e ]

A neater expression for the Z* statistic can be obtained by ignoring asymptot-
ically negligible terms in (3.2) and reformulating it as

a* Zwtz—l{(wt - wt—l)2 - 6'2}
+2y07° Zwt—l[(wt - wt—l)2 - 5'2]’

where 62 = T 'Y(w, — w,_,)% Since & = w, — w,_,, the statistic is essen-
tially a weighted sum of the difference between £? and its overall average,
2. Corollary 1 below shows that the second term in (3.3) is asymptotically
negligible, relative to the first, so the limiting behavior of Z* can be estab-

lished by finding that of Z.

(3.3)

4. The asymptotic distribution of Z. The exact distribution of Z, even
under Gaussianity, does not seem to be tractable and so recourse to asymp-
totic theory must be made. However, the assumption of Gaussian white noise
innovations in (2.1) can be relaxed considerably without affecting the asymp-
totic behavior of the statistic. In the current context a stationary and mixing
assumption will be satisfactory.
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AssumPTION 1. The sequence 7, say, is stationary and satisfies the follow-
ing:

(ii) EIn,|?1V/P < o for some p > B> 2; and

(iii) {n,} is a-mixing with coefficients «,, of size —pB/(p — B).

As a consequence of stationarity 7! var(X1y,) — 0;12 asT > o 0<o?<

o. Define a partial sum process (PSP) for any {7,} as a function on D[O, lrj by

(Tr>
Wr(r) =T %, 2 m,
1

where ( ) means integer part of. Assumption 1 implies that W,(r) converges
weakly (written =) to W(r), a Brownian motion on C[0, 1]. This is also true
when 7, is a vector when ¢,” is interpreted as a covariance matrix with ot
satisfying o, 'o; " = 0, and the limiting process is a vector of independent
Brownian motions. Theorem 2, which is proved in the Appendix, gives the
limiting distribution of Z under Assumption 1. It makes extensive use of the
results of Hansen (1992).

THEOREM 2. Define o.? = E(e?), 6% =Y%e?/T and w, = w,_, + &,. Let
n, ={&,, &2 — 0%}, and let 0%, k* and pox be the distinct elements of the
covariance matrix crf. Then, under Assumption 1 for n,,

Zp =T % % ' Yw} (& — %)= /1[%/1@)2 - /1W1(8)2 ds} dW*(¢t),
0 0

where W (r) is a Brownian motion, W*(r) = pW, + /(1 — p?) W, and W, is
a Brownian motion independent of W;.

The parameter p measures the limiting correlation between the two
components of the stationary 7, and the form of the limiting distribution,
involving p as it does, indicates that the statistic is operational when this
correlation is known. If &, is iid and the distribution of &, is symmetric,
p = 0, for then p = E(&?)/0ok. For more general stationary &,, the symmetry
of the distribution of the innovations in its Wold decomposition is sufficient to
guarantee that s, has a symmetric distribution and that p = 0 because
E(g,£2) = 0, t # s. This we shall assume in practical applications.

The statistic Z; of Theorem 2 is a scaled version of the statistic Z arising
when T is odd; see Theorem 1, (3.2) and (3.3). For T even we have the
following corollary, which is also proved in the Appendix.

COROLLARY 1. The quantity 2T 3% % [Xw, (g2 — 62)] converges to
zero in probability.

The effect of this corollary is that the statistics for T' odd and even have
the same asymptotic distribution, so that Z, may be used for both.
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Often it is not reasonable to assume that the innovation sequence {¢,} is
white noise, and allowance must be made for its stationary dependence
properties. If, in the absence of further information, {¢,} is simply assumed to
be stationary mixing, we may use the result that o:,,z, defined in conjunction
with Assumption 1, may be written in terms of the spectral density of the
process, that is, o, = 27f(0), where f(:) is the spectral density of {n,).
However, f, some consistent estimator of f, may converge only slowly to f
[see, e.g., Box, Jenkins and Reinsel (1994), page 40], so that this may not be a
feasible strategy in small samples.

Another approach which could be used, and which is easy to implement, is
to assume that the correlation structure in {¢,} can be modeled as an ARMA
process. In the spirit of the augmented Dickey—Fuller test [Dickey and Fuller
(1981)], we may assume that this ARMA process may be satisfactorily
approximated by an autoregressive process of sufficiently high order. Then
the test statistic is constructed from the residuals 2, in the regression of Ay,
on Ay, q,...,Ay,_, for suitably chosen p. More formally we have the follow-

ing corollary.

COROLLARY 2. If &, is driven by an autoregressive process of order p*, and
Zrp of Theorem 2 is computed from the residuals &, in the regression of Ay, on
Ay, 15-.-,Ay,_,, p=p* the limiting distribution of the test statistic is
unaffected. This is because the PSP’s of {&,} and {&}} converge weakly to the
same limits that one obtains when the true &’s are used.

The proof of this is straightforward and follows along the lines of Ley-
bourne and McCabe [(1989), Section 4]. Of course, if p* of Corollary 2 is equal
to zero, so that the model innovations have no correlation structure, the
statistic Z; of Theorem 2 may be constructed using the following corollary.

COROLLARY 3. Under the assumption that &, is a zero-mean, indepen-
dently and identically distributed sequence with finite fourth moments, Theo-
rem 2 continues to hold when o? is replaced by 62 and «? by k% = Y(g? —
~2)2
a?)?/T.

This follows from the weak law of large numbers and the continuous
mapping theorem. In Section 6 both Corollary 2 and Corollary 3 are used.

5. Tables and power of the Z-test. The distribution of Z;, is untabu-
lated, so we conducted some simulation experiments at various sample sizes
(with p = 0) to provide critical values. We used the model

(5.1) ¥, =y, 1t &, &, ~ NID(0,1), a, ~ NID(1, w?).

In addition, ¢, and «a, were independent. Results under the null w? = 0, are
given in Table 1. It provides empirical percentiles from 90 to 99 in steps of
1% for the statistic. This corresponds to a range of significance levels from
10% to 1% and is tabulated because the statistic rejects for values in the
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TABLE 1
Significance points for Z; when p = 0

Sample size (T')

Significance 50 100 200 500 1000
level (%) Z Zy Zy z, Z;

10 0.47 0.47 0.48 0.51 0.49

9 0.51 0.51 0.52 0.55 0.54

8 0.56 0.56 0.57 0.61 0.59

7 0.61 0.62 0.63 0.67 0.65

6 0.69 0.70 0.71 0.75 0.72

5 0.77 0.79 0.80 0.84 0.81

4 0.87 091 0.91 0.96 0.92

3 1.04 1.06 1.07 1.11 1.07

2 1.27 1.28 1.32 1.37 1.29

1 1.66 1.72 1.74 1.90 1.70

Notes: (i) This table is based upon using pseudorandom Gaussian random
variables. Entries are based on 100,000 replications. (ii) The null model is
Vi = Vi-1 + &, & ~ NID(0, 1).

right-hand tail. Entries are based on 100,000 replications for each 7. Use of
the (weak convergence) invariance principle implies that the critical values in
Table 1 apply for all symmetric innovation sequences that satisfy Assumption
1 with p= 0.

It is also of interest to investigate whether the test is able to discern
correctly that random coefficient variation is present in small data sets that
are often encountered in practice. Table 2 presents the results of limited
simulations carried out to assess the empirical power of the test using (5.1).
The rejection frequencies given demonstrate that the test has quite good
power properties, even for fairly small values of w? and moderate sample
sizes like 50 or 100. As is to be expected, rejection frequencies increase with
sample size.

TABLE 2
Empirical power of Z

Sample size (T")

50 100 200 500 1000

w? Z, Z; Z, Z; Z;
0.001 0.07 0.11 0.21 0.42 0.62
0.01 0.20 0.35 0.51 0.71 0.85
0.1 0.36 0.43 0.49 0.50 0.56

Notes: (i) This table is based on pseudorandom Gaussian
random variables. Eniries given are the proportion of rejec-
tions in 10,000 replications at the 5% level. (ii) The model is
Yo = ayVi_1 +,, & ~ NID(O, 1), a; ~ NID(1, w?). (iii) The null
hypothesis tested is w? = 0.
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6. An example using the IBM stock price data set. We now apply
the test developed earlier in the paper to a famous data series, to indicate its
potential efficacy. The data is the set of 369 daily observations on IBM
common stock closing prices given by Box, Jenkins and Reinsel (1994) as
their Series B. Some controversy has surrounded the analysis of this series.
For example, the authors themselves (Section 8.2.3), after preliminary analy-
sis, divide the data into two, arguing that the data-generating mechanism
may have changed about midway through. They then found a significant
first-order moving average component for the first half of the data, but a
much smaller, insignificant, coefficient for the second half. These findings
could be construed as indicating that the data in the first half are
ARIMA(0, 1,1), while those in the second half are ARIMA(0,1,0). The Z
procedure is now applied to test the adequacy of these two models.

Testing the hypothesis of difference stationarity for the first half of the
data (184 observations) requires allowance for the correlation in the first
differences because of the significant MA component found. Since the data set
is not large, we employ the suggestion of Corollary 2 and approximate the
correlation structure by an AR(p). In this example, setting p = 4 results in
an insignificant @-statistic based on the residuals, and we thus deemed the
correlation due to the MA component to have been effectively eliminated. The
value of Z based on the residuals from the ARIMA(4, 1, 0) fitted to the data
was —0.88. This is not significant at any conventional significance level and
thus the difference stationarity may be maintained.

For the second half of the data the proposed model is ARIMA(0, 1, 0). Thus
there is no requirement to eliminate correlation via the augmenting proce-
dure used above. The statistic Z, calculated in conjunction with Corollary 3,
yields a value of Z = 2.50. This is significant at all conventional significance
levels. Thus there is ample indication that the ARIMA(0, 1, 0) hypothesis for
the second half of the data can be decisively rejected and that the data is not
difference stationary.

Further applications of the theory developed in this paper may be found in
Leybourne, McCabe and Tremayne (1994), where allowance is made for the
presence of trends which are a feature of many macroeconomic data sets. The
authors provide critical values with allowance for trends, although these
differ from those given in the present paper because of the extra nuisance
parameters.

7. Conclusion. The general conclusion to be reached from the theoreti-
cal developments and the empirical example of this paper is that it may be
useful for applied workers to entertain alternatives to unit root hypotheses
other than that of a stationary autoregression. This is particularly the case in
view of the widespread use of ARIMA modeling.

The paper develops an optimal test of a difference stationary null hypothe-
sis against another nonstationary alternative process characterized by ran-
dom coefficient variation. The asymptotic distribution of the proposed statis-
tic is derived under mixing and is tabulated. Sections 5 and 6 provide useful
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illustrations of the fact that not only does the test possess power in simula-
tions, but also that it may be of value in practical applications.

APPENDIX

Proor or LEMMA 1. Consider the integral on the left-hand side in he
lemma. Now

(A1) | G(w* D)dD < k*fw IDI”" " exp{—D?/2) dD,
B
for a number k* independent of w?. This follows since the product and
exponent terms in G(-) may be bounded using (A.2a) and (A.2b):
(0?27 | D? + 2¢w®z, ;D + 1)
(A.2a) = (0z,_,D + o) + (1 — 0%?)
>1-o0?>1-My?>0;
(A2b) exp{ -3 ¥ (2, —2,,)*D*(w?2? | D? + 24?2, D + 1) '} <1

In (A.2a), noting the assumption that «, and &, are not perfectly correlated
and remembering o2 is unity ensures that w%)? < 1. The integral (over the
whole real line) on the right-hand side of (A.1) is an absolute moment of a
Gaussian distribution. Hence it follows that the tail areas may be made
arbitrarily small and so [ G(w?, D) dD is uniformly convergent.

Turning to the integral on the right-hand side of the lemma and differen-
tiating G(-) with respect to w? gives

k* T
~ 5 IDI" ] (w22 1D* + 29w’z 1D + 1) 12
2

X Y (22.,D? + 291z, D)( w222 D2 + 29z, ;D + 1)
ol Ao D5 2o 1D 1))
X exp{ - 3D?}

plus

* T
_ ~1/2
5 ID|"* I;I (0?2} \D* + 2¢0’z, D + 1)

Xexp{—%Z(zt - zt,1)2D2(a)2zt2,1D2 + 2¢yw?z, 1D + 1)71}
2

Xexp{—%D2}{Z(zt 2,.1) Dz(w 22 |D? + 2yw?z,_,D + 1)

x(z2.,D? + 2¢zt_1D)}
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Using (A2), the first term of this integral is bounded, independent of w?. The
integral of the second term in this derivative expression with respect to D
may be shown to be less than or equal to the integral of

k* D? -
'—2—|D|T_1 eXp{—y}{Z(zt - zt_l)z(w2zf_1D2 + 2¢y0’2z, D + 1) 2

X(z7.,D* + 21/1zt_1D3)>

*

k _ D2
= '_2_|D|T ! eXP{‘?}{Z(zt _zt—l)2

X (1 — My?) *(22,D* + 2¢zt_1D3)},

again using (A.2a). However, collecting powers of D, the integral of the last
expression is just the sum of scaled, absolute moments of a normal distribu-
tion, independent of w?. Thus the tail areas can be made arbitrarily small
independent of w?, and the lemma is established. O

LEMMA Al (Joint convergence). Under Assumption 1, let m, = {e,, &% —
a.2}, and let 02, k* and pox be elements of the covariance matrix o,” defined
in conjunction with the assumption. Then the PSP’s of {¢,} and {&}} jointly
converge; in particular,

[W2 Wi]" = [wZw+]",
where Wy is the PSP of {&,} and W3 that of {¢}}. In the limit process, W, is a

Brownian motion, W* = pW, + /(1 — p?) W, and W, is a Brownian motion
independent of W;.

PrROOF. Set 0,2 = E(&?2). Define W,(r) to be the partial sum process (PSP)
of &,, and W;(r) to be that of &2, that is

{Tr) ({Tr)
We(r) =TVt 5 o, Wi(r) =TV X (o - ).
1 1

It then follows from the mixing assumption that

1 p—1/2
[p 1] (W WE] = [W, W]

where W; and W, are independent Brownian motions. Inverting the correla-
tion matrix gives

[Wr WE] = [Wy, oW, + /(1= p2)Wy] = [W W],

The lemma now follows from the continuous mapping theorem (CMT). O

The proofs of Lemma A2 and Theorem 2 rely heavily on Hansen (1992) for
technique and notation.
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LEMMA A2 (Remainder term). When Uy = W2 and V, = W, the martin-
gale approximation term A [see Hansen (1992), equation (3)] converges to
zero in probability.

Proor. Now,
T
(A.3) Ar = T2 E {UTt - UT(t—l)}zt - T_1/2UTTZT+1’
t=1

where Uy, = (T2 1%i7%,)? and 2, = S7E[ &}, — 0.2IF,]. Note that z, is
based on the mixing process {¢? — 0,2} and thus, as in Hansen [(1992), (A3)],

(A4) T2 suplz,| -, 0.
t<T

Looking at the last term in (A.3) first,
T 2Uppzp, 1| < |Uppl - IT7H 2204l

Under Assumption 1, the PSP of {¢,} converges and the first term is Op(l),
while the second converges to zero in probability by (A.4). Thus the product
vanishes asymptotically. As to the summation term in (A.3), redefine U;; =
W/, and note that

2
UT,' - UT(i—l) = (WTi - WT(i—l)) + 2VVTZ'VVC"(i—l)
i-1 i-2
=T 0 %2+2T 072 ) &) ¢,.
1 1

Hence

T T
T2 Z {UTt - UT(t—l)}zt =T"%%"? 2 8t22t
t=1 t=1

T [(i-1 i-2
-3/2 ~2
+ 2T3/% t‘_:,l( MDY ej)zt.
Start with the first term:
T T T
T 3% 2 Y gle,=T"3%"2 Y (e —a2)z, + T 3% %2Y z,.

t=1 t=1 t=1
By Hansen [(1992), Theorem 4.1], both terms converge in probability to zero
because of the presence of the extra 7 !/%2 here. As for the other term,
Hoélder’s inequality followed by by the weak convergence of the PSP of {¢,}
and (A4) show that it, too, converges in probability to zero. Thus the lemma is
proved. O

Under Assumption 1, and in view of Corollary 1, we are led to consider the
asymptotic behavior only of Z; as given in Theorem 2.



TESTING DIFFERENCE STATIONARITY 1027

PrOOF OF THEOREM 2. Using the properties of deviations from means, the
statistic of interest may be rewritten as

T-38/25-2~1 Z(Wt _ W)(etz _ "52),

where W, = (£ %,)* and W = T~ 'LW,. Employing the partial sum process
notation of Lemma Al,

zp = [H{wr(0)* = [Wr(e)* ds ) dwi (o)

- fole(t)zdw;(t) - Wi (5)? ds Wi (1).

Next apply the martingale approximation of Hansen (1992) to the stochastic
integral in the first term to get

Zy _fwT(t) dYp(t) + Ay — [WT(S) ds Wi (1),

where Y.(¢) follows Hansen’s notation and represents a martingale process.
Using Lemma A1, in conjunction with Hansen [(1992), Theorem 2.1] and the
CMT, it is seen that

Zp = jolwl(tf dW*(¢t) — [Olwl(s)2 ds W*(1)

= [ = [Puncs)® as|awe o
0 0
once it is established that Ay —, 0 by Lemma A2. O

PRrROOF OF COROLLARY 1. The proof of this corollary is very similar to that
of Theorem 2, so we shall use the same notation and merely sketch the

details. Write W, = £ &; so that

T3/ % [zwt_l(etz - 6'2)]
AT o [T (W - W)(e? o)

=712 fol{WT(t) - foWT(s) ds} dWi(t)

- T‘1/2[f1{WT(t) - fle(s) ds} dY,p(t) + AT].

Now the integral expression is O,(1) by arguments similar to Theorem 2, and
so multiplication by 771/2 ensures the product is 0,(1). Reasoning identical
to that in Lemma A2 also shows that 77 1/2A, -, 0 0O
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