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Most hazard regression models in survival analysis specify a given
functional form to describe the influence of the covariates on the hazard
rate. For instance, Cox’s model assumes that the covariates act multiplica-
tively on the hazard rate, and Aalen’s additive risk model stipulates that
the covariates have a linear additive effect on the hazard rate. In this
paper we study a fully nonparametric model which makes no assumption
on the association between the hazard rate and the covariates. We propose
a class of estimators for the conditional hazard function, the conditional
cumulative hazard function and the conditional survival function, and
study their large sample properties. When the size of a data set is
relatively large, this fully nonparametric approach may provide more
accurate information than that acquired from more restrictive models. It
may also be used to test whether a particular submodel gives a good fit to
a given data set. Because our results are obtained under the multivariate
counting process setting of Aalen, they apply to a number of models
arising in survival analysis, including various censoring and random
truncation models. Our estimators are related to the conditional
Nelson-Aalen estimators proposed by Beran for the random censorship
model.

1. Intfroduction and summary. Let T be the survival time of an
individual with covariate vector Z = (Z,,...,Z,). To assess the influence of
the covariate on T, by far the most commonly used model is Cox’s propor-
tional hazards model, which stipulates that

1
1.1 h(tlz) = lim —P(T <t+ AtlT > ¢;Z = 2),
(. (te) = Jim G P(T <t + o ?

the hazard function for an individual with covariate Z = z, has the form
h(t|z) = hy(¢)exp(B’'z), where B is a vector of unknown regression coefficients
and Ay(¢) is an unknown hazard function. This model has the major advan-
tage that it is parsimonious and easy to understand: The effect of the
covariates is neatly summarized by the vector B. On the other hand, the
assumed functional form of the hazard rate is extremely rigid.

Let S(¢|z) = P(T > t|Z = z) be the conditional survival function of T given
that Z = z. Beran (1981) considered the more general model in which {S(:|2)},
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788 G. LI AND H. DOSS

is a completely arbitrary family of survival functions. Supposing densities
exist, this is the model

(1.2) h(tlz) = a(t,z),

where we assume only that for each z, a(:,z) is a hazard function. Beran
considered estimation of S(¢|z) and the corresponding cumulative hazard
function A(¢,2z) = [{ a(s,z) ds under a random censorship model in which
the survival time of each individual is observed until a censoring time. More
specifically, the data consist of n ii.d. triples {(X}, §,,Z,)}" ;, where for each
i, X; = min(T},,C;) and §; = I(T, < C,). Suppose that Z does not depend on
time and that T is condltlonally 1ndependent of C given Z. Beran proposed a
“local Nelson—-Aalen estimator” of A(#,z), which is described as follows. For
each z, let K (¢|z) = P(X > t, 8§ = 1|Z = z) and K(t|z) = P(X > t|Z = z). The
representation

¢+ dK (sl|z)
A(t,z) = —/ K(s T2

[see Peterson (1977)] led Beran to propose the class of estimators of A(¢,z,)
given by

N ¢ dKl slz,
(13) A (t,20) - ‘fng(_Tzl)’

where K (tlz,) = T7_, Wiz )I(X, > t, §, = 1) and K(¢t|z,) = L7, W,(z,)I(X,
> t). Here {W(z,), i = 1,..., n} is a set of nonnegative weights depending on
the covariates only. For instance, the W,(z,)’s can be taken as the nearest
neighbor or kernel weights used in density estimation and nonparametric
regression. When one uses the constant weights Wi(z,) = 1/n for all i, A
reduces to the ordinary Nelson—Aalen estimator [see Aalen (1978)]. Large
sample properties of Beran-type estimators have been studied by many
authors, for example, Beran (1981), Dabrowska (1987) and McKeague and
Utikal (1990).

The purpose of this paper is to introduce and study a new class of
estimators for the conditional cumulative hazard function, the conditional
survival function and the conditional hazard function. We informally moti-
vate our estimators as follows. Beran’s estimators involve a local averaging
in the z direction. It seems preferable to do a “local linear fit” in the =z
direction. It may be helpful to make an analogy with scatterplot smoothers in
nonparametric regression, in which we are given data {(Y;, Z,)} and we wish
to estimate E(Y|Z = z,). Two standard estimators are the running average
smoother and the running lines smoother. Let L, denote the set of indices of
all the z’s that lie in a neighborhood of z,. The running average smoother
averages all the Y’s whose indices lie in L, . The running lines smoother
‘involves doing a least squares fit using the points {(Y;, Z)); l € L, - There are
some problems with smoothers based on local averages, a notable one being
large biases near the endpoints of the z region. In addition, they do not
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generally reproduce straight lines. For this reason, the running lines smoother
is generally strongly preferred in practice. For example, the scatterplot
smoother provided in the statistical programming language S is a running
lines smoother (“loess”). See, for example, Chambers and Hastie [(1991), page
376].

We now wish to give a preliminary description of our estimators of the
conditional cumulative hazard function in the context of the random censor-
ship model described earlier. Fix a small neighborhood .7, . Within .7, we
have

(1.4) a(t,z) = By(t,zy) + Bi(t,2¢)2, + - +,8p(t,z0)zp.
The integrated version of this is
(1.5) A(t,z) = By(t,2z,) + By(t,29)2; + - +B,(t,29)2,,

where B/(t,z,) = [; B,(s,2%,) ds (0 <j < p). Imagine now that we have equal-
ity in (1.5). We estimate A(¢,z,) by a function which has jumps only at the
observed death times. Suppose there is an observed death at X. Let
S =Xy, Xy + dt), let #; denote the set of individuals whose covariates are
in ./, and who are at risk of dying in the interval .% and let n; be the
cardinality of %,. Each individual in %, is observed to die in the interval .7
or not. Thus, we have a “response” vector of length n;, consisting of n;, — 1
zeros and a single 1. If we formally regress this vector on the covariates z;,
l €%, we obtain an estimate of the increment of the functions Bj(',zo),
J=0,...,p, at the point ¢ = X;,, Summing up those increments gives an
estimate of the B,(-,2,)’s, j = 0,..., p, and this gives an estimate of A(:, z,).
We note that if we take .7, to be the entire z-space, this procedure gives
Aalen’s (1980) least squares estimator. Actually, we do not do an ordinary
regression, but rather a weighted regression, in which individuals whose
covariates are close to z, are counted more heavily. A complete description of
our estimators is given in Section 2.

It is not too difficult to see that if instead of taking a first-order Taylor
expansion in (1.4) and (1.5), we take a zeroth-order Taylor expansion «a(¢,z)
=~ a(t,z,), then we obtain the estimators proposed by Beran (1981). This is
discussed further in Section 2.2 below.

We note that an estimate of the conditional cumulative hazard function
naturally gives rise to an estimate of the conditional survival function S(¢|z)
through the product—integral representation

S(tlz) =Py (1 — dA(s,2))
=exp{A°(¢,2)} [[ (1 — AA(s,2)),
s<t
where A° is the continuous component of A and AA(s,z) = A(s,z) —
A(s — , z) [see, e.g., Gill and Johansen (1990)]. Thus, an estimate A(#|z) of
A(t|z) yields the estimate
S(tlz) = TT(1 - AA(s,z)),

s<t

(1.6)
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andpmoreover the asymptotic distribution of S(¢|z) may be obtained from that
of A(t|z) via the functional version of the 8-method [see Gill (1989)]. Further-
more, estimates of functionals of S(¢|z) such as the mean life length and the
median life length can in turn be obtained as functionals of S(t|z), and in
many cases (e.g., for the median life length) the asymptotics for these
functionals can also be obtained via the é-method.

The fully nonparametric approach provides useful alternatives to estima-
tors derived from the Cox model. Also, our estimators may be used to
determine whether a more restrictive model such as the Cox model gives an
adequate fit to the data. This is done by comparing estimates under the fully
nonparametric model with the estimates under the more restrictive model,
and carrying out a formal test of goodness of fit (assuming that the distribu-
tions of the required test statistics can be obtained). See, for example,
McKeague and Utikal (1991). They are also needed in the fitting of a
“nonlinear additive risks model,” which will be introduced and studied in a
sequel to this paper. Our development in this paper proceeds within Aalen’s
(1978) framework of multivariate counting processes. This offers some impor-
tant advantages. As is well known by now, Aalen’s model encompasses a wide
range of models arising in survival analysis, for example, very general forms
of censoring (type I censoring, type II censoring and the important special
case of random censoring) and random truncation models; see Chapter 3 of
Andersen, Borgan, Gill and Keiding (1993) for a discussion of these and for
additional examples.

In Section 2 we formally introduce our estimators of the conditional
cumulative hazard function, the conditional survival function and the condi-
tional hazard function, and discuss the choice of weight functions, giving
emphasis to nearest neighbor and kernel weights. In Section 3 we state
results which give sufficient conditions for weak convergence of our estima-
tors. Specifically, these are Theorem 1, which pertains to weak convergence of
the conditional cumulative hazard and the conditional survival functions, and
Theorem 2, which deals with weak convergence of our estimates of the
conditional hazard function. These two theorems are abstractly stated and
pertain to an arbitrary family of weight functions. Section 4 gives results
which state that the sufficient conditions of Theorems 1 and 2 are satisfied by
the nearest neighbor and kernel weights. We also discuss briefly the rate of
convergence of the estimators. In Section 5 we illustrate the procedures of
this paper on a data set involving survival among diabetics. The survival
times in this data set are both left truncated and right censored. Section 6
contains the proofs of our theorems. In that section we shall see that a
by-product of our approach is a proof of weak convergence of Beran’s estima-
tors under the multivariate counting process setting described in Section 2
[cf. Theorems 3 and 4 and part (i) of the proof of Theorem 1].

2. The model and the estimators.

2.1. Counting process formulation. Let N™(t) = (N{M(¢),..., N™(@)Y,
t €[0,1], be an n-component multivariate counting process with respect to
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the filtration ™ = {#"(¢): t € [0, 1]}. Formally, this means that for each i
the sample paths of N™ are step functions, zero at time zero, with jumps of
size +1 only, no two component processes can jump simultaneously and for
each i, N{"(t) is F)(t)-measurable. Intuitively, we think of N/")(¢) as a
process that counts the number of failures for the ith subject during the time
interval [0, ¢] over the study period [0, 1]. The o-field %")(¢) is thought of as
containing all the information that is available at time ¢.

For each i, let Z{"(t) = (Z{(2),...,Z{P@))', t €[0,1], be a predictable
covariate process and let Y,("(¢) be a predictable {0, 1}-valued process, indi-
cating (by the value 1) that the ith subject is at risk at time ¢. Informally,
“predictability” means that the values of Z{"(¢) and Y"(¢) are fixed given
what has happened just before time ¢. Let A™(¢) = (A{(2),..., AV(2)),
t €[0,1], be the intensity process of N, Thus, M{™(¢t) = N™(¢) —
[EX (W) du, i = 1,...,n, t €[0,1], are orthogonal locally square integrable
martingales with respect to (. A mathematically rigorous treatment of the
theory of counting processes and martingales and related notions used in this
paper are given in Chapter 2 of Andersen, Borgan, Gill and Keiding (1993).

We consider the nonparametric regression model

(2.1) XP(t) =Y (¢8) at, ZM(t)), i=1,...,n,

where a(:,z) is an arbitrary nonnegative deterministic hazard function, and
our objective is to estimate a(:, ) and other related functions on the basis of
the observations (N, Y, (™, Z™), i = 1,...,n

The model of random right censorship described in Section 1 is a special
case of this setup. In the notation of Section 1, for each i define N/"(¢) =
I(X; <t, Bi =1) and Y(¢t) = I(X, = t). It is well known that N™(¢) =
(N, ..., N™(@)), t €[0,1], is a multivariate counting process with each
1nd1v1dua1 process N having intensity process A{™(¢) = Y, ™(¢)h(¢|Z,),
where Ah(t|z) is given by (1.1); see, for example, Chapter 3 of Andersen,
Borgan, Gill and Keiding (1993). In this case, model (2.1) corresponds to

h(t1Z,) = a(t,Z;(t)), i=1,...,n,

which is identical to model (1.2). As mentioned earlier, other important
models in survival analysis fit into this counting process setting. In Section 5,
we review how the random truncation model fits into this framework.

To ease the notation we shall suppress the superscript n in the rest of the

paper.

2.2. A class of nonparametric estimators. Fix z, = (zq,...,2,,) € R?
and define A(t,z,) = [ja(s,2z,)ds and S(-|zy) =2, 4(1 — dA) to be condi-
tional cumulative hazard function and the conditional survival hazard func-
tion, respectively, under model (2.1). We wish to estimate A(¢,z,), S(t|z,)
and a(t,z,) as functions of ¢, ¢t €[0,1]. Then letting z, range over the
covariate space, we obtain estimates of A, S and « as functions of (¢, z).
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Estimation of A(-,z,) and S(:|z,). We consider the first-order Taylor
series expansion

a(t,z) = Bo(t,2) + Bi(t,29)z, + -
+B,(t,20)2, + 1(t,2,2,).

If r(t,z,2z,) was identically equal to zero over the whole z-region, we would
have

N(¢) = fOtYi(S)(Bo(s,zo) + Bi(5,20) Zis(s) +

+B,(5,20)Z;,(5)) ds + M(t),

te[0,1],i=1,...,n, or in a matrix form,

(2.2)

(2.3) N(t) %f()tU(s)dB(s,zo) +M(¢), te]0,1],

where N(¢) is the multivariate counting process, M(¢) is an n X 1 vector of
locally square integrable martingales, B(¢, z,) is the (p + 1) X 1 vector of the
integrated regression functions B(t,z,) = [5B/(s,z¢)ds, j=0,...,p,
U(s) = Y(s)1, Z*(s)), Y(s) = diag(Y((s),...,Y,(s)) and Z*(s) =

(Z(s),...,Z,(s)). We can then estimate B(¢,z,) by minimizing

(AN(t) — U(2) dB(¢,2,)) (dN(¢) - U(t) dB(t,2,))
for each ¢ € [0, 1], which yields Aalen’s (1980) least squares estimator

B,(t,z,) =j0’(U'(s)U(s))‘U'(s) dN(s), te[0,1].

Here we use the convention that for a square matrix A, A~ represents the
inverse of A if A is invertible and the zero matrix otherwise. Thus, the
estimator of B(:,z,) increases only at the points ¢ at which one of the
counting processes N, has a jump.

In general, r(¢,z,z,) is not equal to zero for all z, and thus simply fitting a
linear model is not appropriate. However, if we restrict ourselves to a small
neighborhood of z, r(¢, z, z,) is close to zero. With this in mind we define, for
each subject i, a predictable weight function W,(¢,z,), which at time ¢ assigns
to subject i heavy weight if Z,(¢) is close to z, and small weight otherwise.
Minimizing

(dN(¢) — U(t) dB(t,20)) W(¢,2,) (dN(t) — U(¢) dB(t,2,)),
for each t € [0, 1], gives the estimate

B,(t,2,) = fO’J(s)(U'(s)W(s,z0>U<s))"

xU'(s)W(s,z,) dN(s), te[0,1],

where J(s) = I(U'(s)W(s,z,)U(s) is invertible) and W = diag(W;,..., W,).
Finally, we define a locally weighted least squares estimator of A(¢,z,) by

(2'5) An(t7z0) = (172,0)Bn(t’z0)-

(2.4)
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The conditional survival function S(¢|z,) in (1.6) is estimated by

(2.6) S,(tlzo) =Ry, ,(1 - dA,) = sl:It(l —AA,(s,2))-

REMARK. Assume that one replaces (2.2) with a zeroth-order Taylor series
expansion

(2.7) a(t,z) = a(t,zy) +r(t,z,z;).
Then, by minimizing
(AN(t) = Y(t) dA(t,24))W(t,20)(dN(t) — Y(t) dA(¢,2,)),
for every t € [0, 1], where Y(¢) = (Y(2),...,Y,(¢))', we obtain the estimator
A(t,z,) = f’I( Y Wi(s,20)¥i(s) #0
T0 V=1
L Wi(s,20)Yi(s) dNi(s)

L Wi(s,20)Y(s)

In the special case where the data consist of right censored observations and

the covariates are independent of time, A is equal to (1.3), the estimator
introduced by Beran (1981).

(2.8)

In Section 6 we show that under certain conditions A, and A are asymp-
totically equivalent as n — «. However, A, and A behave quite differently
for small or moderate size samples. Because (2.7) ignores the role played by
the slope function a.(¢,2,), A tends to flatten out the covariate effects within
the neighborhood of z,,. This in general will cause a bias, which may be severe
when z, is close to the boundary of the z-region. This effect was observed in
simulation studies not reported here. In practical terms, the inclusion of the
linear term in the estimation enables us to use larger neighborhoods of z,.

Estimation of the conditional hazard function. To estimate a(t,z,) for
fixed z,, we shall smooth A,(¢,2z,) over ¢t with a kernel function. Let K be a
bounded density function supported on [ — 1, 1] and satisfying

(2.9) / 11uK(u) du =0

and let {b,} be a sequence of positive numbers. Define

(2.10) a,(t,zy) = ] ( ) (ds, z,),

where A,(t,z,) is given by (2.5) and (2.4). In Section 3 we state theorems that
assert that a,(¢,2,) is a consistent estimator of a(¢,z,); the theorems also
give the rate of convergence.



794 G. LI AND H. DOSS

2.3. Nearest neighbor estimates and kernel estimates. Different choices of
the weight functions W,(¢,z,) yield different types of estimators. Following
are some natural examples that may be used in practice.

Nearest neighbor estimates. Let {k,} be a sequence of positive integers.
For k-nearest neighbor (2-NN) estimates the weights are defined by

Z —Z.
2.11) W(t,z,) =w (_Tn(_tl) Z (—O—R,lj(_tl)’ 1<i<n,

where w(-) is a density function in R? that vanishes outside the unit ball
{u € R”: |u| < 1} and R, is the Euclidean distance between z, and the &,th
nearest of Z(¢),...,Z,(2).

Kernel estimates. For kernel estimators, the weights are defined by

(2.12) Wit z,) = w Z(t) /Z Z(t))

1<i<n,

2

where w(-) is a den51ty function in R? and A, > 0 is the “bandwidth
parameter.”

An advantage of the k-NN estimates is that they are locally adaptive:
when the covariates have small density at z,, observations around z, are
sparse, but R, is then larger. For this reason, nearest neighbor estimates are
usually preferred; for example, the S function “loess” mentioned in Section 1
is a k-NN estimate; see Hastie and Tibshirani [(1990), pages 29-30].

3. Weak convergence of the estimators. In this section we study
large sample properties of the estimators defined in Section 2. Throughout
the paper we shall assume that Z takes values only in [0,1]?, and that
SUD(s, 5) €10, 17 [0, 117 la(s,z)| = B < . We also adopt the convention that 0/0
is 0.

3.1. Notation and assumptions. Fix z, = (z,...,2y,)" €[0,1]” and de-
note Z* = (Z,,...,Z,)". Define

n
ci(5,20) = Wi(5,20)¥i(s) | ¥ Wi(s,20)¥(s), i=1,....m,
j=1

c(s) = (ci(s,20),---»cn($,20))"
(3.1) C(s) = diag(cy(s,20),---,cn(s,20)),
P(s) = C(s) —e(s)e(s)’,
7, = {t €[0,1]: inf det(Z*'PZ*)(u) > o},
uel0,t]

z

Ji(s) =I(s €7,),



NONPARAMETRIC HAZARD REGRESSION 795

for all s and all i. The c,(s,z,)’s are essentially the weights assigned to the n
individuals, taking into account who is at risk at time s (those individuals
who are not at risk are given a weight of zero). To be more precise, we need to
look at the set 7, , and when thinking about the definition of this set it is
very helpful to first consider the case where the covariate is one dimensional.
In this case, the condition det(Z*'PZ*}u) > 0 is the condition that
_1¢i(s, 20XZ(s) — L}_y ¢)(s, 20)Z; (s))* > 0. Note that if £?_, W,(s,z,)Y;(s)

= 0 then c; (s,2y) = 0 for all ¢ (by our convention that 0 /0 =0), which
means that s cannot be in 7, . Thus, if s €., , we have L}_; W(s,2,)Y(s) >
0, so that 7, ¢,(s,2z,) = 1. Therefore if s 67 then ©7_, cl(s 20)Z; (s) and

ne(s, zO)(Z (s) Xr_ics, zO)Zj(s))2 represent the weighted mean and
weighted variance of the Z (s)’s For the case where the covariate is multidi-
mensional, if s € S then

n
Z(s)'e(s) = L cils,20)Zi(s)
i=1

and

Z*(s)'P(s)Z*(s)

n n !

= ‘Zlci(s’zo)zi(s)zi(s), - Z ci(s,20)Z; (3))( 21 i(8,20)Z;(s)
1= L=
are the weighted mean and weighted covariance matrix of Z(s),...,Z,(s).
The main results of this section are proved under the following two sets of
conditions. Condition A is needed for the results pertaining to the estimators
of the conditional cumulative hazard function and the conditional survival
function, and Condition B is needed to obtain the asymptotics for estimators
of the conditional hazard function. Although it would seem at first sight that
these conditions are forbidding and unintuitive, in fact this is not the case,
and in Section 4 we give relatively straightforward verification that the
conditions are satisfied by the k-NN and kernel estimates. The limits in
Conditions A and B are taken as n — o,

CoNDITION A. Let {a,)] be a sequence of positive numbers. These will be
connected with the smoothing parameter of the estimators; for example,
when kernel estimators are used, a, will be taken to be the bandwidth and
when k-NN estimators are used, a, will be taken to be &, /n.

AD P(g, =10,1) - 1.

(A2) There exists a nonnegative measurable function g;(s,z) indexed by
8 > 0 and defined on [0, 1] X [0, 1]?, such that for § = 0 and for some
60>0,

n
[(na,)'? T ck*(s,20) — ga(5,20)|ds —p 0
0 i=1

(A3) y/na, [LIS_, ci(s, 2,0 als, Z,(s)) — als,zo)|ds —p O
(A4) yna, f§ L7_yc(s,z2,0al(s, Z(s)) — als,z,)?*ds —p 0.
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(A5) na,c(s,z,) = O,(1) uniformly in s and i.
(A6) y/na, [g J(SNZ*(s) e(s) — z,)(Z*(s) P($)Z*(s))” HZ*(s)'c(s) — z,) ds

—p 0.

CoNDITION B. Let {b,}] be the sequence of positive numbers used in (2.10)
and assume that b, — 0. Let {a,}] be a sequence of positive numbers such
that a, — 0.

B1 P(g, =1[0,1D) — 1.
(B2) There exists a nonnegative measurable function g;(s,z) indexed by
8 > 0 and defined on [0, 1] X [0, 1], such that for each ¢ € [0, 1],

t+b, i
[ |(naa)" X et 2(s,20) — g(s,20) | ds = 0,(b,)

i=1

for 6 = 0 and some & > 0.

(B3) /na,/b, [ 1L} e(s, 20 als, Z,(s)) — a(s,zy)|ds —p 0 for eacht €
[0, 1].

(B4 [ Ty e(s,z00als, Z,(s) — als,z))? ds = 0,(b}) for each ¢t €
(o, 1].

(B5) na,c(s,z,) = 0,(1) uniformly in s and i.

(B6) na,b? [/*fr J(sNZ*(s) e(s) — 20)(Z*(s) P()Z*(s) " H(Z*(s) ce(s) — z,)
Xds —=p 0.

3.2. Main theorems. We now state our main results. The proofs are given
in Section 6. Let D[0, 1] be the standard Skorohod space on [0, 1].

THEOREM 1. Let A, (¢,2z,) and S,(t|z,) be defined by (2.5) and (2.6), and
let {a,)] be a sequence of positive numbers such that na, — ». Then, under
conditions (A1)-(A6),

(3.2) Vra, (A,(-,2) — A(*,2,)) =4 U(*,2,) inD[0,1]
and
(3.3)  yna, (S,(:lzy) — S(-1z¢)) =4 S(:12,)U(-,2,) in D[0,1],

where U(-,z,) is a continuous Gaussian martingale with mean zero and
variance function

0(t) = [8o(s,20) (s, ) ds.

REMARK. It is worth noting that Theorem 1 does not assume a, — 0. This
provides a unified approach for establishing weak convergence of both condi-
tional and unconditional empiricals. See the remark following the proof of
Theorem 1 in Section 6.

THEOREM 2. Let a,(t,z,) be the estimator of the hazard function a(t,z,)
defined by (2.10). Assume the sequence {b,}; of positive numbers appearing in
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(2.10) satisfies nbP*® — o and nb?*5 — 0. Let {a,}; be a sequence of positive
numbers such that a, ~ bP. Suppose also that a(t,z,) is twice differentiable
with respect to t, that D = sup,. 1a{(¢,20)| < and that g(t,z,) is
continuous in t € (0,1). Then, under conditions (B1)-(B6),

(3.9 na,b, (a,(t,2,) — al(t,z,)) =, 40,072 foreveryte(0,D),

where
(3.5) o = go(t,20)a(t,2o) [ K*(u)du.
-1

4. Asymptotics for k-NN and kernel estimates. In this section, we
study large sample properties of the £2-NN estimates and kernel estimates
defined in Section 2 for the important special case where:

1. The observations (N,,Y;,Z,),...,(N,,Y,,Z,) are i.i.d.

2. The covariates Zs are time independent and have a common density
function f(z).

3. Each predictable indicator process Y; has paths which are left continuous
and of bounded variation.

Theorems 3 and 4 state that the sufficient Conditions A and B are satisfied
when we use 2-NN and kernel weights, respectively. The proofs of these two
theorems are similar, with the proof of Theorem 3 being somewhat harder. In
addition, as we discussed earlier, we feel that the result for £2-NN estimates is
more practically relevant. For these reasons, we have given only the proof of
Theorem 3 in this paper; the proof of Theorem 4 appears in the technical
report by Li and Doss (1994).

Because the weight functions used in (2.4) no longer depend on time, we
shall use the notation W,(z) instead of W,(¢,z). We note the trivial fact that if
Y, has finitely many jumps (as will be the case in all the situations of interest
to us), then Y, is of bounded variation. The following regularity conditions are

l
also assumed throughout this section.

(R1) For each s € [0, 1], the partial derivative da/Jdz exists at z, and is
bounded in s € [0, 1]. In addition, there exists a constant K, that is indepen-
dent of s such that

Jda ! 9
a(s,z) — a(s,zy) — (E(S’Zo)) (z —zy)| < Killz — z,ll°.

(R2) For each s, the subdensity function
&P
(4.1) f(z, S) = WP(ZI <z, Yl( s) = 1)
of the subdistribution function P(Z, < z, Y,(s) = 1) exists. In addition, there
is a constant M that is independent of s such that for all (z,, s),(z,, s) €
[0,1]7 x [0, 1],

(4.2) If(z5,s) — f(z1,5) < Mllzy — 2,
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(R3) The density function f(z) of Z, is positive and continuous at z,.
Suppose further that the function H(s,z) = P(Y,(s) = 1|Z, = z) is continu-
ous in z at z, for every fixed s and satisfies inf, . ;) H(s,zo) > 0.

Because f(z,s) =0 for z ¢ [0, 1]?, (4.2) implies that f(z, s) is bounded on
R? x [0, 1].

4.1. Asymptotics for k-NN estimates.

THEOREM 3. Assume the setup described in the beginning of this section.
Let W(z) be defined by (2.11), where w(-) is a bounded radially symmetric
density function satisfying
(4.3) w(u) =0 forall [l > 1,

(4.4) w(cu) >w(a) forany 0 <c <1landu < R?’.
Leta, =k,/n, b, = (k,/n)"? and

2 1+6
85(8,2¢) = (m) fwz”(u) du.

G) Ifk, > wand kP**/n* > 0, then na, — « and (A1)—(A6) hold.
(i) If kP*3/n® > o and kP*°/n% - 0, then nbP*3 — o, nbP*% — 0 and
(B1)-(B6) hold.

4.2. Asymptotics for kernel estimates.

THEOREM 4. Assume the setup described in the beginning of this section.
Let W/(z) be defined by (2.12), where w(:) is a bounded radially symmetric
density function satisfying

cilyui<n S w(a) <coljui<r
(4.5) 15(flull<r) ( ) 2%(all<r)

for some positive constants r, ¢, and c,.

Leta, =hE, b, =h, and

w?*%(u) du.

(5,2) - /
gs(s,2) =
’ (f(z)H(s,2)}""*
G) If nh? - < and nh?** - 0, then na, — © and (A1)-(A6) hold.
Gi) If nhP*? >« and nhP*® >0, then nbP*™® - w, nb*® -0 and
(B1)—-(B6) hold. ‘

REMARK. Our results are close to optimal in tems of rate of convergence.
As an example, we give a brief discussion on this point for the kernel
estimates. Details on optimal local smoothing in the multivariate counting
process model will be discussed in a sequel to this paper. By “rate of
convergence” we shall mean the normalizing factors (na,)'/? appearing in
(8.2) and (3.3), and (na,b,)"/? appearing in (3.4), respectively. Clearly we
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wish to take a, and b, to be as big as possible. For simplicity, let us assume
p=1

The assumptions in part (i) of Theorem 4 require that kA, = o(n~'/?),
giving a rate of convergence just slightly under n?/5 for the conditional
cumulative hazard and conditional survival estimates A, and S,. From the
point view of the smoothing literature on density and regression function
estimation, this is the best rate that one can expect to achieve in weak
convergence results of the form (8.2) and (3.3) without asymptotic bias. In
fact, it can be shown by modifying our method that when A, = o(n~1%),
both A, and S, have an n?/® rate convergence with an asymptotic bias term.
The asymptotic bias is a small price to pay for the faster rate of convergence
(therefore substantial gain in the reduction of mean square error).

Similar remarks can be made on the rate of convergence of the conditional
hazard estimate «,(¢,z). Without asymptotic bias, our assumption %, =
o(n=1/%) in part (ii) of Theorem 4 leads to the rate (na,b,)"/? = o(n'/?) for
the convergence of «a,(t, z), which is arbitrarily close to the optimal rate for
estimating a 2 density in two dimensions (one dimension for z and one for
£). One can show that our method gives the expected optimal n'/? rate of
convergence for a,(t, z) with an asymptotic bias when &, = O(n~'/®). It is
worth noting that an optimal rate estimator of a(¢, z) can be obtained by
smoothing any optimal rate estimator of A(¢,z) in the ¢ direction with
appropriately selected bandwidths b, = O(h,,).

5. Illustration on survival in diabetics data. We apply the nonpara-
metric regression method described in Section 2 to study survival among
insulin-dependent diabetics in Fyn County, Denmark, using data collected by
Dr. Anders Green from Odense, Denmark. This data set consists of 1499
patients who suffered from insulin-dependent diabetes mellitus (“diabetes”
for short) on July 1, 1973. The data were obtained by recording all insulin
prescriptions in the National Health Service files for this county during a five
month period covering the above date, and subsequent check of each patient’s
medical record. Each patient was then followed from July 1, 1973 until death,
emigration or January 1, 1982, whichever came first. On January 1, 1982,
there were 254 observed deaths among 783 male diabetics and 237 observed
deaths among 716 female patients. Of interest is the mortality of diabetics,
taking into account potential risk factors. Here we shall focus on the effect of
age at diabetes onset on the duration of disease. The date of diabetes onset is
defined to be the first time the physician established the diagnosis.

Clearly this data set is right censored since some patients either were still
alive on January 1, 1982 or had early emigration. It is also left truncated
because a diabetic may be included in the followup study only if he or she was
alive on July 1, 1973. More precisely, for patient i, let X; = survival time (the
period from diabetes onset to death), C; = time elapsed from diabetes onset to
emigration or January 1, 1982, §; = I(X; < C;) and T, = length of the period
from diabetes onset to July 1, 1973. Then a triple (T, min{X;,C;}, §;) is
observed only if patient i is included in the study and T; < X;. Nothing is
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observable for patient i if T, > X,, that is, if patient i died before July 1,
1973. In addition, the age Z, at onset of diabetes was recorded for each case i.

Because the chance of survival may vary with sex, we do separate analyses
for the male and female groups. Let I, denote the index set for the female
group. Assume that (T, min{X;,C}, §;, Z,), i € I, are independent and iden-
tically distributed. Assume further that the truncation time 7T; and the
censoring time C; are conditionally independent of the survival time X; and
that T, < C; with conditional probability 1, given that Z; = z. For each i € I,
define N(™(¢) = (T, < X; <t, §;=1) and Y;"V(¢) = I(T; < ¢t < min{X,,C}).
Then (N™(2), i € I}), t € [0,), is a multivariate counting process with each
N having intensity process A{(¢) = Y "(¢)h(¢|Z,), where h(t|z) is the
conditional hazard function of the survival time X given that Z = z. [See,
e.g., Section IIL.3 of Andersen, Borgan, Gill and Keiding (1993).] Therefore
this model falls into the counting process framework described in Section 2.
We assume the same probability model for the male group.

The Fyn county diabetes data have been studied by many authors [see,
e.g., Green, Borch-Johnsen, Andersen, Hougaard, Keiding, Kreiner and
Deckert (1985) (hereafter, G85) and Andersen, Borch-Johnsen, Deckert,
Green, Hougaard, Keiding and Kreiner (1985) (hereafter A85)]. A85 analyzed
a subset of this data set that included those who had diagnosis established
before age 31 years. It is intuitive that the effect of the covariate Z may
depend on the time variable. For instance, a patient who is diagnosed as
having diabetes at age 30 is more likely to die after 40 years than after 20
years. However, for a person who has diagnosis established at age 10, the
chance of dying after 40 years may not be very much different from that after
20 years. So on intuitive grounds, one can question the appropriateness of the
classical Cox (1972) model. The data analysis in A85 confirms that this model
does not give a good fit to the data. They also showed that the hazards for
female and male diabetics are not proportional. A85 used models of multi-
plicative hazards type with both individual characteristics and changing
trends in mortality included in the baseline hazard function. The completely
nonparametric regression method proposed in this paper provides a natural
alternative inference method for the Fyn county diabetes data.

For each group, we computed the estimate S,(t|z) [see (2.6)] of the condi-
tional survival function S(¢|z) = P(X > t|Z = z) using the weight function
given by (2.11) with w(u) = 3I(—1 < u < 1) and k = 30% X sample size. (We
actually tried different values for £ and there were no substantial differences
among the conclusions being reached.) Figures 1 and 2 give plots of S, (¢|2) as
a function of ¢ for z = 5,10, 15,...,80 for female and male groups respec-
tively. Figure 3 compares 95% simultaneous confidence bands of the condi-
tional survival function S(¢|z) between female and male patients for z = 10,
25, 40 and 70. Figure 4 compares the plots of the estimated median survival
time versus the covariate z between the two sex groups.

As mentioned earlier, one expects to see the general trend that S(¢lz)
decreases as z increases. Figures 1 and 2 reveal this trend for both sex
groups, and also show that this trend does not behave in a uniform way. The
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influence of z is much more significant over some z intervals than over
others. For instance, the survival probabilities for female diabetics drop
dramatically as z goes from 30 to 45, but the changes that occur as z varies
from 5 to 30 are less significant. A similar conclusion can be drawn for male
patients.

Figures 1 and 2 also indicate that there is an interaction between the
influence of age z at diagnosis and duration ¢ of disease. For the female
group, Figure 1(a) shows that for z < 30, the influence of z is more signifi-
cant over the range 20 < ¢ < 30 than itis over therange ¢t <20 0or30 <t < 38.
[This effect was also mentioned on page 925 of A85 in which a slightly
different time variable was used.] We do not draw any conclusion for the
range t > 38 since the nonparametric estimator S,(¢|z) is not stable in its
right tail. For 30 < z < 45 [Figure 1(b)], the influence of z is very significant
and the magnitude of this influence goes up dramatically as ¢ increases. For
example, (S,(10(30))/(S,(10|45)) = 1.18 compared to (S,(30/30))/(S,(30145))
= 4.0. For 45 < z < 65 [Figure 1(c)], the influence of z is also significant, but
the interaction between z and ¢ is more difficult to discern. When z > 65
[Figure 1(d)], the influence of z is essentially insignificant. Similar effects of
z are found (Figure 2) for male diabetics except that the interaction between
the effects of z and ¢ is less serious.
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Fic. 1. Estimated conditional survival functions for female diabetics (z = age at diagnosis of
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Comparison of 95% confidence bands of conditional survival function S(:|z)
between female and male patients (Figure 3) shows that the survival proba-
bilities of female diabetics are consistently higher than those of male diabet-
ics for different levels of z. The same trend is also shown in the estimated
median plots (Figure 4) for the different sexes.

6. Proofs of the theorems.

PrOOF OF THEOREM 1. It is helpful at this point to review the definitions
given in (3.1). Recall that A(¢,z,) is defined by (2.8). Let us write

(6.1) A(t,zy) = [Otj(s)c(s)'dN(s),

where J(s) = (X, c,(s,2,) # 0). Note that J(s) is the indicator that is
required to be 1 when doing a weighted average in the definition of the
Beran-type estimator (6.1), and J(s) [defined right after (2.4)] is the indicator
that is required to be 1 when doing a weighted least squares fit. Define
h(s) = (h(s,2,),..., h,(s,2,)) by

(6:2)  h(s) = P(s)Z*(s)(Z*(5)'P(5)Z*(s)) (20 — Z*(s)'e(s))
and also define R"(t,z,) = [{ J(s)h(s) dN(s).
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F1G. 3. 95% confidence bands for conditional survival functions S(t|z) (z = age at diagnosis of
diabetes, F = female, M = male).

The key to proving Theorem 1 is to first establish the decomposition
An(t’zO) = (l’z,O)Bn(t?ZO)
t _
= [I()(1,2) (U(5) W(s,20)U(s))

XU(s)'W(s,zy) dN(s)
-1
o , o(s)'Z*(s)
_LJ(S)(I’Z")(Z*(S)'c(s) Z*(s)'C(s)Z*(s)

o(s)"
(Z*(s>'C(s> ) dN(s)

(6.3)

- fOtJ(s)c(s)'dN(s) + fOtJ(s)h(s)’dN(s)

= A (t,2,) + R™(¢t,2,) + fot(J(s) ~ J(s))e(s)’ AN(s).
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Fi1c. 4. Conditional median survival time plot for female and male diabetics.

In the fourth equality in (6.3), we use the formula [see Problem 2.7 of Rao
(1973), page 33]

b

b D -E'b E~!
where E = D — bb'. Also, the fact that E~! exists if and only if the inverse
on the left-hand side of the above equation exists [see, e.g., Problem 2.4 of Rao
(1973), page 32] implies that J(s) = I(Z*(s)'P(s)Z*(s) is invertible). The
term R™)X(t,z,) in (6.3) represents the effect of doing a “local linear fit”

instead of doing a “local average.”
Under Assumption (Al), the probability that the third term in (6.3) equals
0 for all ¢ € [0, 1] tends to 1. Thus it suffices to show that

(a) ‘/nan(A(-,zo) — A(-,z,)) =, U under (A1)-(A5), where U is defined
in Theorem 1.
() y/na, sup, (o 1; IR™(¢,2,)| —»p 0 under (A1)—~(A6).

We first prove (a). Define
n
X("(t,20) = yna, [I(s) ¥ ci(s,20) dM,(s),
0 i=1

(1 b')‘ _ (1 +b'E"'b -b'E"!

X§M(t,20) = MfotJ(s) 'glci(s,zo)(a(s,zi(s)) — a(s,zy)) ds,
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where M;(-) = N,(*) — [, Y(s)a(s,Z,(s))ds, 1 <i < n are orthogonal locally
square integrable martingales. Then

\/E;(A (*>29) —A(t’ZO))

=X{"(t,zy) + X{(t,2z0) + \/E/Ot(l —J(s))a(s,z,) ds.

By the version of Rebolledo’s martingale central limit theorem stated as
Theorem 1.2 in Andersen and Gill (1982), we have

X("(120) = [ I(5) L yna, c.(s,20) dM(s)

=4 U(",2,) in D[0,1]

(6.4)

(6.5)

if the following two conditions hold:
(i) For each ¢ € [0, ,1]’
¢
(X{P, X{)(8) =5 [ go(s,20)a(s,20) ds,

where

(J(s)yna, ei(s,20)) Yi(s) (s, Zi(s)) ds.

1

X, X)) = [

n

1

(i) (Lindeberg condition.) For each ¢ > 0,
i 2
[ X (J(s)vna, ei(s,20)) Yi(s)a(s, Zi(s))
i=1
X I(J(s)‘/nan c;(s,zy) > s) ds —p 0.

Before going further, we note that for any three sets of functions
d(s), x,(s), y(s),i =1,...,n, we have (the argument s is omitted)

f Z dlx;y;| < [( Z dixiz) ( Z diyi2)
i=1 i=1 i=1

<(f Eaat] (S ot

We now proceed to verify (i) and (ii). To check (i) we note that

1/2

(6.6) -

(X, X{)(0) = [[I(5) 805, 70) (s, 2y) ds

< na, [ () X ehs,20)(o)a (3. 2(5)) ~ als,20) ds

+ [1I(5)| £ nact(s,20)Yi(s) a(s,20) — £o(5,20) a(5,20) | ds
0 i=1
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1 n
< nan(sup maxci(s,zo))f Y ci(s,zo)la(s,Z;(s)) — a(s,z,)lds
s t 0 ;=1

6.7)  + Bfol ds

n
E nancf(s,zo) —8o(s,2g)
i=1

< nan(sup maxCi(s’zo))
; 1/2
* {[01 ';ci(s’z(’)(a(s’zi(s)) - a(S,zo))2 ds}

+B[01

—>P0

from (A5), (A4) and (A2), where the last inequality follows from (6.6). Hence
(i) follows from (A1) and (6.7). Furthermore, for any & > 0,

[ .zil(J(s)Mci(s,zo>)2Y;<s)a(s,z,-<s))1(J(s)\/E ¢i(5,20) > &) ds
I(s)yna, es,20)\"

ds

n
2 na,cl(s,2,) — &(s,20)
i-1

sfolnanizzlcgg(s,Zo)a(s»zi(s))(

B n

< S5(na,) " [M(na,)""* ¥ c}*(s,2,) ds
€ 0 i=1

—p 0

from (A2) and the assumption that na, — «. Hence (i) holds. This proves
(6.5).
It is easy to see that (A3) implies

(6.8) sup |X{"(¢,2)l —p 0.
te[0,1]

Moreover, the probability that the third term in (6.4) equals 0 for all ¢ [0, 1]
tends to 1 under Assumption (Al). This, together with (6.4), (6.5) and (6.8),
implies that (a) holds.

We now prove (b). Let a,(s) = (a(s,Z(s)),..., a(s,Z,(s))). Using the fact
that A,(s,zy)Y;(s) = h(s,z,) for each i, we see that

Vi, R®(t,20) = ra, ['J(s)h(s)' dN(s)

= R{"(t,2,) + RY"(¢,20) + R{(t,2,),
where

R{(t,20) = Vna, [[Ji()h(s) a,(s) ds,
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R{(t,20) = yna, [Jy(s)h(s)' dM(s),
0
t
R{(t,20) = yna, [ (I(s) = Ji(s))h(s)" dN(s).

We shall show that sup, (g 1; |[R{(¢,2)| =p 0 for j =1, 2 and 3. Consider
R{"Xt,z,). For every s, we have P(s)1 = (C(s) — c(s)e(s)')1 = 0, which im-
plies that h(s)'1 = Q. Thus,

IR{(2,20)] =|Vna, [ Ti(s)h(s) (n(s) = La(s,20)) ds
< \/E[Ol ’{Jl(s)(zo — Z*(s)'e(s))’
X (Z*(s)'P(s)Z*(s)) ' Z*(s)'P(s)"”)
% {P(5)"/*(a,(s) ~ 1a(s,2,))} | ds
< yna, ( f Hly(5) P(5)"*Z*(5)(2*(5) P()Z*(5)) !
(6.9) (2o — Z*(s)'e(s))I? ds)1/2

L , 1/2
X(j;) IPY2(s)(a,(s) — La(s,z,))ll ds)
< (vas [ 9120 = Z(5) () (@ () P(5)27(5))
1/2
X (zo — Z*(s)'e(s)) ds)

% (vaa, [ (@n (5) = 1a(s20))C()

1/2
X(a,(s) —1la(s,zy))ds ,

where the second inequality follows from (6.6), with d; = 1. Together with
(A6) and (A4), this implies that sup, < o 1, IR{(¢,2)| —p 0.

Now consider Ry"(¢,z,). Because each y/na, J(t)h(¢) is a bounded pre-
dictable process, RY(t,z,) is a locally square integrable martingale. By the
version of Lenglart’s inequality stated as Theorem I.1 in Andersen and Gill
(1982), for each > 0 and £ > 0, we have

&£
P( sup [R$(t,20) > n) < = 4 P((RY, RYY(1) > ¢).
telo,1] Ui
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Now
(R$”, R§V)(1)

= na, [',(5) ¥ h2(5,20)Yi(5) a (s, Zi(5)) d
0 i=1
< Bna, [0 'Jy(s)h(s)'h(s) ds
(610)  — Bra, [17,(s) (20 — 2(5) () (Z*() P(8)2"(s)) "Z(s)
X P(8)*Z*(s)(Z*(s)'P(5)Z*(s)) (2o — Z*(5)'e(s)) ds

< B(na max sup (s, zo))f J1(8)(zo — Z*(s)'c(s))
f s€[0,1
X (Z*(s)’ P(s)Z* (s))" (zo — Z*(s)'c(s)) ds,
where in the last step we use the fact that for any x (the arguments s and z,
are omitted)

P?’x = (x'PY2)P(P'?x) < (x'PV/?)C(PY?x) < (max sup ci)x’Px.
t s

Hence (A5) and (A6) imply that sup, (o ;,|R5"(¢,2,)| =5 0

Finally, we see that sup, (o 1, IR§’(¢,2,)| —=p 0 from (A1) and the fact that
Ji(s) < J(s). This proves (b) and completes the proof of the first part of
Theorem 1.

The second part of Theorem 1 is a direct consequence of part (1) together
with the compact differentiability of the product integral [see Theorem 8 of
Gill and Johansen (1990)] and a functional version of the &-method [see
Theorem 3 of Gill (1989)]. O

REMARK. Part (a) of the proof gives weak convergence of the Beran-type
estimators under (A2)—(A5) and the assumptions that na, — « and that
P(X,W(z,)Y,(s) > 0 for all s €[0,1]) > 1. An interesting observation is that
this also yields weak convergence of the unconditional Nelson-Aalen estima-
tor: Assume a(t,z) = a(t) and let a, =1 and W(z) = 1/n. Then these
sufficient conditions are satisfied if (1/n) Y Y,(s) converges in probability
uniformly to a function that is bounded away from 0 on the interval [0, 1].

ProOOF OF THEOREM 2. Consider the identity (6.3) and recall that under
(B1), the probability that the third term on the right side of (6.3) is identically
0 over [0, 1] tends to 1. Fix ¢ in (0, 1), define

a(t,zy) = b[ ( )A(dszo)
(6.11)

ri(t,zy) = . [ ( )R(”’(ds z,)
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and write
1 t—s . )
a,(t,20) = 3= [ K| 75— |Au(ds,20) = &(t20) + (¢t 20) + Lt 20),

where the probability that sup, <o 1;£,(«, Z)| equals 0 tends to 1. We will
show that:

(@) y/na,b, (a(t,z,) — a(t,z,)) =, N(O, %), where o, is defined by (3.5).
(i) yna,b, r"(t,z,) —>p 0

Theorem 2 then follows immediately.
We first prove (i). We have

a(t,20) = 4 [ J(s)K( _ )

_ic (5,2¢) dM;(s) — §,(t,20)
) ‘;C (s,20) a(s,Z(s)) ds.

+b—[0 J(s)K(

For large n we have

a(t,zy) = {bifolx(t;s)ds}a(t,zo)

1 —-s\ 2
ijﬂﬂKVb )Zq@m@a@mo@

n i=1
1 -8
+b—nj;)1(1—J(s))K(t - )a(t,zo)ds,
so that
Vnanbn(&(t’ZO) - a(t’zo)) =X(n)(1) + Inl _In2 - Vnanbn (n(t’zo)’
where
X™(r) = (na) J(s)K(t _ s) _fc (s,20) dMy(s), 7<[0,1],
X t—s
NACLE
icuzo((szun—aUzo)
I,= ) {f (1—J(s))K( )ds}a(t z,).

Now it suffices to show that Inj —-p 0 for j=1,2 and that X™(@1) -
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N(0, 0,%). Consider I,,. Let

na, \? 1 t—s
v 52) foex(5
na, \ /2
wa- (5]
and note that
(6.12) I, <V, +V,.

Since K(u) vanishes outside the interval [—1, 1] and M = sup, K(u) < », we
have

ds,

‘ilci(s,zo)(a(s,zi(s)) — a(s,zg))

t—s

fOlJ(S)K( 5 )(a(s,zo) — a(t,zy))ds

1. [t—s t+b, [t — S i+,
j(;K( b )f(s)dssj;_bn K( b, )f(s)dsij;_bnf(s)ds

n

for every nonnegative function f. Hence, in (6.12), V,; —, 0 by (B3). Recall-
ing that D = sup, (o 11a{(s,2,)|, we have for large n

na 1/2
V n
n2 = ( b, )

na, 172 1 t—s 9
+D( A ) j;)K(b—n)(S_t) ds

n
na, \/?
<
b,

na, \'? .iip .
+ MD "(s—t)"d
( b ) j;_bn (s ) °

n

=0+ 0(ynb*%) > 0.

Therefore, I,; =, 0. We also have I,, »p 0 from (B1).

To prove X™(1) -, N(0, 0,2), we apply Theorem IL.5.1 of Anderson, Bor-
gan, Gill and Keiding (1993) with 7, = {1} to X™(r) =
J§ Xi-1 Hi(s,z¢) dM(s), 7 € [0, 1], where

a;(t,zo)folK(tb;s)(s ~¢)ds

(e, zo)b,%[_l1 uK(u) du

na, 172 t—s
Hi(s,z0)=J(s)(b ) K b c;(s,zg), i=1,...,n.

Thus we need to check the following conditions.

(@) (X, X™)(1) »p o
(b) For each £ > 0,

[01 éH,?(s,zO)I(H,.(s,zo) > &)Yy(s)a(s,Z;(s)) ds —p 0.
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To verify (a), we write

(X™, XMy(1) = fl
0

K? ( _ )i (s,zg)a(s,Zys))ds
1 na, . [t—s

LI (b—n)
X .;ciz(s,zo)(a(s,zi(s)) —a(s,zg))ds

1 —
+f01J(s)b—nK2(tb S)

n

x| na, Z c?(s,zq) —go(s,zo))a(s,zo) ds

+f J(s)——Kz( 5 )go(s z,) a(s,z,) ds

=1+ 1, + 1.
In the above expression,
1 na, t—s
e

Il < A ) i cf(s,2z)la(s,Z;(s)) — a(s,zg)lds
i=1

na, b, &
< Mz—fH Y ci(s,zo)la(s,Z,(s)) — a(s,zy)lds
b" t_bn i=1
M2
< (nanmax supci(s,zo))
n 4 s

n

Xj;'i+bn Z ci(s,z0)|a(8,zi(s)) — a(s’zo)lds

n i=1

n

_ ( ){f”“’ Y ci(s,20)((s,Zi(s)) — a(s,20))’ ds}l/z

b, i=1
t+b 172
X "d
{L_bn S}
1 12
-0,(5-) (0,82 21 - 0,080,

where the first equality follows from (B5) and (6.6) and the second equality

from (B4). Also,

BM? .4,
b, Ji-s,

n

na, 3. c(s,2,) — &(s,2,)|ds

|Izl < Op(bi)op(bn) = Op(]‘)
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[recall that B = supla(s,z)| < ©] and I; =, o> by (B1) and the assumption
that gy(s,z,) and a(s,z,) are continuous in s. Therefore,

(X, XMN1) =1, + I, + I =5 go(t,zo)a(t,zo)[KZ(u) du = o2
We now prove (b). For the § > 0 in (B2), we have

[; L H (s 20) I(Hi(5,20) > )¥i(5) (s 24(5)) ds

1 n
< — [ X HP 2 (5,20)Yi(s) a(s, Zi(s)) ds
€70 =1

= e

n n

x X e (5, (5) (s, 24()) ds

BM>*? 5 t+b
< - /Zb_l_g/g 1+6
- 86 ((nan) n )(nan) j;_

= 0,((na,) "5, 7"/*)0,(b,) = O,((nbf*") "),

S

" Y citi(s,z,) ds
b, =1

where the second equality follows from (B2) and the assumption that
g(s,z,) is continuous in s. The last term converges to 0 in probability since
nbF*l - o,

Therefore we have proved part (i).

We now prove (ii). For r(")(¢, z,) defined by (6.11), we have

t—s

na. \1/2
Vna,b, r™(t,z,) = ( 5 n) flJ(s)K( 7
n 0

=r{m 4+ r{(1) + r§v,

)h(s)’dN(s)

n

where

1/2 _
r(m = (”:) folJl(S)K( tbns )h(s)’an(s)'ds,

r(r) = (n: )1/2 j;)TJl(s)K(tb

n n

S

)h(s)’dM(s), r€[0,1],

na. \1/2 _
rén) — ( :n) Al(J(S) _Jl(s))K(tb—ns)h(s)'dN(S),

n

and we recall that «,(s) = (a(s,Z(s)),..., a(s,Z,(s))" and h(s) is defined
by (6.2). We shall show that r{®, r{"(1) and r{® all converge to zero in
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probability. Using the fact that for s €7, we have h(s)'1 = 0, we see that

‘/ le(s)K( )h(s) (a,(s) — La(s,2,)) ds
<)/ b" [j_f"«fl(s)lh(s)’(an(w — La(s,z))lds

<M

|r£n)| —

( O J(5) (2 — Z¥(s) e(5)) (Z*(s) P(s)Z*(s))
1/2
X (zo — Z*(s)'e(s)) ds)

1/2
x(f”b (e, (s) — la(s,2))'C(s)(a,(s) — 1la(s,z,)) ds)

na, 1 172 3 1/2
0 (oo ) (@000 =00,

n

where to obtain the second inequality we reason as we did to obtain (6.9), and
to obtain the second equality we use (B6) and (B4).

To prove that r§”(1) =, 0, we apply Lenglart’s inequality to r{: For any
n, >0

e
(6.13) P(sup [r&M(7) > n) < pes + P({r§”, ri)(1) > &).

We have

g, rgy(1) = S lJl(s>K2(" - ) ¥ h(s,2)Yi(s)a(s, Zi(s)) ds
n 70

n i=1

cM?

< na [”” J,(s)h(s)'h(s) ds
CcM?

<3 (nanmax sup ci(s,zo))

n t sel0,1]

(6.14) ftHb Ji(5) (2o — Z*(s)'e(s))’

X (Z*(s)'P(s)Z*(s)) (2o — Z*(s)'e(s)) ds

1 1
= O"(_l;;)op(l)op(__nanbf)

1
- O"( nbp+3) ~p 0.
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To obtain the second inequality in (6.14) we reason as we did to obtain (6.10).
The second equality in (6.14) follows from (B5) and (B6), and the last
assertion follows since nbP*® — » by assumption. Therefore, r{"(1) =, 0 by
(6.13) and (6.14). Finally, r{™ —, 0 from (B1). Therefore,

yna,b, r™ =r{® + r{(1) + r{» -, 0. m]

To prove Theorem 3, we shall need to use some known results concerning
k-NN estimators in nonparametric regression and density estimation. These
are stated as the next two propositions.

PROPOSITION 6.1. Assume that (Y,X),(Y,X,),...,(Y,X,) are i.i.d. ran-
dom vectors taking values in R X R? and that X has a continuous density
function g(x). For each x € R?, define m(x) = E(YIX =x) and m,(x) =

r W)Y, where

Wi - 272 | £ w22

n n

R, is the Euclidean distance from x to the kth closest of X,,...,X, and
w(-) is a bounded density function on RP satisfying |al’w() — 0 as
lall = «© and (4.4). Let x, € R? such that g(x,) > 0. Assume that m(x) and
Var(Y|X = x) exist .in a nezghborhood of x,. Assume further that m(x) is
continuous at x, and Var(Y|X = x) is bounded in a neighborhood of x,.
Then, ifk, » ©and k,/n — 0,

m,(x,) =p m(x,).

Proor. This is Proposition 1 of Collomb (1980). O

PROPOSITION 6.2. Let X,...,X, be i.i.d. RP-valued random vectors with
bounded density function g(x). For each x € R?, define

1 = x — X,
2.0 = = Tl )

n =1 n

where R, is defined as in Proposition 6.1 and w(-) is a bounded density
function on RP? satisfying (4.3), (4.4) and w(—u) = w() for all u € R?.
Then, if k, —» © and k,/n — 0, we have

(6.15) £,.(x) =p g(X) atevery continuity point X of g.

When w(u) = (1/‘)’(p))I(||u” < 1) with 7(p) = f"“”Sldu = 27Tp/2/(PF(P/2)),
(6.15) is the statement

(6.16) —p g(X) atevery continuity point X of g.

y(p)nR%

Proor. Let x € RP and &> 0. By Theorem 1.1 of Moore and Yackel
(1977), there exist 7 > 0 and a finite set of positive numbers a,..., ay
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such that |g,(x) — gx)| > & implies that either |f,(x, ;) —g(X)| > n or
lg.(x, ;) — g(x)| > n for at least one j in {1,..., M}, where

n x — X,
e
(o) = n(f @)
n x — X,
gn(x, Z
o= oy St <)
h,(a) is determined by k, = anh,(a)? and the choice of n and a;, ..., ay is

uniform in n,x and the sample point . This implies
P(2.(x) - g(x)| > )
M M
< Y P(fu(x,a;) —gx)|>n) + ¥ P(g,(x, ) —g(x)| >n) -0,
j=1 j=1

where the convergence statement is a consequence of Theorem 3.1.2 of
Prakasa Rao (1983). Thus, &,(x) —»p g(x). O

The following result is needed to prove Theorem 3.

LEMMA 6.1. Under the conditions of Theorem 3, we have:

@) (n(k,/n)P=2/)/4 50 c(s,20XZ; — zy) = 0,(1) uniformly in s €
[0,1], if k, » © and kP**/n* — 0.

() (n(k,/n) PO/ PYTr | (s, 2,0Z; — 2y) = 0,(1) uniformly in s € [0,1],
ifk, > ©and k?*°/n% > 0.

Proor. We only prove Part (i) of the lemma since the second part is
proved in an identical way. Denote «, = (n(k,/n)?~*/P)1/4 Then

o, ¥ 5,20) (2~ 70)
i Wi(z)Y,(s)(Z; - z)
(6.17) n " Wi(20)Y,(s)

_ (an/ner_l)E?ﬂ w((Z; - zo)/Rn)Yi(s)((Zi - 2z4)/R,)
(l/nRrIL))Z;‘Ll w((zj - zO)/Rn) i1 Wj(zo)Yj(s)

We first show that if k£, = « and k,/n — 0, then

‘ n
(6.18) sup |}, Wi(20)Yi(s) — H(s,20)| =
sef0,1]li=1



816 G. LI AND H. DOSS
where H(s, z,) is defined in (R3). For each i = 1,..., n, write Y,(s) = Y;,(s)

—Y;,(s), where Y;,(s) and Y;,(s) are left-continuous nondecreasing random
functions. By Proposition 6.1,

-p 0,

£ W (20)Vi(s) = Hy(5,20)

(6.19)

—p O,

5 W(20) Yol ) ~ Hy(s 20

for every s, where H,(s,z,) = E(Y,,(s)|Z, = z,) and we have used the fact
that E(Y,,(s +)|Z, = z,) = E(lim,, ,, Y(s + 1/k)|Z; = z,) = lim,, _,,, E(Y(s
+ 1/k)Z, = z,) = H(s+,z,) by the bounded convergence theorem. Using
the standard arguments similar to those in the proof of Theorem 5.5.1 of
Chung (1974), it is shown that (6.19) implies

n
sup Z WIi(ZO)Y'ia("s) _Ha(s’ZO) —p 0.
sel0,1]1li=1
Similarly, we have
n
sup Z Wi(z0)Y,,(s) — Hy(s,20)[ ~p O
sel0,1]]i=1

with H,(s,z,) = E(Y,,(s)|Z, = z,). Therefore, (6.18) holds since H(s,z,) =
H,(s,z,) — H,(s,2).

Note also that (1/nRP)XL}_ w((Z; — z,)/R,) converges in probability to
f(z,), by Proposition 6.2.

Recall that R, is the Euclidean distance from z, to the k,th closest of
Z,...,2, Let (Z,Y(s),...,Z,,Y,(s) be the k, points among
(Z,,Y(s)),...,(Z,,Y,(s)) such that Z, lies in the ball centered at z, and of
radius R,. Then, for A, Cc{z: |z —z)ll<r},i=1,...,k,, and Yire-os Vi, €
{0, 1}, a direct calculation shows that the joint conditional distribution func-
tion P(Z, € Ay, Y((8) =yy,..., Z, €A, ,Y,(s) =y, IR, =r)is given by

kr P(Z; € A, Y (s) =y;)
i=1 G(r) ’

where G(r) = P(IZ, — z,ll < 7). So given R, = r, (Z,,Y|(s)),...,(Z, , Y, (s)
are conditionally independent and identically distributed. This also implies
that the conditional subdensity function of P(Z, < z, Y,(s) = 1|R, =r) is
given by (f(z, s))/G(r)), where f(z, s) is defined by (4.1).

Fix I €{1,..., p}. For each s € [0, 1], denote by 7,(s) the /th component of
the numerator of (6.17). Then since w vanishes outside the unit ball,

~

Z, -z,

R

~

Z; — 2y
R

o kn
n
nn(s) = -1 Zw
i=1

R Y.(s)

n n




NONPARAMETRIC HAZARD REGRESSION 817

We note that [w((Z; — z,)/R,)Y,(sX(Z, — z,,)/R,)| is bounded by a con-
stant, say C;, which is independent of s. By Theorem 2 of Hoeffding (1963),

P('r’n(s) _E(nn(s)an) > 8) = E(P('r’n(s) _E(nn(s)an) > 8|Rn))

(a,/nRZ 1)(k,)Cy )}

282 kn @21-p)/p
= eXp{— (Flz_)k}t/z(ﬁ)

— 0 wuniformlyin s € [0,1],

< exp{—2kn(

where the convergence follows from (6.16) and the assumption that k&, — .
Similarly

P(n(s) ~ E(n(s)R,) < —&) = P(~n,(s) — E(~n,(s)R,) > &) = 0
uniformly in s € [0, 1]. Thus
(6.20) M,(s) — E(n,(s)IR,) =»p 0 uniformlyin s € [0,1].

Moreover,
Rn i ( s )

Zil 201
R

n

E

R

w n

E(m,(s)IR,)| = k(II%_I)

_ knan j‘w zZ—1z 2~ 29 f(Z,S) dz

nRp™ R, R, JG(R,)

knaan
= ZG(R.) fw(u)ul(f(z0 +R,u,s) — f(z,,s)) du’

knanRgt
<M ERS Jw@lz] - lalldu  [by (4.2)]
kp+4 1/(4p)

=0, ( ;4 ) uniformly in s € [0, 1],

where the fifth line uses (6.16) and the fact that as r — 0,

G(r) = v(P)f(zo)r? + [ (f(2) ~ f(z)) d2

llz—zgll<r
=v(P)f(z)r? +o(r?).
Hence, if kP**/n* > 0,

M(s) = (m(s) — E(n,(s)IR,)) + E(n,(s)IR,)
—p 0 uniformlyin s € [0,1].

(6.21)
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Therefore,

(ko /m) )" S (5, 20) (2 — 29) = 0,(1). 0

ProoOF OF THEOREM 3. Before checking Conditions A and B, we first show
that

1
R? Zci(s’zo)(zi —20)(Z; — 2z,)’
(6.22) noi
—-p diag(fufw(u) du,...,fuf,w(u) du)

uniformly in s € [0,1] if 2, - © and k,/n — 0. Foreach [, 1 <[ < p,

cmm%ﬁmf

||'M;

1
R?,
- Zy—z0)\" [ &
(6:28) =memmb7fﬁ/zmmmm
i=1 n j=1

_ (1/nRR) I, w((zi - ZO)/Rn)((Zil - 201)/Rn)2Yi(3)
' (1/an) Z}l=1 w((zj - zO)/Rn) E;'l=1 WJ'(ZO)IG(S)

It follows from Proposition 6.2 and (6.18) that the denominator in (6.23)
converges in probability to f(z,)H(s,z,) = f(z,, s) uniformly in s € [0, 1].
We next show that the numerator in (6.23) converges in probability to
f(z,, s)f w@u? du. It then follows that

1
" Z ci(5,20)(Zy — 24;)° = fulzw(u) du uniformlyin s € [0,1].

ni=1

Denote by ¢&,(s) the numerator in (6.23). Then since w vanishes outside the
unit ball,

k, 2

n i=1

R

n

Z; — 2y

2 O)

n

where (Z,, Y,(s)),...,(Z ko Yk (s)) are the k, points among (Z,, Y{(s)),...,(Z,,
Y,(s)) such that Z l1es in the ball centered at z, and of radius R,. Recall
that given R, = r, (Z,, Y,(s)),.. (Zk , Yk (s)) are conditionally 1ndependent
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and identically distributed with the conditional subdensity function P(Z, <z,
Y,(s) = 1IR, = r) given by (f(z, s))/(G(r)) (see the third paragraph in the
proof of Lemma 6.1). Hence,

Il
5

E(&(s)IR,)

_ k., z—27\(2,— 20 \*f(2,5)
‘anzf“’( R )( R )G(Rn)dz

n n

kﬂ
ey |tz + Rou,s) du

-p f(2z, s)fw(u)ul2 du uniformlyin s € [0,1],

where the convergence statement follows from (6.21), (6.16) and (4.2). More-
over, as in (6.20), we have

£,(s) —E(£(s)R,) »p 0 uniformlyin s € [0,1].
Therefore,

£.(s) = (&(s) — E(&(s)IR,)) + E(&(s)IR,)

(6.24)
-5 f(Z, s)[w(u)ul2 du uniformlyin s € [0,1].

Forl+m (1 <l,m < p), we have
1
Ry /5
625) = (1/nRY) i w((Z; — 7o) /R,)Yi(s)
X((Ziy — 201) /R)((Zim = 20m) /R,)
X[(1/nRE) 3y 0((Z; = 20)/Ry) Bar Wi2)i(5)]

™M=

c(8,20)(Zy — 20)(Zi — Zom)

It follows from Proposition 6.2 and (6.18) that the denominator of (6.25)
converges in probability to f(z,)H(s,z,) uniformly in s € [0, 1]. We need to
show that the numerator of (6.25) converges to zero in probability uniformly
in s € [0, 1], and this is accomplished using the technique we used to prove
the convergence of the numerator of (6.17) in the proof of Lemma 6.1 [cf. also
the proof of (6.24)]. Thus the left-hand side of (6.25) converges to zero in
probability uniformly in s € [0, 1]. Therefore, (6.22) holds.
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Now we prove part (i) of the theorem. We have

1
—Z*'PZ*(S) = R2 E c;(s,29)(Z; — ZO)(Zi - z,)’

R2 ni=1
Y ( i‘«c (s,20)(Z; — Zo))( ﬁ:lci(s»zo)(zi —2z,) |

1 n

R_ ; ci(s,20)(Z; — 20)(Z; — z,)’

(6.26) 1 kn (p—4)/p -1/41\ 2

_R—% op((n(;-) ) ))
1 n
R ; ci(s,20)(Z; — 29)(Z; — zp)' — Op((kn)_l/z)

1
dlag(fufw(u) du,...,fuf,w(u) du)
uniformly in s € [0, 1],

and each integral in the last line of (6.26) is positive. Here, the second
equality follows from part (i) of Lemma 6.1, the third equality from (6.16) and
the convergence statement from (6.22). This implies (A1).

To verify (A2), it suffices to show that for @, = k,/n and for every § > 0,

n
(6.27) sup |(na,)'™® ¥ c?*(s,20) — g5(5,2,)| —
sel0,1] i=1

Let w(-) = w?*°()/fw?"*(u) du and
W,(20) = >/ ¥ w|L—
h n =1 hn
J
Then since w(-) is a density function that satisfies the regularity conditions
needed to apply Propositions 6.1 and 6.2, we have

k't Y W2(20)Y(s)

i=1

B\ n
=( ) [.glwi(zo)n(s)]

P
nRE

(6.28)
(1/nRE)Th_ i ((Z; — 20)/R,,)

((1/nR2)E2 w0 ((Z; - 20)/R,))

fw2+5(u) du

—>P(y(p))1+8H(s,zO)fw2+5(u) du uniformly in s € [0,1],
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where the convergence of the factor in the first set of brackets in the second
line of (6.28) follows from the arguments leading to (6.18) and the conver-
gence of the numerator and denominator in the second set of brackets follows
by Proposition 6.2. Thus,

B0 Y e (s, 7)
i=1

=k L W) ¥() / £ Wi(50)%(9)|

R ( v(p)

P H(s,z,)

and hence (6.27) holds.
By regularity condition (R1),

145
) fw2+3(u) du uniformly in s € [0,1]

¥ ei(20)(a(5,2) - a(5,2)

<

(%(s,zo))' Y e(5,20)(Z, — 2,)

i=1

a2 )”

where the last statement follows from part (i) of Lemma 6.1 and (6.16). Thus

VR, [

= Op((krlz+4/n4)1/(4p)) + Op((k,f+4/n4)1/(2p)) __)P 0

when k2**/n* - 0. Therefore, (A3) holds.
Since (R1) implies that |a(s,z) — a(s,zy)| < M,z — z,l| for some constant
M, > o0,

+ O,(R2)

4

+ O

p

b \2/P
(—") ) uniformly in s € [0,1],
n

ds

._ilci(s’zo)(a(s’zi) - a(s’zo))

n

Z ci(s,zo)(a(s,Zi) - a(s’zo))z'

i=1

= \/Z:M1 g:lci(sazo)uzi — 2zl

= VR, Oy(R}) = Oy (k24 /n*) ")

uniformly in s € [0, 1], where the first equality follows from (6.22) and the
second equality from (6.16). Together with the assumption that 2?**/n* — 0,
this implies (A4).

Jin
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Now we check (A5). Note that for every i and s,
Wi(2,)Y;(s)
"L W (20)(5)
k, sup, w(u)
= R} (1/nRE) L) w((Z; - 20)/R,) T} W(20)V,(5)
Furthermore, by Proposition 6.2 and (6.18), the right-hand side of (6.29)

converges in probability uniformly in s € [0,1] to y(p)sup, w(w)/H(s, z,),
which is bounded because inf; ., ;; H(s,z,) > 0 by (R3). Therefore,

k,c,(s,2zy) = O,(1) uniformlyin i and s € [0,1].

knc(s,20) =k
(6.29)

Finally, because

VB Ji(8)(2*(5) e(5) — 2,)'(Z*(5) P(5)Z*(5)) "“(Z*(5)"e(s) — 2,)

k 2/p kB \(p=9/p 4,
=J1(3)(n1él£) ((n(;ﬂ) ) Zc(s,zo)(Zi—zo))’

i=1

X (Riﬁz*(s)’P( s)Z*(s)) _

T ]

i=1

(A6) follows immediately from (6.16), part (i) of Lemma 6.1 and (6.26).
The proof of part (ii) of the theorem uses part (ii) of Lemma 6.1 and is
completely parallel to the proof of part (i). O
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