STATIONARY EXPONENTIAL FAMILIES

BY I. H. DINWOODIE

Tulane University

A stationary exponential family is defined using transition densities which take the form of exponentiated symmetric \(k \)-linear forms on \(\mathbb{R}^d \). Estimation is based on a mean value parametrization through a convex function on a finite-dimensional vector space. A consistency theorem and a central limit theorem are presented.

1. Introduction. We are concerned with defining and studying an exponential family for stationary sequences of random vectors \(X_1, X_2, \ldots \) in the finite-dimensional vector space \(F = \mathbb{R}^d \). The main results are a consistency theorem and a central limit theorem (Theorems 2.1 and 2.2) for an estimator \(\hat{\theta} \) of the parameter \(\theta \) which indexes the process. We begin with some definitions and a preliminary discussion of the exponential family, and we present the main results in Section 2 and examples in Section 3.

Let \(E \) be the vector space of symmetric \(k \)-linear forms on \(F^k \). The dimension of \(E \) is \(\binom{k + d - 1}{d - 1} \), since a basis corresponds to a nonnegative integer solution of \(x_1 + \cdots + x_d = k \). Let \(\mu \) be a reference probability measure on \(\mathbb{R}^d \) such that \(Z_\mu = \int \exp(\theta(x_1, \ldots, x_k)) \mu^k(dx_1, \ldots, dx_k) < \infty \) precisely on an open set \(\Theta \subset E \), \(\theta \in \Theta \). The Borel field on \(\mathbb{R}^d \) will be denoted \(B \).

Construct a stationary process \(\{X_i \in F, i \geq 1\} \) defined on the space \(F^\infty \) as follows. Fix \(\theta \in \Theta \) and define

\[
Z(x_1, \ldots, x_k) = \exp(\theta(x_1, \ldots, x_k)),
\]

\[
Z(x_1, \ldots, x_i) = \int \exp(\theta(x_1, \ldots, x_k)) \mu^{k-i}(dx_k, dx_{k-1}, \ldots, dx_{i+1}),
\]

(1.1)

\[
1 \leq i \leq k,
\]

\[
Z = \int \exp(\theta(x_1, \ldots, x_k)) \mu^k(dx_k, \ldots, dx_1).
\]

The \(Z \) will appear with a subscript \(\theta \) occasionally to avoid ambiguity. Let the transition density \(p \) (\(p_\theta \) occasionally) be given by

\[
p(x_1, \ldots, x_k) = \frac{\exp(\theta(x_1, \ldots, x_k))}{Z(x_1, \ldots, x_k)} = \frac{Z(x_1, \ldots, x_k)}{Z(x_1, \ldots, x_{k-1})}.
\]

Let \(\pi(x_1, \ldots, x_{k-1}, dx_k) \) denote the transition probability associated to the density \(p \). The theorem of Ionescu Tulcea [see Ionescu Tulcea (1949)] or

Received January 1992; revised December 1993.
AMS 1991 subject classifications. Primary 62M05; secondary 60G10.
Key words and phrases. Exponential family, stationary process, chain of finite order.
327
Shirayev (1984)] assures us a measure P_θ on (F^∞, B^∞) which satisfies

$$P_\theta(A_1 \times \cdots \times A_n \times F \times \cdots) = \int_{A_1} \frac{Z(x_1)}{Z} \mu(dx_1) \cdots \times \int_{A_{k-1}} \frac{Z(x_1, \ldots, x_{k-1})}{Z(x_1, \ldots, x_{k-2})} \mu(dx_{k-1}) \cdots \times \int_{A_k} \pi(x_1, \ldots, x_{k-1}, dx_k) \cdots \times \int_{A_n} \pi(x_{n-k+1}, \ldots, x_{n-1}, dx_n)$$

for every positive integer n and all sets $A_i \in B$, $1 \leq i \leq n$. The coordinate process X_1, X_2, \ldots on $(F^\infty, B^\infty, P_\theta)$ is a chain of finite order with transition probability π. One can verify that the process is strictly stationary and that the stationary measure on k coordinates for this process has density $\exp(\theta(x_1, \ldots, x_k))/Z$.

Define the sequence of random elements (Y_n) in the dual space E' of the vector space E by

$$Y_n(\alpha) = \alpha(X_n, \ldots, X_{n+k-1})$$

for $\alpha \in E$. The vector Y_n is a k-fold tensor product defined via the symmetric k-linear forms.

Expectations and derivatives for the stationary exponential family of processes $\{P_\theta: \theta \in \Theta\}$ are related as in the i.i.d. family, as we show in Proposition 1.1 below. For $\theta \in \Theta$, let E_θ denote expectation with respect to the probability measure P_θ on the measurable space F^∞. The symbol $\nabla \log Z$ denotes the derivative of the real-valued function Z, which is defined on E. Thus $\nabla \log Z: E \to E'$.

Proposition 1.1. $E_\theta(Y_n) = \nabla \log Z: \Theta \to E'$.

Proof. For each $\alpha \in E$,

$$E_\theta(Y_n)(\alpha) = \int \alpha(x_1, \ldots, x_k) \frac{Z_\theta(x_1, \ldots, x_k)}{Z_\theta} \mu^k(dx_1, \ldots, dx_k)$$

$$\quad = \nabla_\theta \log Z(\alpha),$$

which proves that $E_\theta(Y_n) = \nabla_\theta \log Z$. \square

In the following text we let $m_\theta = E_\theta(Y_i) \in E'$. Consider now the problem of estimating the parameter θ. The ergodic theorem implies that the sequence $\bar{Y} = n^{-1} \Sigma Y_i \in E'$ has the property that $\bar{Y} \to E_\theta(Y_i) = \nabla_\theta \log Z$. To simplify notation, let

$$f = \nabla \log Z: \Theta \to E'.$
Proposition 1.1 suggests that we define our estimator \(\hat{\theta} \) for the parameter \(\theta \in E \) by
\[
(1.2) \quad \hat{\theta} = f^{-1}(\bar{Y})
\]
since at least formally \(\hat{\theta} = f^{-1}(\bar{Y}) \to f^{-1}(\mathbb{E}_\theta(Y_1)) = \theta \).
If \(C \) is the closed convex hull of the support of the distribution of \(Y_1 \), then \(\bar{Y} \in C \) and one needs to be sure that \(C \) is in the range of \(f \) and that \(f \) is bijective from \(E \) to \(C \) for (1.2) to make sense. These points will be addressed in the next section. We think of this estimation scheme very simply as choosing the parameter \(\hat{\theta} \in E \) which makes the mean of \(Y_i \) under the law \(P_{\theta} \) equal to the sample mean \(\bar{Y} \in C \).

The results that follow in Section 2 justify the existence and continuity of \(f^{-1} \), show asymptotic properties of \(\bar{Y} \) and translate these properties to \(\hat{\theta} \) through \(f^{-1} \).

2. Two limit theorems. Our study of \(\hat{\theta} \) below begins with regularity properties of \(f^{-1} \) to obtain the consistency result Theorem 2.1. Then we apply a central limit theorem of Rosenblatt (1971) to the multivariate Markov process \((X_n, \ldots, X_{n+k-1}) \) in order to prove a central limit theorem for \(\hat{\theta} \) at Theorem 2.2. Assume in what follows that:
\[
(2.1) \quad \begin{align*}
\text{(a) } \log Z_\theta \text{ is finite precisely for } & \theta \in \Theta, \Theta \subset E \text{ open;} \\
\text{(b) } Y_i & \in \text{int } C \quad \text{a.s.}
\end{align*}
\]
The process can be constructed with less than (2.1a), but we use all of (2.1) to prove results about \(\hat{\theta} \).

Lemma 2.1. Assume (2.1). Then the map \(f = \nabla \log Z : \Theta \subset E \to \text{int } C \) is bijective.

Proof. The function \(\log Z \) is strictly convex on \(\Theta \) by Theorem 7.1 of Barndorff-Nielsen (1978) and (2.1b). Now we need only apply Theorems 5.33 and 9.2 of Barndorff-Nielsen (1978). \(\square \)

Lemma 2.1 makes sense of the estimation procedure (1.2), since now we have with assumption (2.1b) that \(\hat{\theta} \) exists and is well defined with probability 1. Next we look for further regularity properties of \(f \).

Lemma 2.2. Assume (2.1). Then \(f = \nabla \log Z \) has differentiable inverse \(f^{-1} : \text{int } C \to \Theta \subset E \).

Proof. By Lemma 2.1, \(f^{-1} \) exists. To show it is differentiable, it is enough to show that \(f \) is differentiable without critical points. However, \(D_\theta f \) is a linear map from \(E \) to \(E' \) corresponding in the standard way to a bilinear form on \(E \times E \) which satisfies
\[
D_\theta f(\alpha, \alpha) = \mathbb{E}_\theta(\langle \alpha, Y_1 - m_\theta \rangle^2)
\]
for any \(\alpha \in E \). \(D_\theta f \) is, in fact, positive definite, since (2.1b) implies that the law of \(Y_i \) is not concentrated on an affine subspace of \(E' \). Therefore, the matrix for \(D_\theta f \) is invertible, and so \(f \) has no critical points. \(\square \)

Theorem 2.1. Assume (2.1). Then the estimator \(\hat{\theta} \in E \) converges a.s. to \(\theta \).

Proof. The map \(f^{-1} \) is continuous, so the formal argument following (1.2) is valid. \(\square \)

We will prove below a central limit theorem for \(\hat{\theta} \) from results of Rosenblatt (1971) for Markov chains. We start with the following observation.

Lemma 2.3. Assume (2.1). The process \(\{(X_n, \ldots, X_{n+k-1}) : n \geq 1\} \) is a Markov chain on \(F^k \) with transition probabilities \(\pi_k \) given by

\[
\pi_k((x_0, \ldots, x_{k-1}), (A_1, \ldots, A_k)) = \delta_{(x_1, \ldots, x_{k-1})}(A_1 \times \cdots \times A_{k-1}) \pi(x_1, \ldots, x_{k-1}, A_k).
\]

Let \(L^{2,k} \) denote the set of real-valued measurable functions on the product space \(F^k \) such that

\[
\|g\|_2^2 = \mathbf{E}_\theta(g^2(X_1, \ldots, X_k)) < \infty.
\]

This is the \(L^2 \) norm for the stationary probability measure on \(k \)-coordinates having density \(Z(x_1, \ldots, x_k)/Z \). Define the operator \(T \) on \(L^{2,k} \) by

\[
(Tg)(x_1, \ldots, x_k) = \int \pi_0(x_2, \ldots, x_k, dx_{k+1})g(x_2, \ldots, x_{k+1}).
\]

We will say that \(g \perp 1 \) if \(\mathbf{E}_\theta(g(X_1, \ldots, X_k)) = 0 \). Consider the following \(L^2 \) norm condition:

\[
(2.2) \quad \sup_{g \perp 1} \frac{\|T^n g\|_2}{\|g\|_2} \to 0.
\]

Lemma 2.4. Assume (2.1) and (2.2). Then the sequence \(\Sigma_i^n(Y_i - m_\theta)/\sqrt{n} \) converges in distribution to the multivariate normal law \(\mathbf{N}(0, A) \), where \(A \) is the symmetric bilinear form on \(E \times E \) defined by

\[
A(\alpha, \alpha) = \lim_n \frac{1}{n} \mathbf{E}_\theta\left(\left(\sum_{i=1}^n \langle \alpha, Y_i - m_\theta \rangle \right)^2 \right).
\]

Proof. Consider the usual operator for the multivariate Markov chain with the kernel \(\pi_k \). Then (2.2) is the \(L^2 \) norm condition of Rosenblatt [(1971), page 206]. Apply Theorem 2 of Rosenblatt [(1971), page 217], to the sequence \(S_n = \langle \alpha, \Sigma_i^n(Y_i - m_\theta) \rangle \) [where \(f_{i,n} = (1/\sqrt{n}) \alpha(X_i, \ldots, X_{i+k-1}) \) and \(k_n = n \) in
his notation] to see that \(S_n / \sqrt{n} \to N(0, A(\alpha, \alpha)) \). Then it is also true that for each \(\alpha, \beta \in E \) the quantity
\[
\frac{1}{n} \mathbf{E}_\theta \left(\sum_{1}^{n} \langle \alpha, Y_i - m_\theta \rangle \sum_{1}^{n} \langle \beta, Y_i - m_\theta \rangle \right)
\]
converges to a number, say \(A(\alpha, \beta) < \infty \), and \(A \) is necessarily symmetric and bilinear. Thus the covariance matrix \(A \) is of the stated form.

However, this implies that the sequence of vectors \(\sum_{1}^{n} (Y_i - m_\theta) / \sqrt{n} \in E' \) converges in distribution to \(N(0, A) \). \(\square \)

Consider the condition (2.2). If there exists \(g \in L^1(\mu) \) such that
\[
(2.3) \quad \rho (x_1, \ldots, x_{k-1}, \cdot) \leq g(\cdot),
\]
then (2.2) and the above central limit theorem hold. The condition (2.3) gives uniform integrability of the kernels \(\pi_k \), which is stronger than the Doeblin condition and has been used extensively for central limit theorems [Doob (1953)]. Rosenblatt ([1971], Theorem 1, page 211) shows that the Doeblin condition implies the \(L^2 \) norm condition, and generally (2.3) is easier to check. Condition (2.2) means in a precise way that the multivariate chain \((X_n, \ldots, X_{n+k-1}) \) is asymptotically uncorrelated [Rosenblatt (1971), page 207].

For \(k = 2 \), the process \((X_n) \) is Markov with ordinary transition operator \(\pi \). Now \(\pi \) is self-adjoint on the space \(L^2 \) of functions on \(F \) with the stationary distribution, since
\[
\langle g, \pi h \rangle = \int \mu(dx_1)Z(x_1)/Zg(x_1)\int \mu(dx_2)Z(x_1, x_2)/Z(x_1)h(x_2)
\]
\[
= \int \mu(dx_2)Z(x_2)/Zh(x_2)\int \mu(dx_1)Z(x_1, x_2)/Z(x_2)g(x_1)
\]
\[
= \langle \pi g, h \rangle
\]
using the symmetry of \(Z(\cdot, \cdot) \). Note that \(T^{n+1}g(x_1, x_2) = \pi^n Tg(x_2) \), and if \(g \perp 1 \), then \(h = Tg \) is orthogonal to \(1 \) in \(L^2 \) and thus (2.2) is satisfied provided
\[
\sup_{h \perp 1} \| \pi^n h \|_2 \to 0.
\]

In particular, if \(\pi \) has a complete set of eigenfunctions (necessarily orthogonal), then for \(h \perp 1 \),
\[
\| \pi^n h \|_2 \leq |\lambda|^n \|h\|_2,
\]
where \(\lambda \) is the second largest eigenvalue of \(\pi \) in absolute value, or the largest eigenvalue of \(\pi \) when restricted to the orthogonal complement of the function \(1 \). The condition (2.2) is then satisfied if \(|\lambda| < 1 \), which will be the case in Examples 3.3 and 3.5.

Theorem 2.2 below is the central limit theorem for \(\hat{\theta} \). Recall that as a bilinear map on \(E \times E \), \(D_\theta f \) satisfies \(D_\theta f(\alpha, \alpha) = \mathbf{E}_\theta (\langle \alpha, Y_1 - m_\theta \rangle^2) \) and can thus be interpreted as the covariance matrix for the vector \(Y_1 \).
Theorem 2.2. Assume (2.1) and (2.2). Then the vector $\sqrt{n}(\hat{\theta} - \theta)$ converges in distribution to $N(0, B)$, where B is the symmetric bilinear form on $E' \times E'$ defined by

$$B(v, v) = A([D_\theta f]^{-1}(v), [D_\theta f]^{-1}(v)).$$

Proof. Since $\hat{\theta} = f^{-1}(\hat{Y})$ and f^{-1} is differentiable at $f(\theta)$, it follows that

$$\hat{\theta} - \theta = D_{f(\theta)}f^{-1}(\hat{Y} - f(\theta)) + o(\hat{Y} - f(\theta)), $$

where $D_{f(\theta)}f^{-1}$ is a linear map from E' to E and $o(\cdot)$ is a function from E' to E such that $o(x)/\|x\| \to 0$ as $\|x\| \to 0$. We can use the standard argument for transferring central limit theorems through differentiable maps to see that for each $v \in E'$,

$$\langle \sqrt{n}(\hat{\theta} - \theta), v \rangle \to N(0, A([D_\theta f]^{-1}(v), [D_\theta f]^{-1}(v))).$$

However, this proves the multivariate assertion that $\sqrt{n}(\hat{\theta} - \theta)$ converges in distribution to $N(0, B)$. □

3. Examples.

Example 3.1. Let $d = 1$. Then E and E' have dimension $\binom{k + d - 1}{d - 1} = 1$, regardless of k. The parameter θ is simply an element of \mathbb{R}^1, and the process Y_n takes values in \mathbb{R}^1 as well as is given by $Y_n = \prod_{i=1}^{k-1} X_{n+i}$. Thus

$$m_\theta = \int_{\mathbb{R}^k} x_1 \times \cdots \times x_k \frac{\exp(\theta x_1 \times \cdots \times x_k)}{Z_\theta} d\mu^k(x_1, \ldots, x_k).$$

If condition (2.2) holds, let $\sigma^2 = \lim(1/n)E(\Sigma^n(Y_i - m_\theta))^2$. Then $\Sigma^n Y_i / \sqrt{n}$ converges in distribution to $N(m_\theta, \sigma^2)$. Since $[D_\theta f]^{-1} = 1/E(\Sigma(Y_i - m_\theta))^2$, it follows that $\sqrt{n}(\hat{\theta} - \theta)$ converges in distribution to $N(0, \sigma^2/[E(\Sigma^n Y_i - m_\theta)^2])$.

Example 3.2. The special case where $d = 1$ and $k = 2$ corresponds to a Markov chain on the real line. The stationary density is given by $Z(x)/Z$. The chain is reversible since $Z(x)p(x, y)/Z = Z(y)p(y, x)/Z$, which leads to a self-adjoint transition operator π, but not symmetric.

Let the reference measure μ be Lebesgue measure on $(0, 1)$. Then we can take $\Theta = \mathbb{R} = E$ and the transition density $p(x, y)$ is given by

$$p(x, y) = \frac{\theta xe^{\theta xy}}{e^{\theta x} - 1},$$

which is bounded uniformly in x on $(0, 1)$ and satisfies conditions (2.1) and (2.2) (in fact, the chain satisfies the Doeblin condition with uniformly μ-integrable transition functions). The map f is given by

$$f(\theta) = \int_0^1 \int_0^1 xy e^{\theta xy} dx dy / \int_0^1 \int_0^1 e^{\theta xy} dx dy = \frac{1}{\theta} \left(\frac{e^\theta - 1}{c_\theta} - 1 \right),$$

where $c_\theta = \int_0^1 e^{\theta x} dx$.
where } c_\theta = \int_0^\theta (e^x - 1)/x \, dx \text{. The function } f \text{ is monotone increasing from the real line } \Theta = (-\infty, \infty) \text{ onto the interval } (0, 1) = \text{int}(C) \text{ (cf. Lemma 2.1). Now } \bar{Y} = \frac{\sum X_i X_{i+1}}{n} \text{ and the estimator } \hat{\theta} \text{ is the unique solution to }

\[f(\hat{\theta}) = \bar{Y} \in (0, 1). \]

Example 3.3. Suppose we are interested in a standard Gaussian reference measure. Then the transition density } p(x, y) \text{ with respect to Lebesgue measure on } \mathbb{R} \text{ becomes }

\[p(x, y) = \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{(y - \theta x)^2}{2} \right), \]

and when } \theta \in (-1, 1) \text{ this represents the transition probability for a process in discrete time analogous to the Ornstein–Uhlenbeck process. The sequence } X_0, X_1, \ldots \text{ can also be represented as an autoregressive series with } X_n = \xi_n + \theta X_{n-1} = \sum_{i=0}^\theta \theta \xi_{n-i}, \xi_i \sim \text{i.i.d. } \mathcal{N}(0, 1). \text{ Set } \Theta = (-1, 1). \text{ Conditions (2.1) are satisfied and the invariant marginal distribution on } X_n \text{ is } \mathcal{N}(0, 1/(1 - \theta^2)). \text{ Condition (2.2) is also satisfied, since the self-adjoint operator } \pi \text{ on } L^2 \text{ takes the form }

\[\pi h(x) = \int h(y) \exp \left(-\frac{(y - \theta x)^2}{2} \right) \sqrt{2\pi} \, dy. \]

One can check that the spectrum of } \pi \text{ is } 1, \theta, \theta^2, \ldots \text{ and that these numbers correspond to Hermite polynomials for the stationary distribution } \mathcal{N}(0, 1/(1 - \theta^2)). \text{ By the remarks following Lemma 2.4, the } L^2 \text{ norm condition is satisfied.}

The map } f: \Theta \to \mathbb{R} \text{ is given by }

\[f(\theta) = \frac{\theta}{1 - \theta^2}, \]

which is an increasing map from } \Theta = (-1, 1) \text{ onto } E = (-\infty, \infty), \text{ with asymptotes at } \pm 1. \text{ This is of course the covariance of } X_n \text{ and } X_{n+1} \text{ with joint bivariate normal distribution having mean } 0 \text{ and covariance matrix } R \text{ given by }

\[R^{-1} = \left(\begin{array}{cc} 1 & -\theta \\ -\theta & 1 \end{array} \right). \]

One can solve explicitly } f(\hat{\theta}) = \bar{Y} \text{ to find the estimator for } \theta. \text{ With some straightforward calculation it is seen that } \text{Cov}(Y_i, Y_j) = \theta^2 \text{Cov}(Y_i, Y_{j-1}) \text{ for
\(j \geq i + 2, \) and
\[
\sigma^2 = \lim_{n \to \infty} \frac{1}{n} \text{Var}_\theta \left(\sum_{i} Y_i \right) = \frac{1 - \theta^4 + 4\theta^2}{(1 - \theta^2)^3},
\]

\[
\text{Var}(Y_i) = f'(\theta) = \frac{1 + \theta^2}{(1 - \theta^2)^2},
\]

\[
\sqrt{n} \left(\hat{\theta} - \theta \right) \to N \left(0, 1 + \theta^2 - \frac{8\theta^4}{(1 + \theta^2)^2} \right).
\]

The information \(I_n(\theta) \) in the sample \(\{X_0, X_1, \ldots, X_n\} \), given by
\[
I_n(\theta) = \mathbb{E}_\theta \left(\left(\partial_\theta \log(1 - \theta^2) - X_0^2(1 - \theta^2) - \sum_1^n (X_i - \theta X_{i-1})^2 \right)^2 \right)
\]
satisfies \(I_n(\theta)/n \to 1/(1 - \theta^2) \). The maximum likelihood estimator \(\hat{\theta}_{\text{ML}} \) is the value of \(\theta \) which maximizes the quantity \(\log(1 - \theta^2) - X_0^2(1 - \theta^2) - \sum_1^n (X_i - \theta X_{i-1})^2 \). It is known that \(\hat{\theta}_{\text{ML}} \) satisfies \(\sqrt{n} (\hat{\theta}_{\text{ML}} - \theta) \to N(0, 1 - \theta^2) \) [Box and Jenkins (1970), pages 280–281] and that this asymptotic variance is also attained by the sample correlation \(r_1 \). Thus the asymptotic variance for \(\hat{\theta} \) in this example is slightly greater than the variance of these estimators.

Example 3.4. Let \(d = 2 \) and let \(k = 2 \). Then \(E \) and \(E' \) have dimension 3, and \(E \) consists of symmetric bilinear forms on \(\mathbb{R}^2 \times \mathbb{R}^2 \). Elements of \(E \) can be identified with symmetric \(2 \times 2 \) matrices and a basis consists of the three vectors
\[
(e_1, e_2, e_3) = \left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1/\sqrt{2} \\ 0 \end{pmatrix}, \begin{pmatrix} 1/\sqrt{2} \\ 0 \\ 0 \end{pmatrix} \right),
\]

which are orthogonal for the entrywise inner product. \(E \) is then a three-dimensional subspace of the vector space of all \(2 \times 2 \) matrices. A corresponding dual basis \((e'_1, e'_2, e'_3) \) for \(E' \) has the same matrix representation and \(\langle e_i, e'_j \rangle = \delta_{ij} \) for the entrywise inner product. For example, if we think of \(x, y \) in the state space \(F = \mathbb{R}^2 \) as column vectors, then
\[
e_i(x, y) = x^T \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} y.
\]

With this identification, \(f(\theta) \) is an element of \(E' \) determined by coordinates
\[
f(\theta)(e_i) = \mathbb{E}_\theta[e_i(X_1, X_2)] = \int_{F \times F} x^T e_i \mathbb{y} \frac{\exp(x^T \theta \mathbb{y})}{Z_\theta} \mu \times \mu(dx, dy).
\]

Also \(D_\theta f \) is a linear map from \(E \) to \(E' \) given by a \(3 \times 3 \) matrix \((d_{ij}) \) with columns \(D_\theta f(e_i) \), the entries of which are determined by the effect of \(D_\theta f(e_i) \) on each basis element:
\[
d_{ij} = [D_\theta f(e_i)](e_j) = \mathbb{E}_\theta \left[(e_i(X_1, X_2) - \mathbb{E}_\theta[e_i(X_1, X_2)]) \times (e_j(X_1, X_2) - \mathbb{E}_\theta[e_j(X_1, X_2)]) \right].
\]
The bilinear form A on $E \times E$ can also be represented as a 3×3 symmetric matrix (a_{ij}), where

$$a_{ij} = \lim \frac{1}{n} \mathbb{E}_{\theta} \left(\sum_{m=1}^{n} \langle e_i, Y_m - m_\theta \rangle \sum_{m=1}^{n} \langle e_j, Y_m - m_\theta \rangle \right).$$

Example 3.5. Take $d = 2$ and $k = 2$ as above and let the reference measure μ on \mathbb{R}^2 be the product of two independent $N(0, 1)$ distributions. Let $\Theta \subset E$ consist of those symmetric matrices

$$\theta = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$$

such that the matrix

$$M_\theta = \begin{pmatrix} 1 - a^2 - b^2 & -b(a + c) \\ -b(a + c) & 1 - b^2 - c^2 \end{pmatrix} = id - \theta^2$$

is positive definite. This means that the eigenvalues of θ are in $(-1, 1)$. One can easily show that conditions (2.1) are satisfied. One can show that condition (2.2) is satisfied, as we did in Example 3.3, by showing that the self-adjoint operator π on L^2 has largest eigenvalue equal to the largest eigenvalue θ_1 of the matrix θ, when π is restricted to the subspace of L^2 orthogonal to the function 1.

One finds that $Z_\theta^2 = 1/\det M_\theta$, and the transition density $p(x, y)$ with respect to Lebesgue measure takes a form analogous to the one-dimensional situation,

$$p(x, y) = \frac{1}{2\pi} \exp \left(-\frac{\|y - \theta x\|^2}{2} \right),$$

so the step has the Gaussian distribution with mean θx. The stationary marginal distribution on $F = \mathbb{R}^2$ is bivariate normal $N(0, M_\theta^{-1})$ and the stationary distribution on $F \times F = \{(x_1, x_2, y_1, y_2)\}$ is Gaussian with mean 0 and covariance matrix R such that

$$R^{-1} = \begin{pmatrix} 1 & 0 & -a & -b \\ 0 & 1 & -b & -c \\ -a & -b & 1 & 0 \\ -b & -c & 0 & 1 \end{pmatrix}.$$

In particular,

$$f(\theta)(e_1) = \frac{1}{Z_\theta} \int x_1 y_1 \exp(x^T \theta y) \mu \times \mu(dx, dy) = \frac{a + cb^2 - ac^2}{\det M_\theta},$$

$$f(\theta)(e_2) = \frac{1}{Z_\theta} \int \frac{y_1 x_2 + x_1 y_2}{\sqrt{2}} \exp(x^T \theta y) \mu \times \mu(dx, dy) = \frac{\sqrt{2} b(1 + ac - b^2)}{\det M_\theta},$$

$$f(\theta)(e_3) = \frac{1}{Z_\theta} \int x_2 y_2 \exp(x^T \theta y) \mu \times \mu(dx, dy) = \frac{1 - a^2 - b^2}{\det M_\theta}.$$
Thus we can represent \(f(\theta) \in E' \) as the symmetric \(2 \times 2 \) matrix

\[
f(\theta) = \frac{1}{\det M_\theta} \begin{pmatrix}
 a + cb^2 - ac^2 & b(1 + ac - b^2) \\
 b(1 + ac - b^2) & 1 - a^2 - b^2
\end{pmatrix}
\]

\[= \theta (id - \theta^2)^{-1}.
\]

Finally, the statistic \(\bar{Y} \in E' \) takes the following form. Let \(X_t = (X_{i,1}, X_{i,2}) \in F = \mathbb{R}^2 \). Then

\[
\bar{Y}(e_i) = e_i \frac{1}{n} \sum_{1}^{n} (X_i, X_{i+1}),
\]

and this gives the formulas

\[
\bar{Y}(e_1) = \frac{1}{n^2} \sum X_{i,1} \sum X_{i+1,1},
\]

\[
\bar{Y}(e_2) = \frac{1}{\sqrt{2} n^2} \left[\sum X_{i,2} \sum X_{i+1,1} + \sum X_{i,1} \sum X_{i+1,2} \right],
\]

\[
\bar{Y}(e_3) = \frac{1}{n^2} \sum X_{i,2} \sum X_{i+1,2},
\]

which in matrix form becomes

\[
\bar{Y} = \begin{pmatrix}
\bar{Y}(e_1) \\
\bar{Y}(e_2)/\sqrt{2} \\
\bar{Y}(e_3)/\sqrt{2}
\end{pmatrix}.
\]

We remark that the exponential family presented here is a restrictive parametric model for a stationary process that is different from typical time series models. The advantage of this is a very simple estimation scheme which is based on studying a sample mean in a finite-dimensional vector space. The sample mean itself is an easy candidate for an ergodic theorem and a central limit theorem. Then a smooth map transfers its statistical properties to the estimator \(\hat{\theta} \).

One can ask about the efficiency of the estimator \(\hat{\theta} \) which we have introduced based on natural convexity considerations. Example 3.3 indicates that \(\hat{\theta} \) does not always have minimum asymptotic variance, although it is close. In the i.i.d. model \((k = 1) \), \(\hat{\theta} \) is of course the MLE and an optimal large deviation property for the estimator was recently proved by Kester and Kallenberg (1986). A similar result for \(k \geq 2 \) will require first a careful look at the large deviation properties of \(\bar{Y} \).

Acknowledgments. We thank the referees for indicating another approach to exponential families in Küchler and Sørensen (1989), and also for suggesting that assumptions in the first version be weakened.

REFERENCES

DEPARTMENT OF MATHEMATICS
TULANE UNIVERSITY
NEW ORLEANS, LOUISIANA 70118