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COARSENING AT RANDOM IN GENERAL SAMPLE
SPACES AND RANDOM CENSORING IN
CONTINUOUS TIME

BY MARTIN JACOBSEN AND NIELS KEIDING
University of Copenhagen

Heitjan and Rubin proposed a concept, “coarsening at random,” gen-
eralizing Rubin’s theory of missing at random. Their analysis was done in
discrete sample spaces. We propose a generalization to general sample
spaces. Among Heitjan and Rubin’s applications was right-censoring in
survival analysis. We discuss the application of the generalized theory to
various censoring patterns in continuous time and connect to the modern
theory of random censoring.

1. Introduction. Heitjan and Rubin (1991) formulated a theory in dis-
crete sample spaces for “coarsened” data, which are “neither entirely missing
nor perfectly present.” Their principal results were the formulation of a
concept of “coarsening at random” and a proof that a certain desirable
likelihood is adequate when coarsening is in fact random. Their examples
included right-censoring in survival analysis, as further elaborated by Heit-
jan (1993).

These articles were based on a likelihood (possibly Bayesian) approach for
which the concepts are defined relative to the realized data point. In the
present paper [as also done by Heitjan (1994)], we formulate conditions for
the statistical model, allowing a frequentist interpretation.

The modern theory of right-censoring aims at establishing conditions on
the censoring pattern so that “past observations do not affect the probabili-
ties of future failures” [Jacobsen (1989)]. Kalbfleisch and Prentice (1980) gave
a pioneering analysis, while Aalen’s (1975, 1978) discussion in the framework
of counting processes was developed and consolidated by Gill (1980), Arjas
and Haara (1984), Andersen, Borgan, Gill and Keiding (1988, 1993), Arjas
(1989) and Jacobsen (1989). This discussion was exclusively conducted in
continuous time.

The purpose of this note is to propose a version of “coarsening at random”
in general sample spaces together with the associated theorem on likelihood
inference. It turns out that one has to be careful with the measure theory
involved, and we repeatedly invoke the basic theory of regular conditional
distributions. The link to the abovementioned modern theory of random
censoring is illustrated by four examples.
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2. Coarsening at random for discrete observations. Heitjan and
Rubin (1991) assumed that a random variable X of primary interest is not
observed directly: it is only known that X € Y, where the random set Y is
determined by a further random variable G such that Y = Y(X, G). Statisti-
cally, the distributions of X and G were assumed by Heitjan and Rubin to
have “distinct parameters,” in the Bayesian formulation meaning that the
parameters 0 (for X) and y (for G) are a priori independent, while in the
frequentist-based likelihood inference (which we shall pursue here) the mean-
ing is that # and y are variation independent, that is, the pair (6, y) varies
freely in a product parameter space ® X T.

A formalization of these ideas is to consider X and G, two random
elements with values in the measurable spaces (E, x) and (T, &), respec-
tively, specified by a product parameter space ® X T such that, for any
(8,y) € ® X T, the P, -joint distribution of (X, @) is given by

P, (X €dx) = f(x;0)u(dx),
P, (G €dglX =x) = h(g; x,v)v(dg),

where u and v are reference measures on_(E, x) and (T, £), respectively.
Next consider a mapping Y:E X I' > 2% (the set of all subsets of E) with
the property that

(1) x€Y(x,8),
for all x and g. Call x € E and y C E compatible if Y(x,g) =y for some
gel.

For a moment we make the assumption that the range space S for Y is
discrete (at most countably infinite) and assume of course also that Y is
measurable,

{(x,8):Y(x,8) =y} €x®,

for any y € S. Then the likelihood for observing y becomes

(2) P, (Y =y) = [n(dx)f(x;0)k(y;%,7),
where & is the conditional distribution of Y given X,
k(y;2,7) = [ v(dg)h(g;x,v).
{g:Y(x,g)=y}

Heitjan and Rubin [(1991), Definition 1], defined y to be coarsened at
random (CAR) if for the observed y € S, k(y; x, y) is, for all y, the same for
all x € y. In that case (2) becomes, apart from a factor depending on y and y
only,

(3) fyﬂ(dx)f(x;@)

i.e.,‘ [Heitjan and Rubin (1991), Theorem 1], the profile 6-likelihood for observ-
ing vy is the same as the grouped likelihood.
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At least two problems arise when one attempts to generalize the Heitjan
and Rubin result to allow for nondiscrete Y (as, e.g., is necessary to discuss
the censoring examples below).

ProBLEM 1. For the right-hand side of (2) to be a likelihood in the general
case, it must be a density with respect to a reference measure on some subset
S of 2% How should S and this reference measure be chosen?

ProBLEM 2. Even if Problem 1 is resolved, one cannot expect to find a
general CAR concept that makes (3) the relevant likelihood for drawing
inference on 6 when the value y of Y is observed: suppose, for example, that
X is real-valued with a continuous distribution, and use a continuous u but
assume that the coarsening mechanism is such that in some cases the value
of X itselfis observed, that is, y = {x} is possible. However, with such a y, of
course (3) vanishes in contradiction with the basic principle that for a given
observation the likelihood function evaluated at the true parameter value is
always strictly positive! Now obviously, if y = {x}, the likelihood should just
be f(x; 0), but as we have just seen, this is not just a special case of (3). One
could say that, in a discrete setup, (3) is the only desirable likelihood to aim
for, while in the continuous case it may still be possible to obtain a simple
likelihood instead of (3), but that the form of this likelihood may depend on
the particular structure of the observation y [see (8) and (9) in Theorem 1
and also (11) in Example 4.]

3. Coarsening at random in general sample spaces. We shall now
consider a general setup and give a general definition of CAR, which, if
satisfied, yields a profile #-likelihood for the observation y which is f(x; 6) if
y = {x} and is given by (3) if u(y) > 0. As mentioned in the Introduction, our
definition will refer to the full model rather than one single data point. To
make the distinction, we shall refer to our concept as CARM, coarsening at
random in the model.

It is important also to obtain a useful expression for the profile likelihood
for y in other than the two cases just discussed, that is, when u(y) = 0 and y
is not a singleton. The theorem to be presented below does just that with a
general expression for the y-likelihood in terms of a conditional expectation.
It is then a part of the statement of the theorem that this reduces to what we
want if either y has strictly positive u-measure or is a one-point set.
However, even in the other cases, as we shall see in Example 4, the condi-
tional expectation may reduce to something desirable and sensible.

Since several of the facts listed below are valid whenever Y is some (not
necessarily set-valued) function of x and g, we shall initially only assume
that Y is a measurable function from (E X T, y ® £) to a measurable space
(S,.%). In agreement with the Heitjan-Rubin concept, we call x and y
compatible if Y(x, g) = y for some g.

Next, assume that the reference measures p and » on the sample spaces
for X and G, respectively, are both probabilities. In practice this is not a
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restriction, and starting, for example, with Lebesgue measure may render
some of the formulas below useless. (See also Example 1.)

Notation. From now on write X and G for the coordinate projections

X(x,g)=x and G(x,g) =g on B X T. Also, let p=p ® v be the product
probability on (E X I', x ® £) (so, under p, X and G are independent), and
write o = p(Y™!) for the p-distribution of Y,

o(D)=p(YeD), De%
Finally, let P, ., be the probability on E X I' with density
f(x;0) h(g;x,7),
with respect to p.
Then the following facts hold.

Facr 1. The P, -distribution of y is absolutely continuous with respect to
o with density

(4) o(y;0,v) =E(f(X;0) h(G; X,y)IY =y),

[which is a completely general and, without more structure, fairly useless
likelihood for observing y; E, refers of course to the (conditional) expectation
with respect to pl.

Fact 2. The Heitjan-Rubin CAR condition involves the conditional P, .-
distribution of Y given X = x. To obtain this in general, let «, be the
conditional p-distribution of Y given X = x, that is,

k(D) =»(Y,eD), De.>,

where Y,: ' - S is the section Y,(g) = Y(x, g) of Y. Then the conditional
P, ,-distribution of Y given X = x is absolutely continuous with respect to
K., with density

k(y;x,v) = E(h(G;x,7)IY, = y).

Fact 3. In view of Fact 2, the likelihood (4) for observing y may also be
written

e(y;0,7v) =E,(f(X;0) k(y; X,7)IY =y).

Note that if it is known that, for all y and v, k(y; x, y) is the same for all x
compatible with y, and assuming that this set of compatible x is measurable,
it follows that

may be used as the profile 6-likelihood when observing the value y of Y.



7178 M. JACOBSEN AND N. KEIDING
FACT 4. This is a warning: suppose D €.% with o(D) = 0. Then
Jr(dx) k(D) = p(Y € D) = o(D) =0,

and so k(D) = 0 for u-almost all x. However, the exceptional set of x-values,
where this property of «, fails, may depend on D, and this in an essential
manner: it is not in general true that, for u-almost all x, x, < o (see Section
4). Thus one is forced to use the x,-density £ from Fact 2, for the general
definition of CAR.

So far the range space (S,%) for Y has been arbitrary. We shall now
restrict attention to the coarsening setup, where, for all x and g,Y(x, g)is a
subset of E. First, we define S = Y(E X I'), the image under the map Y of
2 X T. This definition of S we find convenient; for most purposes the full set
2% of subsets of E is much too large. Next, we introduce the following
assumption on the structure of Y.

AssuMPTION (Y). For all x € 2, g €T it holds that x € Y(x, g) and, for
every g € I', any two subsets of E of the form Y(x, g) and Y(&, g) are either
identical or disjoint.

Thus the idea is that for every g there is a partitioning of the sample space
for X, generated by an equivalence relation requiring x and % to be equiva-
lent when Y(x, g) = Y(&, g) and with the sets (Y(x, g)), . z the equivalence
classes. Note that (1) is included in the assumption.

It follows in particular from Assumption (Y) that x is compatible with y if
and only if x € y. Also, if y € S and x and X are both compatible with y,
then

(5) {g:Y(x,8) =y} = {4:Y(%,8) =y}

We are now ready to address Problems 1 and 2, posed toward the end of

Section 2.
Problem 1 is easy: with S = Y(E X I') already defined, define the o-
algebra .% of subsets of S by

#={Dc8:Y (D) e xo g},

and on (S,.%) use the reference measure o obtained by transforming p with
Y,
o(D)=p(YeD), De%.

With these definitions the properties of the coarsening Y are duly taken into
account, and one has a suitable measurable structure on a suitable collection
S of subsets of E.

" Problem 2 is the important and more difficult one. We shall resolve it by
presenting a general definition of CAR and then prove our general version of
the Heitjan—Rubin theorem.
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To get anywhere, we need some measurability assumptions on Y. Assume
that, for all «, g,

Y(x,8) €x,
that is, for all y € S,
(6) Yy EX,
and also assume that the mapping
y = u(y)

from S to [0, 1] is measurable. These assumptions should be easy to check in
concrete situations.

The connection to the Heitjan—Rubin theory will be established via the
following result.

LEMMA 1. Define
Dy ={yeS:u(y) >0}
Then, for any y € D, and any x € E,

1
(7) b(x;y) =m1(x€y)

defines a density with respect to u for the regular conditional p-distribution of
X given Y = y.

PrROOF. We must show that, with b given by (7),
J.o(dy) [ m(dx)b(x;y) = p(X € B,Y €D N Dy),
DND, B
for all B € y, D €.%. However, the double integral on the left equals

B B Y P
f, @)D - e, ag PED ) 1 (v, )

= [u(dx") [v(dg) [m(dx)15(2) 1y, (%))

Xm)—) 1pap(Y(%,8)).

By Assumption (Y), if x’ € Y (x, g), then Y(x',g) = Y(x, g) and also x €
Y(x', g) (and conversely), so this expression is equal to

[r(dx") [v(dg) [p(dx)1a(x")1yer, (%)

Xmlonpo(Y(x',g))

= [p(dx', dg)1a(2")1pnp,(Y(x', 8))
=p(Xe€B,YeDnD,). O
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DEFINITION. Y is coarsening at random in the model (CARM) if there is a
version of

k(y;x,v) = E,(h(G; x,7)Y, =)

such that, for all y € S and all y € T, x — k(y; x, y) is the same for all x
compatible with y.

This definition is of course a condition on the statistical model {P, ,}. The
fact that only the parameter y enters in the definition reflects the basic
assumption that 6 and y vary independently.

As already mentioned before, Heitjan and Rubin defined their CAR concept
in a Bayesian flavor relative to a given observed value y. On the other hand
we impose a condition for all y, which seems more natural if one is interested
in properties of the underlying statistical model [see also Heitjan (1994)].

In our setup there is an arbitrariness in the choice of the reference
probabilities u and v. However, if p and ¥ are two other choices, equivalent
to w and v, respectively, with

dp dv

du " v
where m > 0 and n > 0, then, using fi and ¥ as references, k is replaced by
k, where

k(y;x,7)
E,(n(G)Y, =y)
However, by (5), with y given, if x is compatible with y,
(Y, =y) ={g:Y(x,8) =y}

does not depend on x. Thus, as ought to be the case, the definition of CARM
does not depend on the choice of reference probabilities.

E(y;x,7) =

THEOREM 1. If Y is CARM, the profile likelihood L(0;y) for drawing
inference on 6 based on the observation y satisfies

(8) L(6;y) = E,(f(X;0)IY =y)

with, in particular,

fy/w(dx)f(x;(’), if n(y) >0,
f(x;0), ify = {«}.

(9) L(6;y) =

ProoF. By Fact 3, the total likelihood (in 6 and vy) for observing y is
E(f(X;0) k(y; X,7)IY =y).

Because p(/|Y = y) is concentrated on (x, g) with Y(x, g) = y and because
Y is CARM, k(y; X, y) may be viewed as a constant, and hence, for estimat-
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ing 0 when observing y, one may use the likelihood (8). Obviously, if y = {x},
since p-a.s. X €Y by Assumption (Y), this reduces to f(x;0). Also, if
uw(y) > 0, one finds from Lemma 1 that

1
E,(f(X;0)lY =y) = fu(dx)ml(xey)f(xtﬂ)
= L d ;0
= ) L@ 10, :

4. Examples.

ExamMpPLE 1 (Right-censoring, one observation). Consider the following
model for observing one failure time with right-censoring: let u and v be
probabilities on = = (0,) and I' = (0,%]; let {f(x; 0)},.¢ be the family of
densities for the failure time X; and let {Ai(g; x,y},cy be the family of
conditional densities for the censoring time G given X = x.

Define

{x}, if g >x,
1 Y =
(10) (x.8) (g,»), ifg<x.

Clearly Y satisfies Assumption (Y) and, as will be clear from the next few
reasonings, also the measurability conditions imposed in Section 3.
Note that S is the collection of all singletons {x} and all open intervals
(g, ) with
Y ({{x})) = {x} % [2,%],
Y '({(g,%)}) = (g,2) % {g}.
Also note that, with u and » both Lebesgue measure, the atoms of the
o-algebra . would have measure + . (Hence the need to require w and v to

be probabilities.)
Write § = §; U S;, where

Si={{x}):xe(0,9), S ={(g.9):g<(0,).
The o-algebra . on S consists of all D c S such that
DnNS, ={{x}:x B},
DnS;={(g,%): g €By},
with B, and B; Borel subsets of (0, ). Note that, with D as above,
o(D)=0(DNnS,;)+a(DNS,),
wherefore [cf. (10)],

a(DN8y) = [ wldx)v([x]),

o(DNS;) = [ v(dg)u((8,%))-
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Further, for a given «x,
k(D NSp) =1g(x)v([x,])

(and it is clear that, on S;, k, is not “ < ” with respect to o; cf. the warning

issued in Fact 4),

x

k(D NS;)=v(B;N(0,x)).
Finally,
k(y;x,v) = E,(h(G; x,7)IY, =)
is given as follows:

@) If y = {xo} € S, for x to be compatible with y, necessarily x = x, and
then

k(y;x9,7) = E,(h(G; x4, 7)IG = x,).

In this case, CARM is (of course) automatic.
1) If y = (gy,) € S;, for x compatible with y, that is, x > g,

k(y;x,v) =E,(h(G;x,v)IG = g)
= h(go; X, 'Y)

and the CARM condition requires that, for any vy, this must not depend on
x > g,. Informally, the result states that as long as X > G, X and G should
be independent for the censoring to be CARM. This result is exactly the
condition obtained in Jacobsen [(1989), Example 3.31], which again is the
same as the constant-sum condition due to Williams and Lagakos (1977).
That the likelihood for observing y is then proportional to (9) follows from
Jacobsen [(1989), Theorem 4.2], since condition (ii) of that result is satisfied
because the parameters 6 and y are variation independent.

In Example 4 we shall discuss the meaning of CARM when n rather than one
right-censored failure times are available and see what (8) reduces to if the
CARM condition is satisfied.

ExAMPLE 2 (Current-status data). Assume first that only one observation
is available, so E = (0,%) and T" = (0, «], and let

(0,g], ifx<g,

Y(x,8) = (g,»), ifx>ag.

It is easily seen that Y satisfies Assumption (Y) and that the measurability
conditions from Section 3 also hold. We get the following:
(@) if y = (0, go] and x is compatible with y, that is, x < g,
| k(y;%,7) =h(&o;%,7),
and CARM requires that, for any vy, this must not depend on x < g,;
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(i) if y = (g4, ) and x is compatible with y, that is, x > g, again

kE(y;x,v) =h(8;%,7),
but to satisfy CARM this must now not depend on x > g, for any 7.

In this case CARM thus reduces to requiring that X and G be independent
as usually assumed in the literature [cf. Diamond and McDonald (1992) or
Groeneboom and Wellner (1992)].

If one considers n rather than one observation, CARM still amounts to
demanding independence between X = (Xj,..., X,) and G = (G4,...,G,): in
this case,

Y(x,8) ={(%y,....%,): %, <g,ifx; <g;, % >g;if x; > g,;}.
Assumption (Y) is satisfied, and since, for any y and x € y (x compatible

with y), the condition Y, =y completely specifies the value of G (G = g°,
say), it is easily seen that CARM amounts to demanding that

h(g°% x,v)
be the same for all g%, all x.

ExamMPLE 3 (Double censoring, one observation). Suppose now that the
failure time X is doubly censored, that is, let G = (V,U), where 0 < V < U
< o are random, and

v [ {=} ifv<zx<u,
(x.8) = (0,v] U (u,»), otherwise,

where we write g = (v, u) for an arbitrary value of G. With u the reference
distribution for X, and v the joint reference distribution for (V,U) (a
probability concentrated on {(v, u): 0 < v < u < }), reasoning as in Example
1, one finds that the data are CARM if and only if the conditional densities
for G given X = x satisfy that, for all y, all 0 <v < u < », h((v, u); x, y) is
the same for all x with x < v or x > u: aslongas X € (0,V] U (U, ), X and
(V, U) should be independent.

It is quite instructive to consider the modification that arises if, in the case
of censoring, it is observed whether the censoring occurred to the left or the
right. Then

{x}, ifv<x<u,
Y(x,8) =¢{(0,v], ifx<uv,
(u,»), ifx>u.
The condition for CARM now becomes much more complicated: CARM holds
if and only if, for all v,

[vuu(du) h((v,w); %, 7)

is the same for all x < v, and, for all u,

Jrviu(dv) (v, u); %, 7)
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is the same for all x > u. Here vy, denotes the 1-conditional distribution of
U given V=v, and vy, is defined analogously. Note that this revised
condition for CARM is satisfied in particular if the first CARM condition in
this example holds.

ExamPLE 4 (Right censoring, n observations). Suppose that X,,..., X,
are i.i.d. failure times with common density f,(-; #) with respect to a reference
probability w, on (0,). Suppose also that each X, is right-censored at a
random time U,. We write X = (X,,...,X,) and G = (U, ...,U,) and define
Y(x, g) as the subset

Y(x,8) = {(#,...,%,): &; = x; if x; < w; and &; > u, if x; > u;}

of (0,»)". Here x = (x4,...,x,) and g = (u4,...,u,) are arbitrary values of
X and G, respectively.

To specify the model completely, we shall finally assume that there is a
reference probability v, on (0,] such that the conditional distributions of G
given X = x have densities h(:; x, y) with respect to the product probability
v = v{ on (0,%]". (Thus under v, the U, are i.i.d. and independent of the X,
but under P, ., there may be dependence between G and X, and the U, need
not even be mutually independent).

In accordance with the notation generally used, we write

Fx:0) = L_lf[lfo(xi;e)

for the density of the X = (X, ..., X,) with respect to the product probability
W= g

Note that if u, is continuous (e.g., absolutely continuous with respect to
Lebesgue measure), the observed value y of Y will neither be a singleton nor
satisfy u(y) > 0 if at least one failure time and at least one censoring time is
observed. Thus the general expression (8) for the Y-likelihood under CARM,
rather than the more special (9), becomes relevant.

Just as in Example 1, it is natural to split the range space S for Y into
disjoint components. Let F' be a subset of {1,..., n} and define

Sp={I1A},

where A; = {x;} for some 0 <x;, <o if i € F, and A, = (u;,*) for some
O0<u,<wifieC:={1,...,n}\ F. Thus S; is the part of S corresponding
to observing the items in F to fail, those in C to be censored. The measurable
structure on Sy is obtained by allowing the vector ((x,); c »,(u;);<c¢) to vary
in an arbitrary Borel set. Writing xp = (x;,);c 5, uc = (¥;);c ¢ and with, for
instance,

D= {l_[ {x,} x T1 (u;,%): xp € By, ug eBC},
ieF jecC
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a particularly simple subset of S; (with B, and B, Borel sets of the relevant
dimensions |F| and |C|, respectively), one finds that the reference probability
o on (S,.%) satisfies

o(D) = j;;p igl‘vo(dxi) Vo([xi,w])'/;?c le_IC Vo(duj) l‘vo((uj»“’)),
while
k(D) = 1BF(xF)igr vo([ x;,%]) V(I)CI(BC N jle_!: (0, xj))

Now suppose a y € Sj is observed, and let x° for i € F denote the
observed failure times, while u}) for j € C are the observed censoring times.

A failure-time vector x is then compatible with y iff x, = x% and « ;> u) for
J € C. For such x, Y(x,g) =y precisely for those g with uc =ud and

u; > x) for i € F. It follows that
k(y;x,7) = E,(h(G; x, 7)Y, = y)

- 0Y. .
(wpiu;=x? for ieF}ile_}['v‘ VO(dut) h((uF’ uc)’ i 7),

CARM now requires this to be the same for all x compatible with y, a
condition not at all transparent although it is easily seen to be satisfied in
some simple cases: if, for instance, it is assumed that under each F, , the U,
given X are independent with the conditional density 4, for U, depending on
X; only, CARM simply states that each U, should be independent of X, as
long as U, < X.

However, if CARM holds, we shall see that the likelihood for observing y
takes a simple and natural form. Indeed, by (8) from Theorem 1, one finds

(11) L(055) & T fo(wis0) T [ mo(ds;)fol(x;50).

Jacobsen (1989), working with a nonparametric setup, presented a certain
condition, called (C), which if satisfied leads to a natural likelihood for
drawing inference on the failure-time hazard. For the parametric model
considered here, his likelihood would be the same as (11). However, to relate
CARM to condition (C), it would be necessary to introduce the time dynamic
aspect into this example and require that CARM should hold for any of the
models obtained by stopping the observations after an arbitrary time point ¢
(at which time some items have failed, some have been censored and some
are still at risk). We conjecture (without pursuing the matter further here)
that CARM holds for all ¢ > 0 if and only if Jacobsen’s condition (C) holds for
all P, .
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