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ESTIMATION OF A LOSS FUNCTION FOR SPHERICALLY
SYMMETRIC DISTRIBUTIONS IN THE
GENERAL LINEAR MODEL

By DOMINIQUE FOURDRINIER AND MARTIN T. WELLS

Université de Rouen and Cornell University

This paper is concerned with estimating the loss of a point estimator
when sampling from a spherically symmetric distribution. We examine
the canonical setting of a general linear model where the dimension of the
parameter space is greater than 4 and less than the dimension of the
sampling space. We consider two location estimators—the least squares
estimator and a shrinkage estimator—and we compare their unbiased
loss estimator with an improved loss estimator. The domination results
are valid for a large class of spherically symmetric distributions and, in so
far as the sampling distribution does not need to be precisely specified, the
estimates have desirable robustness properties.

1. Introduction.

1.1. Consider the general statistical decision problem of estimating a
parameter # € R* by some decision procedure ¢ under a loss function
L(6, ¢). Classical decision theory advocates that one should use a decision
rule ¢* if it has suitable properties with respect to the frequentist risk
R(8, ¢*). However, once a random vector x has been observed, one would like
to calculate the loss incurred by the estimate ¢*(x). Now, L(6, ¢*(x)) is not
available since it depends on the unknown parameter 6. Hence it is of
interest to estimate the loss of ¢*(x). Therefore, we wish to construct a data
dependent measure of the loss incurred for the particular data at hand.

The problem of estimating the loss was first considered by Lehmann and
Sheffé [14], who estimated the power of a statistical test. In a series of
papers, Kiefer [11-13] addressed the problem of developing conditional and
estimated confidence theories to provide frequentist estimates of confidence.
Berger [2] compared the Bayesian and frequentist approaches to this prob-
lem. Recently Johnstone [10], Rukhin [18], Lu and Berger [16], Casella and
discussants [4], Casella, Hwang and Robert [5] and Lele [15] have discussed
this problem in a variety of situations.

In this article, we consider estimation of the loss incurred when using the
least squares estimator and an improved estimator of the location parameter
of a spherically symmetric distribution. We first develop an unbiased estima-
tor of the loss for each location estimator. Next we construct, for each
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572 D. FOURDRINIER AND M. T. WELLS

unbiased estimator of the loss, a dominating shrinkage-type estimator, in
terms of squared-error loss. These results complement James—Stein-type
estimation of a location parameter of a spherically symmetric distribution
given by [3] and [6]. An important feature of our results is that the proposed
loss estimates dominate the unbiased estimates for the entire class of spheri-
cally symmetric distributions. That is, the domination results are robust with
respect to spherical symmetry.

The normal distribution has long served as the standard model in the
investigation of a location parameter. One of its main attractive feature is
that it depends on a small number of parameters which have direct interpre-
tation. The normal distribution has been generalized in two important direc-
tions: first as a special case of the exponential family and second as a
spherically symmetric distribution. We will consider the latter (see, e.g., [8]
for a comprehensive review of that class of distributions). The spherical case
has recently received much attention, especially in decision theoretic point
estimation with Brandwein and Strawderman [3] and in set estimation with
Robert and Casella [17]. These articles refer to specified spherically symmet-
ric distributions while our results are robust with respect to the choice of the
spherically symmetric distribution (this fact was already noticed by Cellier,
Fourdrinier and Robert [7]).

12. Let x be an observation in an n-dimensional Euclidean space
(E,{, )), distributed according to a spherically symmetric distribution P,
around a location parameter 6. The main hypothesis about P, is that
belongs to a linear subspace ® of E with dimension % for 0 < & < n. Suppose
we wish to estimate 6, by a decision rule ¢(x) using the sum of squared-error
loss (16 — @(x)l|?>, where ||-|| denotes the norm connected with the inner
product  , ). This loss is unobservable since it depends on 6; hence one may
wish to estimate it by A(x) from the data. To study how well A estimates the
loss, a further distance measure is needed; for mathematical convenience, we
use squared error to evaluate A x). Thus the risk incurred by A is

1y R(),0,9) = E[(r - lle - 02)],

where E, denotes the expectation with respect to P,. We say that a loss
estimator A’ dominates A if R()\', 6, ¢) < R(A, 6, @).

Since P, is spherically symmetric around 6, for every bounded function f,
we have E[f] = [ Ep o[ f1p(dR), where Ep , denotes the expectation with
respect to the uniform distribution Uy , on the sphere S , ={x € E/|lx —
0ll = R} of radius R and center 0, and p is the distribution of the radius,
namely, the distribution of the norm ||-|| under P,. It suffices to prove the
domination results working conditionally on the radius, that is to say, to
replace P, by Uy , in the expression (1.1).

As k < n, the usual estimator of 6 is the orthogonal projector ¢, from E
onto O, that is, the regular least squares estimator. A class of competing
point estimators which are also considered are of the form ¢ = ¢, — [|X —
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@olI’g ° @, where X is the identity function in E [for every x € E, X(x) = x]
and g is a measurable function from © into ©. This class of estimators is
closely related to the now classical Stein-like estimators (when estimating the
mean of a normal distribution, the square of the residual term ||x — (%)l is
used as an estimate of the unknown variance). Their domination properties
are robust with respect to spherical symmetry (cf. [6] and [7]). In the next
section, we consider estimation of the loss of the usual least squares estima-
tor ¢,. In Section 3, we consider estimation of the loss of a shrinkage
estimator ¢. In order to assure the finiteness of the risk of the usual
estimator ¢, and the risk of the shrinkage estimator ¢, we need two
hypotheses (H1) and (H2) given in [6]. Section 4 contains some concluding
remarks. The Appendix provides two technical lemmas that are used repeat-
edly.

1.3. We wish to emphasize some points on which our article differs from
Johnstone’s paper (i.e., [10]). In the normal case, we know that the risk of the
least squares estimator ¢, is constant and equal to %, so it is natural to use
A = k as an unbiased estimator of the loss. Here we use Johnstone’s terminol-
ogy for unbiasedness. The only way we can determine unbiasedness is to take
the expected value with respect to P,, in which case, the expected value of A
is equal to the expected value of the loss, both being equal to the risk. Hence,
one might speak about the unbiased estimator of the risk rather than
unbiased estimators of loss.

In the spherical case, the risk of ¢, remains constant (with respect to 0)
since it is equal to kE[R?]/n, where E[ R%] denotes the expectation of the
square of the radius (the second centered moment of P,). Thus this risk
provides an unbiased estimator of the loss, that is,

-k
(1.2) A= —E[R*],

which is subject to the knowledge of E[ R?]. Its properties, as the properties
of any improved estimator, may depend on the specific underlying distribu-
tion.

A feature of this paper is that we propose an unbiased estimator A, of the
loss of ¢, which is available for every spherically symmetric distribution
(with finite fourth moment), that is, Ay(x) = kllx — ¢(2)lI>/(n — k). Thus we
do not need to know the specific distribution, and we get robustness with an
estimator which is no longer constant. In Section 2, we give some examples of
some spherically symmetric distributions; these include the Student distribu-
tion (and, of course, the normal distribution) and some distributions which
are not scale mixtures of the normal distribution.

. Notice A, makes sense because dim ® < dim E. A reasonable goal is to
improve on the unbiased estimator of loss and we show, in Section 2, that this
can be done while preserving the robustness property. The above considera-
tions of robustness apply to the estimation of the loss of a shrinkage estima-
tor discussed in Section 3. Another major difference between our article and
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Johnstone’s is that we consider the coordinate-free (cf. [20]) general linear
model with dim ® < dim E. Although Johnstone mentioned a type of linear
model, he assumed that dim ® = dim E. Hence, his results are not applicable
to the general linear model.

2. Estimation of the loss of the least squares estimator.

2.1. Within the framework introduced in Section 1.2, we consider estima-
tion of the loss of the usual least squares estimator ¢, of 6 (the orthogonal
projector from E onto ®) in this section. An unbiased estimator of the loss of
@, of 6 is given by A, = k|| X — ¢,/ /(n — k). The unbiasedness of A, follows
from Lemma A.1 in the Appendix by taking ¢ = 0 and y = 1. The goal of this
section is to prove the domination of the unbiased estimator A, by a compet-
ing estimator A of the form

(2~1) A=Ay — X - ‘Po||4'Y ° o,

where y is a positive function. It is important to notice that the “residual
term” || X — ¢,ll appears explicitly in the shrinkage function. It has been
noted by Cellier and Fourdrinier [6] that the use of this term allows fewer
assumptions about the distributions than when it does not appear. Specifi-
cally, this inclusion gives a robustness property to the results, since they are
valid for the entire class of spherically symmetric distributions (under the
required moment conditions). Since, for a given observation x, the residual
term [x — @,(2)|I”> represents the square of the distance between x and its
projection on O, it is intuitively natural that its consideration strengthens
the information we use through the estimator. See Remark 2.1 on a rationale
for the choice of the fourth power on the residual term. Johnstone [10]
presents some simulation results which point out the great gains one can
obtain by using an improved estimate of loss. Similar gains also occur for our
loss estimates.

2.2. Before giving our main result, we consider the problem of the finite-
ness of the risks of the estimators A, and A. It is easy to check, using the
spherical symmetry of P, and the proportionality of E,[l|lX — g00||4] and
E,lll@, — 61I*] [this follows from two applications of Lemma A.1, first with
g =0and y(¢) =t — 6||?, then with g = 2 and y(¢) = 1], that the risk of the
unbiased estimator A, is finite if and only if P, has a finite fourth moment. If
the risk of A, is finite, direct calculation (see the first expression of the risk of
A given at the beginning of the proof of Theorem 2.1) and an application of the
Cauchy—-Schwarz inequality show that the risk of the shrinkage estimator
(2.1) is finite if and only if E,[||X — ,ll®y2 > ¢,] < . A straightforward way
of: showing that this expectation is finite is to assume that there exists a
constant B > 0 such that

(2.2) y(t) < B/IItI® forevery t € 6.

This condition is often assumed when estimating a location parameter; see [6]
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for more details and references. Indeed, working conditionally on the radius
R, (2.2) implies

(23)  Eno[IX — @ully? o po] < B°REr || =2
0

On the right-hand side of (2.3), for 6 = 0, the expectation is independent of R
since it is the second moment of a F-distributed random variable with n — &
and % degrees of freedom (up to a multiplicative constant), as the distribution
is spherically symmetric around zero. This moment is finite as soon as & > 4,
and remains finite for 8 # 0 since it can be bounded from above by a constant
independent of R (see Section A.1 of the Appendix). When we uncondition
with respect to R, under the assumption that P, has a finite fourth moment,
the right-hand side of (2.3) is finite. Hence, to ensure risk finiteness, we
assume %k > 4.

2
X — %”2)

2.3. The following result and the results of Section 3 require the real-
valued function y to be twice weakly differentiable (cf. [23]) in order to
include basic examples, which are not twice differentiable. Recall that, for a
given multiindex «a [i.e., @ = (o ... @,) is an n-tuple of nonnegative integers],
a locally integrable function y is a-weakly differentiable if there exists a
locally integrable function 6 such that

[e(=)8(x) dx = (=1)*'[ ¥(x)D%(x) d
E E

for every infinitely differentiable function ¢ with compact support, where
la| = ©7_, @, is the length of @ and D® = D1 -+ D& = gl®l/gxfr -+ dagr is
the higher order derivative operator. Then 8 is referred to as the ath weak
derivative of y and is denoted by 8§ = D%. When the ath weak derivative
exists for every multiindex o such that |a| = 2, y is said to be twice weakly
differentiable and the Laplacian of y is the differential operator given by

2.4. We can now state the following theorem.

THEOREM 2.1. Assume that k > 4, the distribution P, has a finite fourth
moment and the function vy is twice weakly differentaible on ® and satisfies
(2.2). A sufficient condition under which the estimator A given in (2.1)
dominates the unbiased estimator A, is that vy satisfies the differential in-
equality

24+ 2 Ay<0
<
VT G —k+a)(n-Fk+6)
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ProoF. Since P, is spherically symmetric around 6, it suffices to obtain
the result working conditionally on the radius. Referring to the notations
given in Section 1, for R > 0 fixed, we can compute using the uniform
distribution Uy , on the sphere Sy, ,. Hence we have

2 2
Er,o[(2 oo = 012)] = B, o[ (R — llgo = 01F)’] + Er o[1X = g0ly? 6]
~2Eg 4[(Ao — llpo = 617)IX — qll'y © o).

Developing the cross-product term and using the form of A,, we have

B o[ (Ao = llgo — 612)I1X = @yl o 0]
(2.4) 5 6 2 4
= By [1X ~ 00l 2 0] — Eg, o[l — 071X — @oll'y = o]

Using Lemma A.1 in the Appendix with g = 4, the second integral of the
right-hand side becomes

Eg.s[lleo — 0121 — ooll'y © o]

k 6
= mER,o[”X — @oll™y e %]
1

Tkt (n—Fk+ 6)ER,0[”X_ eoll® Ay o gp].

Replacing this expression in the cross-product term and combining the terms
with || X — ¢0||6, we get

Ero[(2 = lleo — 0IP)’]
- ER’G[()‘O Moo — 9”2)2] + Ep, o[ IX = lI*y? e ¢o]
(2.5) 8k
(n—-k)(n—Fk+4)
2
T kT H(n-k+6)

Eg of[IIX = ¢,ll% < o]

Eg,o[IX = @,l° Ay o 0]

Since, on the right-hand side, the second term is negative (as y is positive)
and we have the same power 8 for the term || X — ¢,ll in the two last
integrals, it is clear that R(A, 6, ¢,) < R(A, 6, ¢,) provided that

24+ 2 A
Y T (n—k+4)(n—F+6)

v=<0. O
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REMARK. 2.1. The proof of Theorem 2.1 and Lemma A.1 show that the
power g = 4 chosen for the “residual term” || X — ¢,l| in the expression of A is
the only possible one. Indeed for any arbitrary q we would obtain || X — ¢0||2q
before y2 and || X — ¢,l|?** before Ay and the comparison of these two terms
is possible only if 29 = q + 4, that is to say, only if g = 4.

EXAMPLE 2.1. As in [10], the example for which y(¢) = d /||¢||? for all ¢ # 0
with d > 0 works. More precisely it is easy to deduce that Ay(¢) = —2d(k —
4)/|l¢|* and thus the sufficient condition of the theorem is written as 0 < d <
4k —4)/(n — k + 4)(n — k + 6), which only occurs when % > 4. Straightfor-
ward calculus shows that the optimal value of d is given by 2(k — 4)/(n —
k + 4)(n — k + 6). The optimal constant in [10] is equal to 2(k — 4). The
extra terms in the denominator compensate for the || X — <p0||4 term in our
estimator.

2.5. Straightforward but tedious calculations show that the risk of A, is
constant (with respect to 6) and is proportional to the fourth centered
moment of the underlying distribution. Indeed, conditionally on the radius R,
the risk of A, at 6 equals

ER,G[(AO —lleg — 9||2)2]
2

k
(2.6) = WER,o[llX - ooll*]
2k

= — Er o[IX = 0ol’llgy — 01| + Eg o[llgy - 1I]

and repeated applications of Lemma A.1 (with different values of ¢ and
different functions y) reduce the right-hand side of (2.6) to a term propor-
tional to Ej, ,[IIX — ¢,lI*], and the use of Lemmas A.1 and A.3 leads to

3 e 2] _ 2k .
B o] (Ao = oo = 61) RO
Finally, unconditionally, the risk of A, at 6 equals
= 4

The calculation of the risk of the constant loss estimate A [cf. (1.2)] follows
the same way. Conditionally on the radius R, we have

ER,O[(X —llgo — o||2)2] =22 — 2%Eg o[llgy — 01%] + Eg 4[lleo — 61I*]
(2.7) k k(k+ 2
=22 - 2A—R%+ BMr+2) 4.
: n n(n + 2)
Thus unconditionally, since A = (k/n)E[ R?],

k(k+2) .
s 2R |

k

R(%, 0, 9,) = ;)'(E[Rz])z.
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Combining the results above, the risk difference between A, and”7t equals, for
every 0,
A(8) =R(A,0,0) — R(A, 0, )

k2 n(n —k —2)

= | LB - s g PR

When n — 2 <k <n(thatis,k=n —1lork=n — 2), it is clear that A(9) >
0, so A is preferable to A,. In the other case, when 1 <k < n — 2, the fact
that A(6) is positive or negative depends on the distributions of the radius.
Thus A() is nonpositive (and A, is better than A) if

E[ R*] (n—Fk)(n+2)

(E[RZ])Z = (n -k - 2)n

(2.8)

2.6. Examples of distributions. Assume the distribution P, is normal
with density ’

1 1 9
(_2'77_—)nexp(_ Ellx - 6l );
thus the density of the radius is equal to
91-n/2 R?
o7 )

It is easy to see that the second and fourth moments of the radius equal
E[R?] =n and E[R*]=n(n+2).

Therefore, condition (2.8) is not satisfied and A (= %) is better than A,.
Actually, a straightforward calculation of the risks of A and A, gives, respec-
tively, 2k and 2kn/(n — k), so A(9) = 2k2/(n — k) > 0.

With a multivariate Student distribution, the result differs according to
the degrees m of freedom. Indeed consider, for P,, the density

g(llx — 61%) = ;

m

r((m+n)/2) [ lx- 2] "2
T'(m/2)(wm)"?

hence, the density of the radius is equal to

Qg /2
I'(n/2)
2T ((m + n)/2) | R2]mtm/2

f(R) R""'g(R?)

- n—1
I'(m/2)T(n/2)m"/? T R
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After some tedious calculations we get
) nm
E[R?*] = —— (form >2) and
m— 2

n(n + 2)m?

E[R®] = (m — 4)(m — 2)

(for m > 4).

Then we have
E[R*] n+2m-—2

(E[R2])2 - n m-4

and, according to condition (2.8), A, is better than A if and only if 4 <m < n
— k + 2 (recall that £ < n — 2). The fact that the Student distribution be-
haves differently from the normal distribution is well known. Although it
gives a good approximation to the normal model, Zellner [22] has shown that
a t-distribution leaves, through the choice of m, more freedom to the experi-
menter (see also [17]).

We give now an example which is not a mixture of normal distributions.
Assume P, has the density g(|lx — 0/1?) with

[(n/2) sPex (—i)
(27)"?2PT(n/2 + p) P

g(s) = 3/

When p # 0, the function g is not completely monotonic [i.e., we do not have

(D™ d™g/ds™ > 0, for every m], so the distribution is not a normal mix-
ture (see [1]). The density of the radius is given by

Qmn/2 9l-(n/2+p) R?
B = Sy 8 = Tz +p)R"+2"_le"p(_7)'
A straightforward calculation gives
E[R?] =n+2p and E[R*]=(n+2p)(n+2+2p) ifn+2p>0.
Thus, if p > 0,
E[R*] n+2+2p n+2 n—-k n+2

= < <
(E[RZ])2 n+2p n n—-k—-2 n

and, according to (2.8), A is better than A,. When p < 0, the difference in risk
A(6) may be positive or negative.

Recall that this type of comparison only makes sense if we know the
distribution P,. This underlines the robustness that A, brings; it can be
considered even when we do not know P,. If P, were known and A were
preferred to A, it would be easy to show that there exist improved versions of
. However, our primary focus here is on the construction of estimators whose
domination properties are valid for the entire class of spherically symmetric
distributions.
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2.7. It is of interest to investigate the optimality of the unbiased estima-
tor in the class of estimators of the form A, = al| X — qoollz. As in the proof, it
is clear that it suffices to obtain the result in working conditionally on the
radius. Referring to the notations given in Section 1, for R > 0 fixed, we can
compute using the uniform distribution Uy , on the sphere Sz ,. Hence by
applying Lemma A.1 and some tedious algebra, we have the risk of A, equals

k E(k +2)
n—k+t2 (n-k)n-k+2

X Eg o[ 1X — o,l*].

Since this is a quadratic and convex function in «, the minimum occurs at
a* =k/(n — k + 2). This shows that the unbiased estimator is not optimal
in this class. This extra factor of 2 in the denominator is reminiscent of the
minimum risk equivalent estimation (MRE) of the variance in the normal
case. However, the MRE variance estimate is not optimal since Stein [19]
proves that it is improved, using the information in the sample mean in
addition to that in the sample variance.
Now consider the more general shrinkage estimator

ER,‘,[(AD, = lleog — 0||2)2] = [az - 2a

A = allX = ol = 1X = @qli*y o @,

An easy modification of the proof of Theorem 2.1, by replacing £/(n — k) in
(2.4) by a, leads to the calculation of the risk of A{. In this case, the second
term on the right-hand side of (2.5) is equal to —2(a — k/(n — & + 4)) and
may still be omitted, as in the proof, if « is chosen so that k/(n — &k + 4) < a.
Note that the optimal a* satisfies this inequality. Thus, for this value of «
and under the conditions of Theorem 2.1, the estimator A} dominates A,.

3. Estimation of a loss of a shrinkage estimator. In this section, we
consider the estimation of the loss of a class of shrinkage estimators. The
class of location estimators we consider is

=0 — 11X = ¢ol’g ° @y,
where g is a weakly differentiable function from O into @. In [6] it is shown
that, if || g||2 < 2divg/(n — k + 2), ¢ dominates ¢,, under quadratic loss for
all spherically symmetric distributions with a finite second moment. This
class of point estimators is reminiscent of the Stein-like estimators (cf. [3]);
however it does not contain them.
A general example of a member of this class of estimators is with

A(%)
b(‘Po) ’

where r is a positive differentiable and nondecrasing function, A is a
symmetric endomorphism whose eigenvalues are positive and b is a positive
definite quadratic form on ®. When r is equal to some constant a, A is the

g(¢o) = r(lleol?)
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identity on ® and the quadratic form b is the usual norm, g reduces to
a/llg,ll. It can be shown that the optimal choice of a equals (2 — 2)/(n — &
+ 2). Hence a simple member of the class is

IX — @ol® o
n—k+2|gl*

o=@~ (k—2)
This is in contrast to the usual James—Stein estimator

Po
Ps = Yo — (k - 2) 2
ll ol

in the normal case with known variance. However, ¢, is the James—Stein
form used when the variance is unknown.

The difference between the two estimators is the term || X — <pO||2 /(n—k
+ 2). An application of Lemma A.3 yields that, in expectation, this term
equals (n — k)E(R?)/n. Therefore, the amount of shrinkage depends on the
second moment of the radial distribution. In the normal case, this term
equals (n — k)/(n — k + 2) in expectation; therefore, ¢, and ¢, differ slightly
in expectation. Some tedious calculation reveals that, in the normal case
(when the variance is known), ¢, has slightly smaller risk than ¢,. However,
that comparison is for the sampling distribution fixed to be normal. The main
attraction of the new estimators is that they are robust, that is, they
dominate ¢, for all spherically symmetric distributions with finite second
moment. This is important since one usually makes certain distributional
assumptions without full knowledge of the true distribution. When using the
robust estimators one needs only assume that the sampling distribution is a
member of the large class of spherically symmetric distributions with finite
second moment. This loss of efficiency-robustness trade-off is reminiscent of
the classical theory of robustness a la Huber [9]. Huber’s theory basically
constructs likelihood estimators over a class of distributions. The estimate for
the class is chosen by finding the distribution in the class which has maximal
inverse Fisher information and then selecting a minimax estimator. For a
fixed distribution of the class, Huber’s minimax estimate can be dominated;
however, the minimax estimate has desirable properties when the fixed
distribution has been misspecified.

In Proposition 2.3.1 of Section 2.3 of [6] it is shown that an unbiased
estimator of the loss of the shrinkage estimator ¢ is given by

AS=LIIX— I+ {llg o gl — div g ° ¢ |1 X — @oll*
0T L% @oll” + g ° e VE°g Poll -

n—k+2

As in the previous section, we prove that the unbiased estimator of the loss
‘can be improved by a shrinkage estimator of the loss. Thus the competing
estimator we consider is

(3.1) A =X = 1X — golly e @,

where v is a positive function. Note that (3.1) is a true shrinkage estimator,
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while Johnstone’s [10] optimal loss estimate for the normal case is an
expanding estimator. This is not contradictory since we are using a different
estimator than Johnstone and he is only dealing with the normal case. The
remarks about the risk finiteness preceding Theorem 2.1 are also valid for
this new loss estimator.

The main result of this section is Theorem 3.1. It is easy to see that for
g = 0 its statement reduces to Theorem 2.1. For clarity of exposition we
prefer to give two separate results.

THEOREM 3.1. Assume that k > 4, the distribution P, has a finite fourth
moment and the function vy is twice weakly differentiable on ® and satisfies
(2.2). A sufficient condition under which the estimator A° given in (3.1)
dominates the unbiased estimator Xj is that vy satisfies the differential in-
equality

4

2
+——
n—k+2

4
Y ydivg - —————div(vg)

2
+ <
ks n-k+e =0

ProOF. As in the proof of Theorem 2.1, we work conditionally on the
radius R. Hence, we can write

Eno| (2 = lle - 01)’]
(3.2) = ER,o[(/\S —llg — 0”2)2] + Ep o[I1X — ¢ll®? o o
— 2B ,[IX — goll'y o 0o( X5 — lle — 617)].
It is clear, using Lemma A.1 as in the previous theorem, that

Epo[IIX — ¢ I*y = @ll ey — 611%]
k

— 6
= mER,B[“X — @oll’ © o]
1

(n—k+4)(n—Fk+6)

ER,o[“X - ‘POHSA'Y ° %]

.and, using Lemma A.2, that
2Eq o[I1X — 0ol*Coo = 0,7 052 ° 00)]

2
- n—=%k+ 6ER,0[”X_ (Po||8 diV('Y°(Po‘g°§00)].
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Thus it follows that (3.2) equals
2
Ep,o| (% — llo = 012)’] + Er o[IX = @oll®y? < o]

8k
(n-k)(n—k+4)

Eg o[I1X = ol © o
4
+ ER’Q[“X —_ ¢0lls{my o ‘PO dlvg o (PO

4
Sl

2

e el

Since the function 7y is positive, the third term on the right-hand side is
negative. The same term || X — gooll8 occurs in the other expressions; hence, it
is clear it is sufficient that

4
n—k+2

v? + div(yec g)

4
divg - ———
yave n—-k+6

2
A
ks )(n—k+e =0

in order that the inequality R(A%, 6, ¢) < R(A, 6, ¢) holds. O

REMARK 3.1. We can give the same comment we do in the remark
following Theorem 2.1. The power g occurring for the residual term || X — ¢l
is necessarily q = 4.

ExampLE 3.1. Let us consider the usual shrinkage estimator ¢ of # with
the shrinkage factor g defined by g(¢) = ct/|l¢t||>, where ¢ is a positive
constant, and the shrinkage loss estimator used in the previous example with
the shrinkage function y defined by y(¢) = d/||¢||®, where d is a positive
constant. For every ¢ € O, it is easy to check that

divg(t) = c(k — 2)/ltl?,
Vy(t) = —2dt/lItl%,
Ay(t) = —2d(k — 4)/Ilt|I*
and
div(y-g)(t) = v(t)divg(t) +{Vy(¢),&(¢))
=cd(k — 4) /llzll*.
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Hence the sufficient condition of Theorem 3.1 becomes (simplifying by ||¢[|*)

4
d* + ————cd(k — 2) —

n—k+2 cd(k —4)

(n -k +6)
2
(n—-k+4)(n—F+6)
The optimal d can be determined as in Example 2.1; it is given by
2(k — 4) k-2 k-4
Tk idn-kt6) \nrrz n kv
It is clear that the optimal shrinkage factor of the loss estimator depends
on the shrinkage factor of the point estimate. We found that with the optimal

¢, that is, ¢ = (¢ — 2)/(n — k + 2), the optimal d is still positive for reason-
able values of n and k.

2d(k — 4) < 0.

*

4. Concluding remarks.

4.1. About the correction y given by the improved estimator. In the
normal case, the correction to the unbiased estimator of loss is downward
(that is, the corresponding function y is positive) when the loss of the least
squares estimator is considered and upward (y is negative) when the loss of a
shrinkage estimator is estimated. Here, in the spherical case, we always need
v to be positive. A finer analysis of Johnstone’s proof indicates that, when
using the classical James—Stein point estimate, in the normal case, dominat-
ing loss estimators may be constructed with both positive and negative
shrinkage factors. It turns out that the optimal factor, for his special case, is
positive.

We think that the sign of the correction in the spherical case is due to the
fact that we correct A, instead of A. Actually, the possible correction of A for
the least squares estimator seems difficult to obtain (except for the normal
case) and is less interesting since, as previously noted, it means a lack of
robustness. Indeed conditionally on the radius R, the risk of A is equal to

En o] (A~ llgo = 01°)] = En o[ (R lleo = 612)"] + B o[I1X — euliy? ]

= 2By [ (X~ llg = 01*)IX = @oll*y o o]

Using Lemma A.1 as in the proof of Theorem 2.1, we get that the risk
difference between A and A is

~23Ep o[I1X = goll'y o @o] + ————Fp o[IX ~ ¢lI% * o]
+ Eg o[ IIX = @yl o ¢,
2

" (n—k+4)(n—k+86) Ep,o[IX = @0l Ay < o]
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The difference with the expression of the risk difference between A, — | X —

@oll%y o o, and ), comes from the fact that, here, we get one term in
I1X — %“ and one term in || X — ¢,|I® when, in the previous case, we got one
termin || X — %ll In the proof of Theorem 2.1 we needed to assume that v is
positive so that the nonhomogenous term in (2.5) could be deleted. It is
important to notice that, in the normal case, the sum of these two terms
vanishes. Hence we do not need to assume v is positive. We can show that the
corresponding risk difference, in the normal case, equals

(n—k+6)(n—k+4)(n—k+2)(n—k)E[y?e ¢
+2(n—k+2)(n—k)E,[Acqg,].

This is the general linear model analog of Johnstone’s formula. Here the
calculations were possible because we used the independence between || X —
®oll and 1y © ¢,. For other distributions, an improvement on A seems difficult
to get. We expect that a similar rationale applies to the estimation of the loss
of shrinkage estimators. However, in this case the computations become
unwieldy.

4.2 Improvement using positive rules. A possible problem with the esti-
mators (2.1) and (3.1) is that they may be negative, which should not happen
since we are estimating a nonnegative quantity. A simple remedy to this
problem is to use the positive-part estimators. Indeed it is easy to see this
solution works for every location estimator ¢ of 6, for every nonnegative loss
function L(-,-) and for every loss estimator 8. More generally, if we define
the positive-part estimator §* as 8*= max{§, 0}, the loss difference between
6% and & is

(8- L(6, ¢(x)))* — (8" - L(9, ¢(x)))”
= (82 —28(x)L(9, ¢(x)))1[[850](x)§

hence it is always nonnegative. Therefore the risk difference is positive,
which implies that 6% dominates §. This type of result is in the same spirit of
the positive-part James-Stein estimator of location. Note that the proof of
this result does not depend on the underlying distribution, only on the form of
the risk function.

APPENDIX

"A.1. This Appendix yields two technical lemmas that are used repeatedly.
Before giving them in Section A.2, we state in this section some preliminary
results related to the uniform distribution on a sphere.

With the notations introduced in Section 1, recall the fact that although
Ui,y is a singular distribution, its image by the orthogonal projector ¢,:
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(E - 0O) has a density with respect to Lebesgue measure on ®, which is
equal to

cpt(R2 - it — 012)" "1y, (),
where
Cnk — [(n/2)R* "
B U T((n—k)/2)mt/?
and

By, = {te®/lt— ol <R).

The use of the density of the projection is a powerful tool when dealing
with expectations, with respect to Ug ,, of random variables which depend on
the observation only through the projectors ¢, and X — ¢,. It can be shown
that the second moment of the noncentral generalized F-distributed random
variable Ep ,[(I|X — @olI2/l@ol1>)?] (up to the degrees of freedom n — k and
k) is bounded from above by a constant independent of R as soon as k > 4.
Indeed, using the radial density of the image distribution ¢y(Uy ,), we have

2
X — §00||2)

Mp o=LpR g 2
Il @oll

(A1)
2T (n/2)R*™ "

CT((n- k)/2)7rk/2f

When 6 = 0, the equality E, [ll- 7] = r~* leads to the fact that mp , is

proportional to the beta function B((k — 4)/2,(n —k + 4)/2) and finally
equals

R - —
rk_l(Rz_r2)(rL k)/2+1Er,0[“‘“ 4] dr.
0

3 (n—Fk)(n -k +2)
TROT TR o) (k- 4)

which requires k& > 4 and proves that my, , is independent of R.
When 6 # 0, we have

E, [ll-17] = [

———— U, y(du/m =v) m(U,,4)(dv),
o Jo (lll? + llol?)*

where (0) is the one-dimensional linear subspace spanned by 6, (6)* is its
(k — 1)-dimensional orthogonal subspace, m, is the orthogonal projector onto
“(0) and U, 4(-/m = v) is the conditional probability of U, , given m = v.
Because

® 6

v

. = =U
U o(/m=0) =U s

(where 8, is the Dirac measure at v), the expression of the density of
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m(Ug, o) yields

F(k/2)r2_k (r2 _ ”U _ 0“2)(12—1)/2—1

T((k=1)/2)7" " Ja,, (72 — v — 6II% + oIy
T'(k/2)r2* 2
SF«k-n/mwhaﬁﬁwvz—Hv—en)

dv

E,  [I-1M*] =

(k-4)-11/2-1
/ dv.

Noticing that the integrand of the last integral is (up to a multiplicative
constant) the density of the orthogonal projector from a (k — 4)-dimensional
space onto the one-dimensional space {6 Y, it is clear, after simplification, that

E-2)(k—4) _,
kE-3)(k-5)

(A2) EMMM”]sg

which is valid for & > 5.
Therefore, following the same arguments used in the calculation of mp, ,,
(A.1) and (A.2) show that

(n—k)(n—k+2)
MROT T (R —8)(k—5)

as soon as B > 5.

The case k = 5 is somewhat particular and we need to compute the exact
expression of mp , in (A.1). Although this calculation is tedious, it can be
done. It rests on the fact that the moment E, Il [7*]1=r"* can be ex-
pressed in term of a hypergeometric function and behaves as an r-* term.
Hence the previous conclusion holds for 2 = 5. Therefore, (2.3) is finite for
k>4

A.2. The proof of the two lemmas below repeatedly uses the divergence
theorem. Recall it is valid in the context of weak differentiability of a
vector-valued function & = (8,,"-, 8,) from E into E (i.e., §; is weakly differ-
entiable for every i); see [21] for a full account.

Following the notations introduced in Section 2.3, we denote by divé =
D;8, = X'_, 35,/ 9x; the divergence of §.

i=

LEMMA A.1. For every twice weakly differentiable function y(® - R,)
and for every integer q,

Er.o[IX = @oll%lleg — 011% ° @]
k
_ _ +2 o
= g Bro[IX — @l %]
1

T kt(n-k+q+2)

B o[IX — @oll”"* Ay o g
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Proor. We have
Ep o[IIX = ¢5ll%lloo — 0117y © o]

=gt [ (R =it = 617)"lie — 0%y (£)(R? ~ e — 01)

R, 6

(n—-k)/2-1
mRL 0

(n—k+q)/2-1

R (B == o) (t = 0),7(£)(t - 6) )dt

Now we can notice that, for every ¢ € 0O,

n— )/2-
(R2 — It — ol®)" "2 (¢ - 0) = VF(2)
with
f t o (R2 _ “t _ 0”2)(n—k+q)/2
(1) = n—k+gq

Since, for every ¢t € 0,
(VF(E), y(£)(t — 0) = div( F(£)¥(2)(t — 8)) — F(E)iv(¥(E)(¢ - ),
- then
Ep o[ I1X = @ol?ligo — 611% o o]

Cr* o\(n—k+q)/2

= f d1v('y(t)(t — 0))(R* — it - 6l*) dt

n—k+gq
+ cg’ka div( £(£)y(t)(¢ — 0)) dt.

Now the last integral is null since, by the divergence theorem,

. -0
J,, vy - 0yde= [ <f(t)v(t)(t 0), ”t 9”>aR,e(dt),

where o3 , is the area measure on Sy ,, the nullity coming from the fact that
the function f is equal to zero on Sy ,. Therefore, upon applying, as above,
the expression of the divergence of a product, namely, for every ¢ € O,

div(y(¢)(t — 0)) = ky(t) +{Vy(¢),t - &,

we obtain
Ep 4[IX = @oll%ley — 61% © o]
ECR* (n—k+q)/2
- _ ¢ 2 _ ||t — 9|2 t
n_k+qf V(R =l = 01" a
(n—k+q)/2
v — 2 _ 0 dt.
P A ORCEDIC R
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The last integral can be treated as in the beginning of the proof. Indeed if, for
every ¢t € 0, we denote by

(R2 _ ||t _ 0||2)(n_k+q)/2+1
F(t) = - )
n—k+qg+2
then
VF(t) = (R? — It — o) "%t - 0)
and we have
(n—k+q)/2

/}‘B (Vy(t),¢ — 0)(R? — It — 61I%) dt = [B (Vy(t),VF(t))dt.

Now using again the expression of the divergence of a product and noticing
that, for every ¢t € 0, div(VyX¢) = Ay(¢), we obtain

j;g (Vy(t),VF(t))dt=fB div(F-Vy)(t)dt—fB F(t) Ay(¢) dt.

As before, by the divergence theorem,

LR’odiv(F-Vy)(t)dt=fSR’ <F(t)Vy(t) T Z” >UR,9(dt) =0

since, for everyt € S ,, F(t) =
Finally we get

Eg o[I1X = @oll%lley — 011 © o

kCﬁ'k (n—k+q)/2

kg ls, YOE N0

dt
n—k+gq

C{;k
(n—k+q)(n—k+q+2)

(n—-k+q)/2+1

j Ay(t)(Rz—IIt o1%) dt,

which is the desired result. O

LEmMMA A.2. For every twice weakly differentible function h(® — 0) and
for every integer q,

ER,O[“X_ @oll?Cpo — 0, R e ¢o>] = qER,o[”‘X— <Po||q+2 divhe <Po]'

—k+
Proor. We have
Eg o[IIX — @oll%Cpo — 6,0 ¢y)]

= ﬁ"kaR,o«Rz —lit - 01%)

(n—-k+q)/2-1

(t = 0),h(t) )dt
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As in Lemma A.1, taking, for every ¢t € O,

oy = - Bl o)
n—Fk+gq ’
we obtain
ER,O[”X_ (P0||q<(P0 —0,ho ¢0>]
Cﬁ,k (n—k+q)/2

dt

=" i 2 _ s _ g2
n_k+quR,9dwh<t>(R It — 0117

+Cpt[ div(fh)(2) dt.
BR,O

For a reason given in the proof of Lemma A.1, the second integral on the
right-hand side is null, so

ER,O[”X_ ool ey — 0, h e (po)]
Cﬁ’k

s (n—k+q)/2
= div A(t R2 — ||t — 0] dt,
ey vl UL QTG LD
which is the desired result. O
LEMMA A.3. For every integer j = 1,
; I (n—k)/2+j—i
E X — o ||| = R% .
o[ 1X — @ol*] 0
Proor. We have
j (n—k)/2+4+j-1
Ep o[IX — o] = Cp* [ (B2 —lie — o1®)" " at
Bg,o
— C}'é’kf (R2 — 1t - ellg)((n+2j)—k)/2—1 dt
Bg,o

L Cg,k X (CE+2j,k)‘1
I'(n/2)R%™" T((n +2j—k)/2)mk/?
= T'((n —k)/2)m"/? X T((n +2))/2)R2 "%
o_L(n/2)  T((r—k)/2+))
T(n/2+))  T((n-k)/2)
J (n—k)/2+j—i

= R% ) 0
il=—[1 n/2+j—1i
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