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FINITE-SAMPLE CONFIDENCE ENVELOPES FOR
SHAPE-RESTRICTED DENSITIES'

By NicorLAs W. HENGARTNER AND PHILIP B. STARK

University of California, Berkeley

A conservative finite-sample simultaneous confidence envelope for a
density can be found by solving a finite set of finite-dimensional linear
programming problems if the density is known to be monotonic or to have
at most k& modes relative to a positive weight function. The dimension of
the problems is at most (n/log n)!/3, where n is the number of observa-
tions. The linear programs find densities attaining the largest and small-
est values at a point among cumulative distribution functions in a confi-
dence set defined using the assumed shape restriction and differences
between the empirical cumulative. distribution function evaluated at a
subset of the observed points. Bounds at any finite set of points can be
extrapolated conservatively using the shape restriction. The optima are
attained by densities piecewise proportional to the weight function with
discontinuities at a subset of the observations and at most five other
points. If the weight function is constant and the density satisfies a local
Lipschitz condition with exponent g, the width of the bounds converges to
zero at the optimal rate (log n/n)/@*29 outside every neighborhood of
the set of modes, if a “bandwidth” parameter is chosen correctly. The
integrated width of the bounds converges at the same rate on intervals
where the density satisfies a Lipschitz condition if the intervals are
strictly within the support of the density. The approach also gives algo-
rithms to compute confidence intervals for the support of monotonic
densities and for the mode of unimodal densities, lower confidence inter-
vals on the number of modes of a distribution and conservative tests of the
hypothesis of k-modality. We use the method to compute confidence
bounds for the probability density of aftershocks of the 1984 Morgan Hill,
CA, earthquake, assuming aftershock times are an inhomogeneous Pois-
son point process with decreasing intensity.

1. Introduction. Articles on density estimation abound, but most re-
sults on the uncertainty of density estimates are asymptotic and rely on
assumptions about the density that are difficult to establish or justify (e.g.,
I F@l|ly < C); for example, see [1, 7, 22, 24]. Without some regularity condi-
tion, any density estimate may suffer from unbounded bias. An assumption
we sometimes find compelling is that the density is monotone, possibly
relative to some strictly positive weight function. For example, it is usually
assumed that the probability of earthquake aftershocks decreases with time
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526 N. W. HENGARTNER AND P. B. STARK

after the “main event.” We apply the method presented here to that problem
in Section 6. Grenander [9] originated nonparametric density estimation with
monotonicity constraints; see also Birgé [2], Groeneboom [10], Prakasa Rao
[20] and Wang [28]. The uncertainty results in these papers are asymptotic,
except [2], which computes the nonasymptotic L; risk of the Grenander
estimate.

We show here that under the assumption of monotonicity or unimodality,
one can compute conservative finite-sample confidence regions for the entire
density by linear programming. The results extend to the less restrictive
assumption that the density has at most £ modes; see Section 7.2. One can
also compute a lower confidence bound for the number of modes of an
arbitrary distribution, a confidence interval for the support of a monotone
decreasing density, a confidence interval for the mode of a unimodal density
and test hypotheses of k2-modality and monotonicity. The procedure produces
a data-dependent confidence region—the width of the region (as a function of
x) depends nonlinearly on the observations. The technique is computationally
intensive, but manageable for large sets of data (millions). The rate of
convergence of the method is optimal if a “bandwidth” parameter is chosen
correctly.

Suppose {X}"; are iid F. We present a way to construct a 1 — a confi-
dence region for the density f of F' from the observations X; = x;,j = 1,...,n;
that is, a pair of random functions y (x), y*(x) such that

(1) Py (x),y"(x)] 2f(x),Vx R} =21 - a.
The coverage probability is conservative and simultaneous for all x.

Assumptions and conditions.
Al. w(x) is nonnegative.
A2. F has density f with respect to Lebesgue measure.

A3. The support of f is connected and contained in the interval [a, b],
—w < a < b <, a subset of the support of w.

In addition, either of the following restrictions holds:
U. f(x)/w(x) is unimodal with mode p € #=[u~, u"].

M. f(x)/w(x) is monotone with x in the support of f, which may be
known or unknown.

Without loss of generality we assume that x; <x, < -+ <x,.
2. A confidence region for F. The approach derives from the strict

bounds technique used in geophysical inverse theory (see, e.g., [25]), which is
similar to the neighborhood procedure of Donoho [8]. The key idea is to define
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a nonparametric confidence region for F in the set of distributions satisfying
the shape restriction M or U. We solve optimization problems to find the
largest and smallest value densities of distribution functions in the confi-
dence region attain at a fixed point. Our main result is that it is sufficient to
hunt among densities piecewise proportional to w with discontinuities at a
subset of the data and at most three additional points, reducing the computa-
tions to finite-dimensional linear programs.

One might expect that the Kolmogorov—Smirnov (K-S) distance would
provide a good confidence region for F'; indeed all the following problems can
be worked out for the K-S norm [12]. However, the rate of convergence using
the K-S distance is slower. This is related to current work by Z. Landsmann
and M. Rom (personal communication, 1993) on the (in)efficiency of the K-S
test against multimodal alternatives.

Instead, we base our confidence region on the distribution of differences
F(X ;) — F(X, for j and % in a subset of {1,...,n}. Let K =K(n) be an
integer less than n, and for fixed K define

(2) M'=|n/K|
and

(3) M=[n/K].
Define

- 1)K+ 1 i=1,...,M'

4 k — (l ’ ’ ’ ’

(4) : {n, i=MifM+M'.

If F is the true cumulative distribution function, the differences
A, =F(Xgp,) - F(Xa, )

I'(K,1) ) o

(5) M T(K,)+I(M-M +1,1)’° v=1,..., M,
i I'(n — KM',1)

i=M+M,

M T(K,1)+T(M-M' +1,1)’

where T'(,-) is the gamma distribution. Note that {A;} are not independent.
Let {c; ()}, and {c; (a)}, satisfy

(6) Pplci (@) <A, <ci(a),i=1,...,M}>1-aq,

and denote by ¢ the 2 M-vector (¢;)¥ ;,(c; ) ). We will usually take all the
¢; to be equal and all the ¢; to be equal, and denote their common values by
¢~ and c*. Approximate values of ¢~ and c¢* can be found by simulation
using (5) (see Section 6.2); the Appendix bounds the asymptotic behavior of
¢~ and c*.

‘Let 2 be the set of cumulative distribution functions of probability mea-
sures on R and let @ be the set of cumulative distribution functions of
subprobability measures on R. Define

()  9=9,=[Gea@: ¢ (a) <G(Xu,) —C(Xy, ) <ci(a))
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(2 stands for data). Then
(8) P{Z5F)>1-a.

Let w be nonnegative (assumption Al). Define .# =.#,, to be the set of
cumulative distribution functions of subprobabilities on R satisfying A2, A3
and M, with monotone decreasing densities; monotone increasing densities
can be handled by reflecting the x axis. Let %, = %, , be the set of cumula-
tive distribution functions of subprobabilities on R satisfying A2, A3 and U:
densities unimodal relative to w with mode u €.7, where #=[u ", u*lis a
known, possibly unbounded interval. Note that .# C %[, , ;.

Let 7 denote .# or #,. If we know a priori that F € 7, it follows that

(9) P {5N25F)>1-a.

Any inequality satisfied by the entire set # N2 holds for F' as well, with
probability at least 1 — a. In particular, for any fixed y € R, define

10 “(y)=  inf

(10) Y- (y) Geylggngg(y)

and

(11) v>(y) = sup g(v),
GeFNINP

where g is the density of G. Then

(12) P{[% (%), % (»)] 2f(y)VyeR} 21— a;

that is, [15(y), %3 (y)] is a conservative 1 — a confidence region for f(y).
Knowing that F' € & allows us to interpolate and extrapolate the confidence
intervals found at finitely many points y to obtain a confidence “envelope”
with simultaneous 1 — « coverage probability for all y € R (see Section 5).

3. Bounds from finite-dimensional problems. The infinite-dimen-
sional problems (10) and (11) can be reduced to finite-dimensional optimiza-
tion problems. Given z; < z, < -+ <z, m > 2, with u € {z,}, define

%, =(Geg:g(x) =w(x)
X 1 x) + max 1 (x
(13) [ T Ao mex B

U zjpa<u}
+ > le(zj,zj+1)(x) + X le[zj,zj+1)(x))},
(jllzj,2j+1]9lb} {: zj>p.}

where g is the density of G (cumulative distribution functions of subprobabil-
ity measures G with densities g piecewise proportional to w, left-continuous
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to the left of u and right-continuous to the right of w). Similarly, define

= {GE@’g(x)=w(x) Z le[zj,zj+1)(x)+00-1#(x)
y U zje1spl

(14)
+ Z le(zj»2j+1](x))}

(U z;>u}

(cumulative distribution functions of subprobabilities G with densities g
right-continuous to the left of w and left-continuous to the right of w).

Assume that {x;}"_; contains n distinct elements (with probability 1, it
will; this assumptlon can be relaxed at the expense of some bookkeeping). Let
z; be the jth smallest element of the set {a, ™ 05y, X Xg s eees Xy b}.
Let N denote the number of distinct elements in the set {2} (M < ‘N <M + 5).
Our basic observation is that if we define the constants { B } in definitions (13)
and (14) to be w-weighted averages of a unimodal dens1ty g over the
intervals (z;, z;, ,), the resulting densities are unimodal with the same mode,
have cumulative distribution functions that match G(x r) — G(x; ) (so they
agree with the data if G does) and bracket g(z,). We use the conventlon that
inf(+) = © and supy(-) = 0. When the mode is known (u~ = u*= w), we have
the following theorem:

THEOREM 3.1. Define

(15) ()= ot g(n),

and

(16) Y.(y)= sup  g(v).
GeE NUND

Then

(17) v2(¥) = % (¥)

and

(18) Yo (¥) < % ().

We defined %, so that the upper bound v, () is infinite if y = p. Since
the closure of the set of measures whose densities have mode u contains
measures with point masses at u, y%(u) = o if #, NP contains interior
points. If the mode is known to be attained at every point in the interval
[ #~, n*], nontrivial upper bounds at y € [ u~, u*] are possible; the defini-
tions of Z,* need to be modified.

When u is only known to lie in the interval .# (e.g., when f is monotonic
with unknown support, .# = [a, x,]), the situation is only slightly more
complicated. Since {xk} C {z} the data cannot distinguish between u €
[2,2;,,] and p € {z}, zj+1} Thus it suffices to consider p ez},
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THEOREM 3.2. We have that

19 ‘ > v, = min ¥
(19) Yo (¥) = Y7 (¥) ”Guﬁmjxl(y)
and

20 py < ¥ = max ¥ )
(20) Yo (¥) < V() Meuﬁmij(y)

Theorem 3.1 is an immediate consequence of the fact that for any G € %,
N2, we can construct G*€ * N %, N whose densities g * bracket g(y).
Given G € %, define

g dx

21 == j=1,.,N-1
ey B; rwds 1D N

It is easy to verify that the elements G"€ ,, and G" € %, with densities
g~ and g* defined by taking these coefficients in (13) and (14) are also in %,:
suppose z;, z;,1 < u. Then for any s € (z;, z;,1),

g*(s)  Jomgds w(s)

w(s) [Zrwdx w(s)

g(2j41) fzz,-j“”"dx

22 <
(22) w(2y0) Jorwds
_ g(zj+1)
w(zj+ 1) '
Similarly,
. + A
@) g*(s) _ &(z)

w(s) — w(z;)

If 2,2, 1 2 ,

g(zj) g%(s) S g(zj+1)

w(z;)  w(s)  w(z1) '

The unimodality of g* thus follows from that of g.
Now suppose that G € 2. By construction,

(25)  G(x,) — G(x, ) =G* (%) —G* (%), i=2,...,M.

(24)

4. The linear programs. Observing that G*e N g N if and
only if {8} satisfy a finite set of linear inequalities shows that the finite-
dimensional optimization problems are in fact linear programs. Define

(26) w = [wds.

2j
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For G € €,*,
(27) G(xki) - G(xk,-_l) = Z Bjw;.
(e 2, <zj<x,}

LEMMA 4.1. Suppose G has density g of the form in (13) or (14). G € @ if
and only if:

Bl B;>0,j=1,...,N— L

B2. XV ;B8 < 1.
G €9 if and only if B1 and B2 hold and:

B3. c; < E(J xk-_1<zj5xk4} ijj < CL:'—, i = 2,..., M.
G € %, if and only if Bl and B2 hold and:

B4. B; < B, forall j such that z;,; < p and B; > B;,, for all j such that

ZjZ[L.

B1 ensures that G is the distribution function of a positive measure; B2
ensures that G(») < 1; B4 ensures that g is unimodal with mode u. B1-B4
are linear inequalities on {Bj}. The proof of the lemma is trivial.

The value of the density of an element of &, at the point y = z; is

(28) g8(y) =Bi-w(y), y<u,
and
(29) g(y) =Bw(y), y>p

For elements of &, the definitions are reversed. Maximizing or minimizing
(28) or (29) subject to B1-B4 are N — 1-dimensional linear programs.

When y = pu, the upper bound is infinite if the program is feasible, and
there are two linear programs to solve for the lower bound—we take the
larger of min g;_,w(y) and min B;w(y) subject to B1-B4.

REMARK. If the linear programs are infeasible, the data are not consistent
with the hypothesis of unimodality with mode u at significance level a. The
confidence interval is then empty. The range of mode locations for which the
linear programs are feasible is a conservative confidence interval for the
mode of a unimodal distribution. This is similar to the approach of Bogomolov
[3], but produces shorter intervals. In contrast to methods for estimating the
mode using the number of points in intervals of a given length (or the length
of intervals containing a number of points) [4, 5, 27], the linear programming
method can reject the hypothesis of unimodality when it is severely violated,
and gives conservative coverage probability for finite r.

REMARK. If f(u) is known to be attained on the entire interval [ u~, u*]
we can find nontrivial upper and lower bounds by constraining g8; = 8;,, VJj
such that u”<z; and z;,, < u". This decreases the dimension of the linear
programs.



532 N. W. HENGARTNER AND P. B. STARK

5. From confidence intervals to confidence envelopes. For any fixed
set {y;}, we can find conservative 1 — a confidence intervals for f( y;) by
solving linear programs. Since the extremal densities are piecewise propor-
tional to w(y) between the selected order statistics, it makes sense to
compute the bounds at the subset of the order statistics {X,, L1, where k|
and M are defined in (4) and (3). Each (feasible) linear program produces a
cumulative distribution function Gy € F NG, so the confidence level for the
intervals at {y;}is 1 — « szmultaneously The constraint F €. allows us to
interpolate and extrapolate bounds at { yJ}M 1 to get a conservative confidence
envelope for f(y) Vy € R, as described in the following sections.

5.1. Known mode. If G € %, N, then

- w(Ym)
(30) Yo (Ym) <8(¥m) < w(y) g(y),
for y e[y, nlif y,, < porfor y €[ pu,y,lif y, > u. Similarly
(31) Y (Ym) = 8(¥m) = w((;’)) (%),

for y € [a,y,]if y,, < p or for y € [y,,, b] if y,, > u. This yields upper and
lower confidence curves for f(y) when u = ut= u:

max w(y) ——%(¥n)> y <
m: ym<y<p) W(Yp) Y R Im =
(32) l(y) = w(y)
> U,
m: 32y =p W(Yp) w(y,) e (Im)> yoH
and
. y) .
min Va (Im)s y<u,
{m: y<y,<u} w(ym)
(33) u(y) = w(y)
min ~+ m > W,
{m: y>y,>u} w(ym) (y ): ok
and Pp{ll(y), u, (9] > f(y),Vy} 21— a.
5.2. Unknown mode. Define
(34) E=inflpe[p,n*]: %, no + 2}
and
(35) g=sup{pel[p ,u']:7% no +32}

The upper confidence bound on f(y) is infinite for all y €[¢, £7]. All
densities of cumulative distribution functions G €2 N %, are monotone
increasing relative to w left of £~ and monotone decreasing relative to w
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right of ¢*. Thus the interpolation scheme in the previous section works
outside [ ¢, £

Y7 (Ym) _
w(y) max ——, y<¢,
m: yp<y<éy W(Yn)
¥ (v
w(y) max > () > &F,

(38)  1,(y)= (m: yn2y2£%) w(y:n) ’ )
7.;(ym) 7;(ym+1)
mi , ,
m: 9> Yms11®9) | W(Vm)  W(Im+1)
y € [ym7 ym+1] N [g_, §+]7

w(y)

and
. w(y) _,
min , < ¢,
{m:y<y,<¢} w(.’)’m) yj(y'n) Y
(37) uy(y) = w(y)
min Y5 (Ym)s y> £,
(m: y2y,> £ W(Yy) > (Im)
%, yel[&,¢],

and we have
(38) Pp{ll-(9), us(9)] 2f(9),Vy} 21— a.
6. Earthquake aftershocks.

6.1. Inhomogeneous Poisson process models for aftershocks. It is gener-
ally believed that immediately following a large earthquake, the chance of
aftershocks is largest, decreasing as time goes by (at least for a while until
stresses build up again). The number of aftershocks by time #, S(#), is often
modeled as an inhomogeneous Poisson point process with intensity A(%).
[However, see Ogata [18].] Omori’s law [19] and its modification (e.g., [26]
are parametric Poisson intensity functions often fitted to aftershock se-
quences. In the modified Omori law, the intensity is

const

(39) )\(t) = m

Davis and Frohlich [6] verified that the modified Omori law with g = 0.87
provides a probabilistically adequate fit to many small aftershock sequences;
other investigators have generally (though not invariably) found ¢ > 1 for
large earthquakes with many aftershocks (e.g., [26]). A number of theoretical
studies using different physical models of earthquakes predict a modified
Omori law with g > 1 for some ranges of time [26, 17, 13, 29]. Kagan and
Knopoff [13] argue that a modified Omori law should hold initially, followed
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by a transition to an exponentially decaying intensity function. Given the
pervasive use of Omori’s law to model aftershock sequences, it has become a
touchstone for theoretical physical models, so the agreement of theory and
observation is more suggestive than conclusive (see, e.g., [15]).

Assuming a particular parametric form for the intensity of aftershocks is
extremely restrictive. Furthermore, researchers are wont to draw conclusions
about physical differences between events using uncertainty estimates for the
parameters in the modified Omori law and to project earthquake hazard after
main shocks using the law (see, e.g., [6, 21]). The uncertainty estimates are
suspect, since they are conditional on the truth of the parametric model.
Estimates of g are also sensitive to the time after the main shock at which
the aftershock observations begin (C. Frohlich, personal communication,
1992).

Suppose aftershock times { X} are an inhomogeneous Poisson point process
with monotone decreasing intensity A(¢) and define

A(t)
(40) f(t)=m, 0<t<T,
where
(41) A(T) stTA(t) dt.

Then f(¢) is the conditional density of the (iid) times {X,}!".; given S(T) = n.
The density f(¢) is just the intensity A(¢#) normalized to unit area over the
observation interval, so monotonicity of A(¢) implies that f(#) is monotonic
too. In the next section, we find confidence bounds for f(¢), ¢ € (0,T],
assuming that A is monotonic.

6.2. Data and results. Robert Uhrhammer (personal communication,
1992) provided us with USGS-identified aftershocks of the 21:15:18 24 April
1984 magnitude 5.9 Morgan Hill, California, event, located near 37°18.58'N
latitude, 121°40.60'W longitude, for 24 April through 31 December 1984.
Typically, earthquakes are identified by seismologists as aftershocks of a
“main shock” if they are smaller and later than the main shock and are
sufficiently close to the main shock in space and time. The smallest events
reliably detected by the seismographic network are magnitude 2.0 (R.
Uhrhammer, personal communication, 1992). The data we used include all
events of magnitude 2.0 and larger located between 37.0 and 37.5°N latitude
and between 121.5 and 121.83°W longitude. There were 766 such events.

To apply the method, we need to select a “bandwidth” K. The optimal

“value of K depends on the number of data n, as well as unknown properties
of f (such as its smoothness and, indeed, its value at y; see Appendix).
However, the simultaneous coverage probability of the bounds is conserva-
tive, regardless of how K is chosen or the true smoothness of f. To illustrate
the method, we plot confidence bounds for two choices of K (10 and 50) and
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for the linear programming method based on the Kolmogorov—Smirnov dis-
tance of the empirical cumulative distribution function from the true [12].

To approximate conservative critical values to use for ¢* and c¢~, we
simulated 766 /K independent gamma random variables with parameter K.
We calculated the maximum M and minimum W of

(42) U %
J 2;7261/1( Xj *

We simulated sets of 766 /K gamma random variables 5000 times to obtain
empirical distribution functions for M and W. Critical values ¢~ and c¢* of
these “Monte Carlo” distribution functions are given in Table 1.

Using these critical values we can obtain conservative, joint one-sided
confidence intervals for M and W:

(43) PM<c"NnWx>c }>1-P{M<c*} -P{(W>c}.

Thus the K = 10 97.5% critical values ¢ ™= 3.34 X 10 % and ¢*=81.2 X 1073
give us conservative 95% joint confidence intervals for M and W. Using these
critical values, we solved the linear programming problems to find confidence
bounds on the probability density of aftershocks. Figure 1 shows the resulting
95% confidence bounds and the maximum likelihood estimate of the modified
Omori density, which had § = 0.554 and é = 0.0018. (If this value of g held
for all time, the expected number of aftershocks would be infinite.) The Omori
density estimate is the solid curve, the K = 10 confidence bounds are the
long-dashed curves and the K = 50 confidence bounds are the short-dashed
curves. The dotted curves are a different set of nonparametric 95% confidence
bounds also found using linear programming [12], but using a confidence set
based on the Kolmogorov—Smirnov distance between the empirical and true
cumulative distribution functions, calibrated using the result of Massart [16].
The rate of convergence of the second method is suboptimal and the bounds

TABLE 1
Critical values differences of 77 uniform order statistics (K = 10) and 16 uniform order statistics
(K = 50), found from 5000 simulations

K 1-a* 103¢ 10%¢c ¥
10 0.95 3.66 . 29.9
0.975 3.34 31.2
0.995 2.72 34.7
50 0.95 36.7 88.0
0.975 40.2 90.4
0.995 41.7 96.3
*Coverage probability.

"Lower confidence bound for min; _ 166,51 (F X x(i+ 1) — F(X k)
*Upper confidence bound for max <66,k (FX k(v 1) — F( X))
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Morgan Hill Density Bounds; MLE Omori's Law

100 L
E Morgan Hill Aftershocks
100 L ! April 24, 1984—December 31, 1984
> [ 766 events with magnitude 2 2.0
%1077
Q C
Q F
D [
Ry
3 710-2
3I0°E
] =
S -
10-8 .
MLE Omori T
P R K-S bounds :
10%E _ _ _ _K=10
..... K=50
- 1 1 1 1 i
0 50 100 150 200 250
Time (days)

Fic. 1. 95% confidence bounds on the probability density function of aftershocks of the 24 April
1984 Morgan Hill event based on 766 aftershocks with magnitudes at least 2, identified by the
U.S. Geological Survey between 24 April and 31 December 1984. The long-dashed curves are
simultaneous 95% confidence bounds derived by the linear programming method introduced in
this paper, using a bandwidth K = 10. The short-dashed curves are simultaneous 95% confidence
bounds with K = 50. The solid curve is the pdf implied by the MLE-modified Omori law, which
had G = 0.554, ¢ = 0.0018. The dotted curves are 95% confidence bounds derived by a differ-
ent conservative, finite-sample technique also based on linear programming, using the Kol-
mogorov—Smirnov distance instead of differences of order statistics to define the confidence region
for the cumulative distribution function F.

are more expensive to compute: the dimension of the linear programs is about
n, rather than n'/3 (see [12]). On the other hand, the method that uses the
Kolmogorov—Smirnov distance is adaptive (one need not specify a bandwidth
K) and can have faster convergence than the present method if the assumed
smoothness of f is erroneous. Furthermore, for finite samples, it is not
possible to predict which method will have narrower bounds. See also Section
7.3.

Computing these bounds took roughly 1 cpu minute for the K = 10 bounds
and a few seconds for the K = 50 bounds using Numerical Algorithms Group
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(NAG) routines to solve the linear programming problems on a Sun SparcSta-
tion 2.

7. Discussion.

7.1. Testing. With the linear programming formulation we can test the
hypothesis that {x }"_, are iid samples from a distribution F € #: Finding the
smallest ¢/ — ¢; for which the linear program is feasible is a linear program.
Simulations then allow one to compute a p-value. This approach is similar to
the “dip test” of Hartigan and Hartigan [11], but linear programming yields a
conservative, finite-sample test without appealing to asymptotics or specify-
ing a particular null distribution ((11] use the uniform).

7.2. Extension to k or fewer modes. The linear programming formulation
also gives a procedure to compute conservative, finite-sample lower confi-
dence intervals for the number of modes of a distribution. (Compare this with
the kernel approach to estimating the number of modes; see, e.g., Silverman
[23].) The approach is related to the “neighborhood procedure” analyzed by
Donoho [8] (he does not suggest an algorithm). Define the number of modes of
a distribution to be the number of local maxima (relative to w) of the density.
The fundamental observation justifying the linear programming approach is
that the density piecewise proportional to w obtained by averaging any
density on intervals (z;, 2;,1) (as in the proof of Theorem 1) cannot have
more modes than the original density, and the cumulative distribution func-
tion derived from the averaged density matches G(x, ) — G(x k,_)- That is,
suppose g is the density of some G €2 and that g has £ modes relative to
the weight function w. Then the cumulative distribution function G whose
density & is given by sums of the form in (14) and (13), with B; defined by
(21), has at most k& modes relative to w (by the mean value theorem) and, as
we have already shown, is in 2.

We may impose the restriction that the density of an element of &7 has
modes on the intervals (z;,2,,,);c ,» and antimodes on the intervals
(2j,2;,1)jc o~ by a suitable set of linear inequalities among the coefficients
{Bj}. We may then sequentially check whether there exists a density with
mode between z; and z,, between z, and z;, between z; and z, and so
forth, whose cumulative distribution function satisfies ¢; < G(x;) — G( x;_ )
<cf, i=1,..., M, using these inequalities and the constraints B1-B3.
Testing the consistency of the set of linear inequalities for each postulated
location of the mode is a linear programming feasibility problem. If none of
these problems is feasible, we then check whether the data are consistent
with modes on (2, z,) and (23, 2,) and an antimode on (z,, z;), with modes
on (zy, 2,) and (2, z;) with an antimode on either (z,, z3) or (23, z,) and so
forth. The smallest number of modes for which it is possible to construct a
density piecewise proportional to w and consistent with the data is a lower
1 — a confidence bound for the number of modes. (Any truly nonparametric
confidence interval for the number of modes must have an infinite upper
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endpoint [8].) To find the lower endpoint we must solve at most

LN/2]
N— 1 — oN-2 _
(44) ,El(zk—l) 2 1

linear programming feasibility problems. In practice, fewer problems will be
required, since for reasonable confidence levels, 2 will contain cumulative
distribution functions whose densities have far fewer than N /2 modes, even
if f has many more.

Similarly, the linear programming approach can be used to find simultane-
ous confidence bounds on a density assumed to have k or fewer modes by
imposing the shape restriction for a particular set of assumed locations for
the modes (as described in the previous paragraph) and solving linear pro-
grams to find the smallest and largest values the density can have at the
point y. By taking the largest linear programming upper bound and smallest
linear programming lower bound as the assumed mode locations range over

all (N + 1) possibilities, we can find a conservative confidence interval for

k
().

7.3. Rate of convergence. We wish to emphasize that the proposed tech-
nique does not require conditions on f other than F' € %; however, the rate at
which the distance between the upper and lower confidence bounds converges
does depend on smoothness, and details of the procedure can be tailored to
speed convergence if the degree of smoothness is known. On the other hand, if
f has k or fewer modes, [ is differentiable almost everywhere, which is
enough to guarantee L; convergence of the confidence bounds on “most”
bounded intervals except for some sets of arbitrarily small measure (Corollary
7.3). The point-by-point rate of convergence does not apply at discontinuities
and modes of the density, where the bounds do not converge to single points
(otherwise the coverage probability could not be conservative).

For f locally Lipschitz with exponent @, Khas’'minskii [14] gives a lower
bound of (log n/n)¢/1*2 for the minimax rate at which the uniform norm of
the error of any estimator of the density goes to zero. Our method attains this
rate (which is therefore optimal) if the “bandwidth” K grows with n in a way
that depends on p. For o =1 (K = const X n?3(log n)'/®), the rate is
(log n/n)Y/3, which is essentially the pointwise rate of the Grenander esti-
mate for the same Lipschitz condition (n~!/?), modified by a (log n)'/? term
needed for simultaneous coverage probability. The following theorems are all
for w = 1, but can be extended to general w.

THEOREM 7.1. Let y be an interior point of the support of f, but not a mode
.of f. Suppose that f is unimodal and that at y, f satisfies the local Lipschitz
condition

(45) 1f(x) = f(¥)l < Clx —yI°
for some constants C and @ > 0. Suppose K goes to infinity as n does, K < n,
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and that for some constant v > 0, K satisfies

log K 27% [log(n/K) )
(46) gnK) T 3V T K <7 %

Then

liminf Py{ly* (y) — v (¥)I
n— o

[log n K,\°
<2f(y)7 I +ZC/“9(y)(—;—)}>0.

Theorem 7.1 and the next two corollaries are proved in the Appendix.

(47)

COROLLARY 7.2. Let fand y be as in Theorem 7.1. Let the “bandwidth”

r \2/(+20)
K= ( ) 1+ 20)_1/(1+29)f2(1+g)/(1+29)(y)

(48) 2Co
% (nzg log n)l/(1+29)-
Then
liminf P{ly"(y) = v ()]
o/(1+2p)
(49) < ( 1f5_y2)9) (4Co(1 + )4 **?

log n 0/(1+20)
X (2 + 9‘1)( ) > 0.

n

For o = 1, this gives the rate (log n/n)"/3.
The integrated width of the bounds also converges at this rate:

COROLLARY 7.3. Suppose f is a density with at most k modes and let

K = const(n? log n)Y/3. Suppose that the interval T = [¢,d] (—» < ¢ <d < ®)
contains no mode of f, that

(50) P{Xj < c} >0
and
(51) P{Xj > d} > 0.

THen for any & > 0, there exists a set T, C T such that meas T\T, < ¢ and

1/p 173
(52) liﬂing{(le+(x)—7_(x)|pdx) SC(loin) }>°

for some constant C.
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The proof of Corollary 7.3 is basically an application of the following
lemma.

LemMA 7.4.  Iffis a monotone function of bounded variation on a bounded
interval T, then for any € > O there exists a finite C such that

(53) meas{x € T:|f(x) — f(y)| > Clx — y| for somey € T} < &.

Lemma 7.4 follows from an argument similar to the proof of Lebesgue’s
theorem that the measure of the set of discontinuities of a monotone function
is zero.

Conditions (50) and (51), together with the fact that K/n — 0, imply that

(54) lim inf P{[ X x), X, _g)] 2 [¢,d]} = 1,

which in turn implies that the pointwise rate argument of Corollary 7.2
ultimately applies throughout T' except on sets of arbitrarily small measure.
The optimality of the rate of convergence depends on selecting K opti-
mally, which in turn requires information about the smoothness of f. What if
one errs in the smoothness assumption? It is better to err conservatively by
assuming f is not necessarily very smooth than to be overly optimistic:

COROLLARY 7.5. Suppose K is chosen to be optimal for Lipschitz exponent

0, but in fact the Lipschitz exponent of f is o'. Then for some constants C, and
Cz Py

1iﬂio?fp{|v*(y) -7 (9)l

(55) log n 0/(1+20) log n 0'/(1+20)
< Cl( ) + 02( ) } > 0.

n n
That is, the rate of convergence is

( log n )min(g,g’)/(1+2g)

n

(56)

This follows algebraically from Theorem 7.1 and Corollary 7.2.

Recall that the coverage probability of the confidence bounds is conserva-
tive regardless of how smooth or rough f is and how K is chosen. Corollary
7.5 shows that if we assume only that f is monotone (almost everywhere
Lipschitz 1) but f is in fact smoother, the additional smoothness is not
reflected in the rate [it is still (log /n)'/3]. On the other hand, if we assume
‘that f is smoother than it really is, the rate of convergence will suffer still
more. It is less damaging to make the more conservative assumption that f is
not very smooth than to assume incorrectly that f is smoother than in fact it
is. Note that this is in contrast to the performance of the linear programming
approach that uses the Kolmogorov—Smirnov distance to form the confidence
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region [12]; there, the rate of convergence is always n@/@+20) regardless of
0, and one need not specify any “bandwidth” or other tuning parameter.

7.4. Probabilities versus subprobabilities. If [f*wdx < « and fxbn wdx <
®, we can restrict €, to contain only cumulative distribution functions of
probability measures, not subprobability measures. The construction of {B}
in (21) will produce distribution functions of probability measures as well,

and we can replace condition B2 by the following:
B2. E¥i'w;B;=1

Suppose [xbn w dx = © and consider the case f is monotone decreasing. Any
mass needed to bring G(«) = 1 for G € $ N can be accommodated between
zy_, and b without violating the monotonicity in the tail or changing the fit
to the data. By symmetry, for monotone increasing or unimodal f, it is
sufficient that [** w dx = o for this to work also. In these cases, the values of
the optimization problems posed over sets of cumulative distribution func-
tions of subprobabilities and over cumulative distribution functions of proba-
bilities are equal.

APPENDIX

Proof of Theorem 7.1 and Corollaries 7.2 and 7.3. In this section,
please keep in mind the implicit dependence of ¢, ¢* and K on n. We
assume implicitly that K divides n; when K does not divide n, the results
still hold since the relevant quantities are bounded stochastically from below
and above by problems where K does divide n.

A.1. Analysis. Without loss of generality, we assume f decreases mono-
tonically on a neighborhood of y. Let

(87) {=F(y),
define [ to satisfy

I -1)K IK
E__)_ < { < —

(58)

and define
(59) I,=(+j)K.

n n

We can upper-bound the width of the confidence band at y by ignoring the
restriction to subprobabilities: for any G €2 with monotone decreasing
density g,

(60) g(y) =

@1
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and
.
(61) g(y) < P
Thus
+ ¢
62 Y'(¥) -y (y)<D=|—- .
(62) (¥) (¥) o o

By the mean value theorem, there exists 1, € (X;_), X,y such that
A = F(Xqp) — F(Xo_p)

(63) = (X(lo) - X(l_l))f("h)
= o f(m)

and n;,, € (X,), X, such that

(64) Appr = 01 (M)

As n — », with probability tending to 1, f decreases monotonically on the
interval [ X[;_, X;,)]. Thus, asymptotically,

(65) Y, Y,
—— < W < o
f(Xa_p) : f(Xay)
and
Al+1 Al+1
66 B g <
( ) f(X(lo)) a f(X(ll))
S0
D < f(Xap)e™  F(Xap)e”
B Al Al+1
ct c” ct
< f(Xqy) A Ao + K;'f(X”-l)) — F(Xay)|
(67) ct c” Cec* 0
<Xz ~ 5| 7" —ATIX(z_o ~Xay|
¢t c” Ce* [A + A4 ¢
X3 "5, T ( (X)) |

A.2. Asymptotic behavior of ¢* and c”.
random variables with mean 1. Define

Let {Yj};‘:ll be iid exponential

JK
Y,

(68) M,=  max '

J=Lon/K (G- DE+1
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and
JK
(69) W,=  min > Y,
S NV S s
and let
n
m=1
It is well known that
(71) N ks Y
Lo Sn+1 ’
so ¢* and ¢~ must satisfy
(72) P{ S d M, +} 1
c < an <c =>1—a.
Sn+1 Sn+1
We seek a bound & = 8(n) on D satisfying
(73) lim inf P{D < 8} > 0.

n— o

To find such a 8, we need to study the asymptotic behavior of M, and W,. If
c*(n) satisfy

74 p[ 2
<c ) <—
( ) Sn+1 - ¢ -2
and
75 LI
> < —
( ) Sn+1 =¢ o2 ’
then
Wn Mn
Plcc<W,and M, <c*} =1-P <c” or >c*
n+1 Sn
(76) W, M,
>1-P <c ;—-P >c*
Sn+1 n+1
>1—-a,
so (72) will hold. We may therefore study the behavior of M, /S, and W, /S,
separately. :

Consider the triangular array {G, ;,G, ,,...,G, J-; of iid T'(K,1) ran-
dom variables. Then

(77) M,= max G, /x,j-

Now
n/K

P{Mn Sg} = P{Gn/K,l Sg}

(78) e
= (1 - P{Gn/K,l >g}) 7
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Integrating the gamma density by parts, we find

w gK-1
9 P > = -s
(7 ) {Gn/K,l g} j; F(K)e dS
K-1 gi
(80) -y Lo
j=0 J:
gk 1 K-1 (K - 1)!
81 = e E|= + 4o
(81) I'(K) |g &° g¥
Suppose
(82) g =K+ n/Klog(n/K) .
Since g > K,
(83) 1 K-1 +(K—1)! Kl )
-+ +o b —a— <K—<1,
g g gk g
and so
gke®
(84) P{G, x,>8} < &)

Stirling’s approximation to I'(K) yields
K e &

log( T(K)

/1 K / 1
(85) =Klog(1+7 —OE(%)—) - T Klog(%) +§logK

1
- ElogZTr + O(K™1).

1 1
) =Klogg+K—-g - (K— E)logK— 510g277+ O(K™)

The Taylor series for log(1 + x) is an alternating absolutely convergent power
series, so

log( FfK) e‘g)

M K 1 1 K 1 1 K)\*?
SKT —(E(%Z - EKTzi(;,l{é_) + EKTa(—OE(%)—)

1 1
~ /K log(n/K) + Slog K — Slog2m + O(K™)

, 1 n 73 log(n/K) [log(n/K)
86 I _
(89) 2" IOg(K) * 3 V Tk

1 1
+ Elog K — 510g277 + O(K_l)
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~ logl ™ 72 log K 3 [log(n/K)
- g(z_{) "% " Segnyr) T3V T K

1
~glog2m + O(K™).

For this to yield a useful bound, we need to guarantee that

1 log K 3 [log(n/K
(87) 1, MK 7 jle(n/K)
2 2log(n/K) 3 K
that is,
log K 273 [log(n/K)
88 + <7?-2
(88) og(n/K) 3V & T
If inequality (88) holds asymptotically, we have
K 1 \Y%
liminf P{M_< K + /K 1 K)} > lim (1l - ——
im in P{ n /K log(n/ )} nl_l')!l( P \/.27)

(89) 1
= exp( - -‘/2—7—)

A similar argument shows that

(90) lim inf P{W, > K — »/K log(n/K) | > exp(~1/v2m).

Note that if 7 is chosen so that inequality (88) is strict, the probabilities in
(89) and (90) will tend to 1, which is sufficient to establish a rate of
convergence. The normal approximation to S, gives

(91) P{lsn —n|l> \/’721—0/2> =1-0+0(n"12).
Thus if (88) holds strictly,

(92) lim (c'(n) - (K_ VB 7/ log(n/K) )) >0
n-»e n+Vnzi_,.
and

K + VK n/log(n/K) )) <0

n — J’—{zl—a/Z

(93) li_lg) (c*(n) -

A.3. Asymptotic behavior of A, and D. From the normal approximation
to the denominator and numerator of (71) we find

K+ VKZ, + 05(1)

94 A = )
(94) P2 n+14Vn +1Z,+ 0,(1)
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where Z, and Z, are correlated standard normal random variables, so

K E s oo E )|

A, — —
' on

(95) P{

Combining (95) with (92) and (93) and simplifying the result, we find

c” [ log(n/K)
>1—-7/ ——}>1-26
Ay K
and
ct [ log(n/K
(97) limP{—51+r —g(/—)—}zl—ze.
n—® Al K

Note that the coverage probabilities of (96) and (97) are simultaneous. Thus,
in particular,

(96) lim P

n— o

+

c c” [log(n/K)
98 lim P{|— — <271y ————— } =1-26,
(%8) n—e 4, Ajia K
and since f is monotone
ct log(n/K)
(99) lim P{f(X,)|— — <27f(y)y —=— | =1-26.
n— MY Ay K

We also estimate (67):

+ /1 K) \(K VK ¢
CA—I(AZ+AI+1)Q$2(1+T °—g(;l{/—))(;+721_,,)}

>1-26.
Keeping the leading term in the Taylor expansion gives

(100) lim P
n-—ow

ct K\°
(101) ’}%P{E(AZ+AZ+1)QSZ(;) }z 1-26.
Since f is continuous and strictly positive at y, lim,_,.X; =y a.s. and hence
ct K\*®
(102) ,}gr;P{f'*’(Xll-)—A—l(Al +81)° < 2f-9(y)(;) } >1-26.
Thus

1iﬂi£fp{ly*(y) =7 ()

1 K K\°
< 21(y)r) 2R +zcr@(y)(;) }>o,

which proves Theorem 7.1.

(103)



SHAPE-RESTRICTED DENSITIES 547

A.4. Proving Corollary 7.2. To prove Corollary 7.2, we need to find the
optimal dependence of K on 7. The choice K = B(n2° log n)/*29 for some
B > 0, leads to

1iﬂi£fp{|v*(y) =7 ()

T

(104) < 2f(y)(—ﬁT—25

B2 4+ Cf'("”)(,y)B")

log n \ /4 +20)
x( ) > 0.
n

The “rate” (log n/n)°/1*+20) is the same as the lower bound found by
Khas’'minskii [14], and is therefore optimal. We can find the optimal constant
B in K as well; stationarity yields

F o \2/0+20)
(105) B = (ZCQ) (1+ 29)—1/(1+29)f2(1+g)/(1+29)(y)‘

It remains to verify that a constant 7 satisfying (88) exists, and to choose the
smallest possible 7 to optimize the constant B. For K of the chosen form, (88)
requires that asymptotically

(106) 2> 2+ 20,
so the smallest constant B results from 72 = 2 + 2p. This yields

m )2/(1+2Q)

V2 Co

X (n* log n)
Combining all the results, we find that for K defined by (107),

(1 + 20) —1/(1+20)f2(1+g)/(1+2g)(y)

(107)
1/(1+2p)

liminf P{ly"(y) — v ()l
n—o

5 ( () )"/‘”2‘”

(108) (4Co(1 + @)/ ***®

1+ 20

o log n 0/(1+29)
X(2+07Y) - >0,

which proves Corollary 7.2.
A.5. Proving Corollary 7.3. By Lemma 7.4, for any ¢ > 0, there exists a

C(e) such that f is Lipschitz with exponent 1 and constant C(&) on a set
T, ¢ T whose measure differs from that of 7' by at most . By the assump-
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tions of the corollary, there is a positive probability of increasing numbers of

observations below ¢ and above d.
We integrate (103):

1i’ﬂi£fp{ley+(y) - v (y)ldy

(109) < 2( ) dy)q/— Log(r/%)

+2C(a)(fTsf‘9(y) dy)(%)g} > 0.

Using the same choice for K,

(110) K = B(n?log n)"/" "%,
we find that

lim inf P fly*(y) -y (¥)ldy
n—-w T,

s [2( [ £) | 208 [ 1 4() dy)]

logn 0/(1+2p)
x( ) >0,

n

Incorporating the constraint (88) on 7 and solving for the optimal B as
before, we find

(n? log n)l/(1+29)'

,_1 +_Q(fTsf) 2/(1+20)
V2(1 + 20) C(&)ofr, [7°
With this choice of K, we find

(112) K= (

1iﬂi£fp{ley+(y) — v (y)ldy

Ny futsniCh )

V1+ 20

(113)

1/(1+20) 1
X(2QC(a)fo'9) (2 + E)} > 0.
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