The Annals of Statistics
1995, Vol. 23, No. 1, 234-254

CENTRAL LIMIT THEOREMS FOR DOUBLY ADAPTIVE
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By JEFFREY R. EISELE AND MICHAEL B. WOODROOFE
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Asymptotic normality of the difference between the number of sub-
jects assigned to a treatment and the desired number to be assigned is
established for allocation rules which use Eisele’s biased coin design.
Subject responses are assumed to be independent random variables from
standard exponential families. In the proof, it is shown that the difference
may be magnified by appropriate constants so that the magnified differ-
ence is nearly a martingale. An application to the Behrens—Fisher prob-
lem in the normal case is described briefly.

1. Introduction. Suppose subjects arrive sequentially at an experimen-
tal site and are assigned immediately to one of two treatments groups A or B.
A statistical design problem is how to assign subjects to the treatment
groups. When balance is desired in the allocation, the complete randomiza-
tion scheme of making treatment assignments by independent flips of a fair
coin could be employed, but this might result in severe imbalance in small
experiments. Pocock (1979) recommends using complete randomization only
in trials with over 200 subjects. The systematic design (ABAB...) results in
perfect balance but unfortunately maximizes the possibility of experimenter
bias. Efron (1971) and Wei (1978) proposed subject assignment algorithms
offering a compromise between complete randomization and perfect balance.
These designs achieve balance more quickly than complete randomization,
but retain enough randomization to preclude effective guessing of the next
treatment to be assigned.

Letting +1 and —1 denote assignments to treatments A and B, these
algorithms may be described as follows: let ¢ denote a nonincreasing function
from [—1,1] into [0,1] for which ¢(0) = 1/2; let U;,U,,... denote ii.d.
uniformly distributed random variables; and let

2, — 21U, < o 222
k k=4 E_1

)} -1 Vk=1,2,...,

where
S,=Z,++Z, Yrn=1,2,...,

S, = 0; 0/0 is to be interpreted as 0; and I{-} denotes the indicator of {-}. With
these conventions, S, is the difference between the number of subjects
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assigned to treatment group A and the number assigned to treatment group
B after n assignments. Both algorithms are called biased coin designs. They
differ in the nature of the function q.

For Wei’s algorithm, g is assumed to have a finite derivative at 0. Under
this assumption, Wei (1978) showed that S,/ Vn has a limiting normal
distribution with mean 0 and variance 1/(1 — 4q'(0)). Wei proved this by
showing the convergence of all moments of S,/ Vr to those of the normal
distribution. Later, Smith (1984) and Eisele and Woodroofe (1990) showed
how this result may be deduced from the martingale central limit theorem.
This approach also yields an invariance principle with little additional effort.

Eisele (1994) proposed a randomized subject assignment algorithm for the
case when the desired allocation proportions may be unknown. The design is
similar in spirit to Efron and Wei’s designs, but adapts for both the current
proportion of subjects assigned to each treatment and a current estimate of
the desired allocation proportion. Eisele (1994) showed that the proportion of
subjects assigned to a treatment converges almost surely to the desired
proportion.

The motivation for the design originated with an estimation problem of
Robbins, Simons and Starr (1967), who developed an algorithm for allocating
subjects to treatments in order to minimize the total expected sample size
and still obtain a confidence interval of preassigned width and coverage
probability in the Behrens—Fisher problem. Eisele (1990) superimposed a
biased coin on Robbins, Simons and Starr’s design. This is discussed briefly in
Section 8. Superimposing biased coin designs on asymptotically optimals
ones, such as that of Robbins, Simons and Starr, may make them more
appealing to practitioners, especially in long studies where temporal effects
may be present. See Hardwick (1989) for a discussion of these issues.

The purpose of this paper is to establish the asymptotic normality of the
difference between the number of subjects assigned to a treatment and the
desired number. The approach is similar to that of Smith (1984) and Eisele
and Woodroofe (1990) for Wei’s biased coin design; that is, the process will be
decomposed into a martingale plus a remainder term.

The general model and allocation rule are presented in Section 2. Sections
3-6 present some preliminary results, including derivation of the martingale
and remainder terms and the asymptotic normality of the martingale. The
main result on the asymptotic normality of the difference between the
number of subjects assigned to a treatment and the desired number to be
assigned to that treatment is established in Section 7. The Behrens—Fisher
problem is considered in Section 8.

2. General model and allocation rule.

2.1. General model. Suppose subject responses X;, X,,... to treatment A
and" Y,,Y,,... to treatment B are independent random variables from d-
dimensional standard exponential families, that is,

X, Xy, ~f0(x) = exp(O'x - lal’((}))
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and
Y,,Y5,... ~8,(¥) = exp(w-y — ¢(w)),

where 6 = (6,,...,0,), x = (x1,...,25), ® = (@1,...,07), y = (y1,...,y5),
prime denotes transpose and “” denotes the inner product. It is assumed
throughout that § and w are interior points of the natural parameter spaces
of the families. Let

p=EX=Vy(0) and v=E,Y = Vp(w),

where Vi and Vo denote the gradient vectors (dyi/d0,..., dp/ 46;) and
(0¢/dw,, ..., d¢/dw,). For a given allocation rule, let m, and n, be the
number of observations on X and on Y, respectively, at time %, where
k=m, + n,, and let

my np
Xy =(m) " LX; and Y, =(n)) ' LY,
i=1 i=1
be the sample means. If the families are steep and the allocation rule is
noninformative, then the MLE of u is ka and the MLE of v is l_fnk. Brown
(1986) is recommended for more background on exponential families.
The goal of the allocation scheme is then to have m,/k = p, where
p = p(p,v): R?? - (0,1) is the desired allocation proportion. To accomplish
this, the allocation scheme is designed to sample the X population with
probability less than (respectively, greater than) p, when m,/k > p,, (respec-
tively, m,/k < p,), where p, = p(fmk, Y’nk) € [0, 1] is the current maximum
likelihood estimate of p. This employs the same idea as Wei’s adaptive biased

coin design except that he uses p = 3.

2.2. The allocation rule. Let g be a function from [0, 1]2 - [0, 1] such that
the following four conditions hold:
(1) gq is jointly continuous;
Gi) q(r,r) =r;
(iii) q(p,r) is strictly decreasing in p and strictly increasing in r on
0, )%
(iv) ¢ has bounded derivatives in both arguments and q10(p, p) =
3q(x, ¥)/ %=y, y=p # 0.
Let 8, = - =8, =1,8,,,= = =8, = 0and
M1,
8k=IUkqu_1’pk—1 Vk22n0+1,

where the U, are independent of X, X,,... and Y,,Y,,... . Then

m, =206+ +9, and n,=k —m,.

This sampling scheme has the desirable property that it provides some
randomization to reduce the possibility of experimenter bias. Although exper-
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imenter bias is not completely eliminated, the best guessing strategy at time
k + 1 has a probability of success equal to max(q,,1 — g,), where

_ my_1
9, =4 Z_1’ Pr-1)>
for £ > 2ny + 1.
2.3. Conditions on p. In addition to conditions (i)—(iv) imposed on ¢, the

following two conditions on p are needed:

(v) There are positive constants C and r for which

1
-+ <C{llul” +lwll"}.
PR { }
(vi) For sufficiently small £ > 0, p is twice continuously differentiable on

the set
R={(x,y):llx — ull <2e,lly — vl <2¢}.

2.4. Notation. The definitions of S, and Z, stated below will be used
throughout the remainder of the paper. They are different from those in the
Introduction. Let

Zy=28,—p
and
S,=m, —kp=2Z,+-+Z, YVEk>2n,.
Also, let
F = a-{Zl,...,Zk,Xl,...,ka,Yl,.. Y, }

csdn,

be the o-algebra representing the natural history. Then the conditional mean
and variance of Z, given %,_, are

wm=HZ, 1 F 1} =a,—p
and

ol = [E{(Z,e - )’ |~7k_1} =q,(1 - q;).

3. Preliminary results. The following results can be found in Eisele
(1994). It is Theorem 1 that requires condition (v).

THEOREM 1. Thereisan 0 < gy < 1 for which
P{m, <eyk} =0(k™) ask >oVa>0.

LEMMA 1. Assume
[E{( po—p)"}=0(k™") Vr>0ask—>o.

ProprosITION 1. We have
E{S2} = O(n) asn — .
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THEOREM 2 (Strong law of large numbers). Under conditions (1)—(vi),

S,
lim —=0 w.p.l.

n-oo© n

Lemma 2 presents a calculation that is repeated frequently below, often
without comment. Lemma 3 is applied many times throughout the remainder
of this paper.

LEMMA 2. Let
= = 9
(%, - ) |1} - (%, - )f1- —2 ).
{( my I'L) '?k 1 (ka—l M)(l mk—1+1)
Proor. It follows that

— 1= o
E{(%r, ) ) = | (B = )+ 2 =) [

— 0,
-(X,, - )1—{E{mk F })
q
= (ka_l ,u)(l - mk_1k+ 1 O

LEMMA 3. There exists a constant C such that
C
j—WdP < k—p\/{E{WZ} ,

for all p > 0 and all square integrable random variables W.

PROOF. Let &= ¢, be as in Theorem 1. If W is any square integrable
random variable, then

fmingIP f —Wle+f inum

my<sk Mf mk>skm

< {P{m, < ek} VE{W?} + E{|W |}

ePkP

< o VEW,

where the last inequality follows from Theorem 1. O

COROLLARY 1.
E(IX,,, — wll*" +11,, = »I""} = O(k™") ask >V r>0.
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Of course, it follows from Corollary 1 and Markov’s inequality that
P{IX,,, - ull = &} + P{I¥,, - vl = &} = O(&™")

as k > o forall r > 0.

4. The martingale. The idea in this section is to magnify S, by an
appropriate sequence of constants so that this magnified value is nearly a
martingale. In Wei’s design, there is only one term in the conditional expecta-
tion of S,. Here, there are two terms. The additional term is due to estimat-
ing p. In order to get a martingale, these terms must be magnified by
different sequences of constants. This requires looking at a vector of these
two terms and then magnifying this vector by a vector of constants. Proposi-
tions 2 and 3 lay the foundation for determining this matrix.

PROPOSITION 2.
a N Myp_1
E{S, 1 F_1} = (1 - m)sk—l +Y(Pr-1—p) + r(m’ pk—l)’
where
a=—qu(p,p), Y=4qu(pr,p),
r(x,y) =q(x,y) —p+a(x—p)—v(y—p)
and qy; and q,, are first partial derivatives of q.

ProoF. It is convenient to write
myp_,
Fie = "('k_—lapk—l)-
Then
E{Sy | Fp_1} =E{Sy_1 + Z, 1 F,_1}

Mp-1
=81+ (I('k_—l,Pk—l) -p

my_; o
=Sk—1_a( _P)+7(Pk~1—P)+r1,k
E—1
a A
=(1";___1)Sk—1+7(Pk—1—P)+"1,k- a

Proposition 3 contains an analogous approximation for E{(k( p, — p) | %, _4}.
In the proof, it is convenient to let

Py = P(Xm,,_l’Yn,,_l) + P10(Xm,,_la?n,,_l) : (‘M) Oy,

__k___k;L)(l — ak)’

n,_;+1

+ pO]-(ka—l’?nk—l) ’
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on A,, where p;, and p,,; denote the gradient vectors,

plo(x,y) _ &p(x,y) . ¢9p(x,y) ]”
0x, 0xy
porl . 9) = ap(x,y) ap(x, ) ]
9y ¥4
and
(2) A= {1, —ul< e, 1Y,  —vs<e
and
(3) B, = {IIka —ull<em,, 1Y, —vl< enk},

for k =1,2,.... Observe that P(A%) = O(k™") as k — = for all r > 0, by
Corollary 1. The same is true of P(B;), since, for example, E{m,"[|X,, — wll’}
= Hm; HIX,,, — ul" | F_ )} = HIX; — pll}E(m,"} = O(k™") as k — = for
all r > 0.

LEMMA 4. Let [)k = ﬁk OffAk. Then
E{(f4 = 5)") = O(k™") ask -

ProOF. Let & > 0 be such that condition (vi) is satisfied, and define A,
and B, by (2) and (3). Then

E{(h =5} = [, (5= 5e) aP

A - \2
+ (pk - pk) dlp,
A,NB,
where

k k

for some constant C and all r > 0. Next, since p is twice differentiable on R
[defined in (vi)], there is a constant C for which

— 2
[ (m-mydes[ cC 1, = X W =T IV
A,NB, Pe = Ph " JA,nB, m? n?
- 2
5 o (I1X,,, — ull + 1%, — )
~ JaunB, m2
— 2, 2
(v, - »I+1,,_, - »l)
+ — dP
ng
= 0(k™),

where the last equality follows from Lemma 3. O



DOUBLY ADAPTIVE BIASED COINS 241

LEMMA 5.
E((k] s — E(4 15 1)] — B[ s — E{ 315 1}])°)
=0(k™?) ask > .

ProOF. The left-hand side is at most 22E{( p, — p)*}. O

PROPOSITION 3.
[E{k( Pr — P) |97e—1} =(k=1)(Pp-1—P) T To1>
where
E{(ry,)"} =o(E™!) ask - .
ProoF. With ry, = E{k(p, — p) |.F_1} — (B — 1Xp,_; — p), as in the
proposition,

fAcrg,k dP < 4k%P(AS) = O(k™2)
k

as B — . As in the proof of Lemma 2,

E(k( pp — )| Fo-1} =k(Pr-1—P)

kg, — _ _
bl K Ty ) (1 X, )
k(1—-gq,) - — _
" n_k—l-i-_]'pOl(ka_" nk—l) ' (V - Ynk—l)
on A,. So
E{k( By = p) 1742} = (= D(hi-a = p)
+RE(( Py — Pp) | Fao1) + U,
where

k - -
Uy=bPp1— P~ [Ek—_%pm(xmk_l,nk_l) (X, — )

R1-qy) (& o -
* n,_;+1 pOI(ka~1’Ynk—1) ) (Ynk—l - V) :
Clearly,
~ - 2 ~ - -
E|EE{( b — Ps) | Foa)| < kZ[E{( Pr — Pk)z} =O0(k™?%)
as k — », by Lemma 4. So it suffices to consider U,. On A,, U, may be

written in the form
U,=U,, + Uy, + Us s
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where
k _ — —
Uy, = [Plo( 7 ;L‘k“_‘?:_—lplo(ka_l,Ynk_l)] '(ka_l - l/«),
k(1 - _ _ _
U2,k = [Pm( My V) — %PM(XM_I,YM_I)] : (Ynk_l - V),

Uy, < C[IX,,, , - ul® +IIF,

vy = VIP]-
Here
[E{U32’k} = O(k—2)
as k — », by Corollary 1. For U, ,, one finds from Theorem 2, Corollary 1 and
the conditions imposed on ¢ that, w.p.1 as 2 — «,

~ > my
pr—=p=p(up,v), pm(Xm,,_l,Ynk_l) = p(m,7v), 7 P

and
my_1
qy =q(kj,pk) - q(p,p) =p.
So
kq 4 1/2
2 dp - — (X, T dp
fAkUl,k dP < ['[Ak Pio( M, ) e lplo( My’ n,,_l) }

_ 1/2
X [ I1X, —ul*dP| =o(k™Y),
Ak k-1

by Corollary 1 and the dominated convergence theorem. The analysis of U, ,
is similar, to complete the proof. O

4.1. An approximating martingale. Let

5,
“ Vﬁ(k(ﬁk—p))‘

Then, by Propositions 2 and 3,
a Y

1 - — —
(5) EHV, | F_1} = k-1 k-1 Vk—1+(:1'k)~
2,k
0 1
So, if D, is any 2 X 2 matrix, then
1 ¢ Y
E{D,V, | F,_1} =D, k=1 k—=1|Vy 1+ Dyry,
0 1

where



DOUBLY ADAPTIVE BIASED COINS 243

This suggests the recursion

1-— v\ L P v\
k-1 k-1| =TI i-1 i-1] ,
0 1 i=m+1 0 1

where m = max(2n,,[a] + 1) and [x] denotes the greatest integer which is
less than or equal to x for —® < x < «. Observe that

-1

o ¥ a \-1 — a -1

o ) () 2 )

i—1 1—-1 = i—1 i—1 i1—1 ,
0 1 0 1

for i >m.Let ¢, =1for £ =1,...,m, and let

D, = D,_,

k a -1

i=m+1 t—
Then
(6) ¢, ~ Bk ask > x,
where 0 < B = B, < =, as is easily seen by taking logarithms. It is also easily
seen that
3 c.
C, Y )y ( — )
D, = jem+1\J 1
0 1
and

¢ [

cy(my —kp) —v (—.——)kﬁ—p

DV, = r(my p) P i-1 ( P ) .
k(pr — P)

By (5) and the definition of D,, {D,V, |.%,_1} = D;_,V,_1 + D1, for & > m.

So

n
DnVn = Dme + Z (Dka - Dk—lvk—l)

k=m+1

n n
=D, V,+ X [Dka_[E{DkVHyk—ﬂ]"‘ Y, Dyr,

k=m+1 k=m+1

=D,V,+M,+R,,

where
n
Mn = Z [Dka - [E{Dka |3‘7e—1}]
k=m+1
and
n
R, = Z Dyry,.

k=m+1

Observe that M, is a martingale and write M, = (M ,, M, ).
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5. Conditional variance. In this section, some preliminary results nec-
essary for the calculation of the asymptotic conditional variance will be
derived. The conditional variance terms are stated explicitly in Section 6.

PROPOSITION 4. Let

2= Po( &, V) V2¢(0)Plo( My V)

and

= pOl( I3 V) V (w)P01( M, V)

where V2¢1(0) = Cov, X denotes the Hessian matrix (azzp/ 30,301 < ica1<j<d
and VZp(w) = Cov, Y denotes the Hessian matrix (9%p/dw; é’ws

l<i<d,l<j<d*
Then the followzng hold:
- - 2
(a) E{(kpk — E{kpy, 15 1}) I'7k—1>
o2 72
- — + w.p.l,ask —
p 1l-p
- - 2
(b) IE{(kpk - Ekp, 15, -1}) I'%z—l}
o2 72
- — + inL!, ask — ;
p 1l-p
N N 2
(c) E{(kps — Elkpy 19-1))" 193]
o2 72
- — + inL', ask — »;
p 1l-p
A A 2
(d) IE{(kpk — E{k 5y |‘7k—1}) I<971e—1}
o2 2
- — + in probability, as k — o°.

p

Proor. (a) E{p, | %,_,} was computed in the proof of Proposition 3. Com-
bining this with (2) gives

ﬁk - IE{ ﬁk |‘?k—1}

1
ka " nk 1) [5k(X ,U«)—(ak_Qk)( my,_ 1_/-")] mk—l+1)

+ pou( X, T ) [(1 = 8)(Y, = ¥) = (01— 8)(Fey, — v)]

1
X —_———
n, ;+1

= P1o(

1)
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on A,. Then
E{(kpy — EEp, 155 1)) 17 y)

_ - k 2
= p’lO(ka_l,Ynk_l) V2¢(0)p10(ka_l,Ynk_l)(m) q;
{ot0( R T )(Zr, — )

+ pbl(ka—l’?nk—l) VZ(P( w) pOI(ka—l’?nk—l)(

) q,(1—q,)

m,_ ;+1

) (1 —4q)

n,_,+1

- - e oo\
+{P61( mk—l’Ynk—l)(Ynk—l - V)}2(_nk_1—+1) Qk(l - Qk)

- 2p,lO(ka—l’?nk—l)(ka—l - u)p:)l(zmk—l’?nk—l)(?nk—l - V)
k
( )Qk(l —q)

k
X
m,_;+1f\n,_;+1
on A,. As in the proof of Proposition 3, the following hold with probability 1:

plO(ka—1’ ?nk_l) d P10( My V), pO]_(ka_l,?nk_l) o d p01( m, y)’
my/k - p, n,/k > 1—p and q, — p. Result (a) now follows easily since
(X, , — ®)? and Y, - v)? are o(1).

(b) Let

- - - 2
W, = E{(kp, — E{kpy, 1 F_1)) |55y ).

It is sufficient to show uniform integrability of IWk |. Uniform integrability
follows if sup, [E{IWkI2 } < . To see this, let € > 0 be such that condition (vi) is
satisfied. Let A, be defined as in (2). Then

E{W2) = [A%sz dpP + [AkaZ dP =1+1I

Here
| W2 dP < k*P(A3) = o(1)
AC

k
as k — «. Next, since p is differentiable on R [defined in (vi)], there is a
constant C for which

_ k) -
[Akaz dP < C[Ak{(;l—k) [1+11X,, , — ul?]

E\° _
+—| [1+1F,
ng

k-1

- y||2]}2 dp

=0(1)
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as k — o, where the last equality follows from Lemma 3.

Let
(8) ﬁk = kﬁk - [E{kf’k I‘%e—l},
(9) Uk =kpy — [E{kﬁk |37k—1}'
Then

[E{02 15} - E{U2 1.9

=‘[E{2Uk(ﬁk - G)+ (0, - G) 19,)

<2/E{F 17 ) B0 - O) 1) +£{(0 - 0) 1)

by the Schwarz inequality. So, again using the Schwarz inequality,

EE(02 157 -,) - U2 17;,)]

< 2\/E[TF} E{(0, - 0,)") +E{(0, - 0.)")

-0
as k — o, by (b) and Lemma 5. Part (c) now follows from (b), and (d) follows
from the Markov inequality. O

LEMMA 6.
]}i_{‘}o[E{(Zk — ) (%5, — E{kp, | F-1}) I'%e—l} =0 w.pl
and
kli_If;[El[E{(Zk — ) (kD — E{kp, | F_1}) |5‘7e—1}| = 0.
Proor. Using (8) and H{X,,, — 18,7, 1} =0=HY,, — v §,,%_4},
[E{(Zk - Mk)(kf’k - [E{kﬁk ng—l}) I‘%e—l}

k _
= E{(ak - Qk)[pIO(ka_l’Ynk_l) : (m)(% - 8k)(ka_1 - M)

.

q,(1— qk)()?m,,_1 - M)

+P01(ka_l’?nk_l)

k —
ey CRIANEE]

(% T ) (ﬁ

— — k —
+ pOl(ka_l’Ynk_l) : (nk_l_+1)qk(1 - qk)(Ymk_l - V)
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on A,. The result now follows as in the proof of part (a) and by noting that
the terms of (X, — ) and (Y,, | — ») are o(1). This establishes the first

my .
assertion, and the second follows from Lemma 5, as in the proof of parts (c)

and (d). O

COROLLARY 2.
[E{(Zk = ) (kP — E{kpy | F2-1}) |5‘7e—1} -7 0.
6. Central limit theorem for the martingale. Asymptotic normality
of M, will be proved using the Cramér-Wold device and the martingale

central limit theorem.

THEOREM 3. Under conditions (1)—(vi),

1 1 !
( M, ,, =M, ,,) =4(0,3%,) asn — »,
) \/;L— ,

na+l/2
where
B2 L ,y2B2 (0.2 T2 _,YB (0.2 72
s 2a+1p( 2 a?@a+1)\ p l—p) a(a+ D\ p 1-p
1 -8 o2 T2 o2 72
Rl [ — +
a(a+ D\ p 1-p p 1-p

and = denotes convergence in distribution [ p = p(p, v), and a, B, v, o?

and 72 are defined in Proposition 2, (6) and Proposition 4].

Proor. By the Cramér—Wold device it suffices to show that
M 1,n + M 2,n
1 nl /2+a 2 ‘/;
is asymptotically normal with mean zero and variance n® = tioy, + 2t ity 0
+ t20,, for arbitrary ¢,,t, € R, where the o;; denote the entries of %,; since

(10) is a martingale, asymptotic normality follows from the martingale cen-
tral limit theorem, if the conditions of that theorem are satisfied. Writing

(10) | W, =t

k ¢ .
AM],k=M1,k_Ml,k—1=ck(zk_ﬂk) - 'y Z j—]_ Uk
j=m+1

and
AMZ,k = MZ,k - M2,k—1 = ﬁk’

for £ >t + 1, where ﬁk is defined in (8), these conditions may be written

{(t AM, , AMz,k)z

(11) Y E

+
1 _1/2+a 2
k=m+1 n ‘/E

=7k—1} —P5?
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and

Y E

k=m+1

AM, , AM, ,\?
L i/ara T2
n Vn
AM, , AM, ,

XI{ |t + 1 > 68
{ 1n1/2+a 2 \/—7{ }

as n — o for all § > 0, where I{-} denotes indicator of {-}. [See, e.g., Hall and
Heyde (1980), pages 58—63.] The following relation, a direct consequence of
(6), is used in the verification of (11) and (12):

LA Y8
13 —— ~—
(13) vj=§,+ 17
Relation (12) is easy to verify. In fact, |Z, — u,| <1 w.p.1, for all £ =
1,2,..., and HUZ|.%,_,}, B = m, are uniformly integrable by Proposition 4(c).
Moreover, c,/n*"1/% - 0 by (6) and £%_, . ,¢;/(j — 1) = O(k*) by (13). Rela-
tion (12) follows easily from these observations, by taking the expectation of
the left-hand side of (12).
For (11), observe first that, by Proposition 4, Corollary 2 and (6) and (13),

(12)

‘?k—l} —? 0

ke

n

1
TivEa Y EAM?, |7 .}

k=m+1

1 n k ¢\ 2
nlt2e Y E{lel(Zi—m) — |y X —1 U, | | %1
k=m+1 j=m+1
1 n
plt2a Y i1 —qp)
k=m+1

+(‘y f C—Jl) IE{[}kngrk_l}) +0,(1)

j=m+1J
o2 r2
—_— + ,

p 1-p

B? yB\?( 1
-* 2a+1p(1_p)+(7) (2a+1)

n
Z [E{AMl,k AM, , | F_1}

n1+a k=m+1
1 n A
= e Y |E{en(Z - m)T, | F5 1)
k=m+1
k ¢ .
-7 X 1 [E{Ukzl'%;—l}
j=m+1J
-8 [o?  7*
- — | — +
a(a+ 1)\ p 1-p
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and
1 n n N
— ¥ HAMZ, 150 =— ¥ EHU 1% )
N op—m+1 Ly ——
o2 72
- — 4+ . ad
p 1-p

In fact, the proof just given establishes a stronger assertion.

THEOREM 4. Let
1

a1z M

M,(t) = 1 , 0O0<t<l,n=>m,
ﬁMz,[nt]

and

2a+1 a+1
ot ot
3, = [

at+l
0'12t 0'22t

for 0 <t <1, where og;; are the entries in %, and [x] denotes the greatest
integer which is less than or equal to x. Let M(t), 0 <t < 1, be a process with
independent increments for which M(t) is normal with mean 0 and covari-
ance matrix 3, for 0 <t < 1. Then M, = M as n — = in D?[0, 1].

Proor. Write M, (¢) =[M,; (&),M, ()], 0<t<1, n=1 For fixed
a,, ay € R, it follows from (11), (12) and Durrett and Resnick [(1978), Theo-
rem 2.5] that a,M, , + a,M, , converges in distribution to a;M; + a;M, in
the topology of D[0,1]. That the finite-dimensional distributions of M, con-
verge to those of M follows directly. Moreover, by setting ¢, = 1 and a, =0
(respectively, a; =0 and a, = 1), it follows that M, ,, n > 1, and M, ,,
n > 1, are tight in D[0, 1]. That M,, = [M; ,, M, ,]is tight in D?[0, 1] follows
easily. O

7. A central limit theorem. The magnitude of the remainder term, R,
is determined next.

LEMMA 7.
1 1 . .
I]:lsa’)li W , ﬁ ‘R,| >0 in probability asn — «,

where R, = Y}_,. .1D,r, (and the components of r, are defined in Proposi-
tions 2 and 3).
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PrOOF. It suffices to show that the left-hand side approaches zero in L.
Recall from (13) that yX%_,,,,¢;/(j — 1) = O(k*), and observe that

1 1 1 n k c;
(na+1/2’ﬁ)’Rn=W )y (Ck"l,k—('y )y j_Jl)”z,k)

k=m+1 j=m+1
1 n
+— Z rz ke
‘/;l—k=m+1 '
That
n
[E{ > |”2,k|}= p(‘/—’;)
k=m+1
and

IE{ b k"‘lrz’k|}=o(n°‘+%) as n — o

k=m+1
follow directly from Proposition 3. For r; ;,let 0 < & < 1 be given. Then there
is a & > 0 for which r(x,y) < ¢l[(x — p,y — p)ll for all [|[(x — p,y — p)ll < &.
Since |[r(x, y)| < a + y+ 1 for all x and y, it follows that

{ £ w5 £ el o)
s
Eao (3 von]

Jlarrr D +;;+ D E{(%)z +(Pr — p)z}]

IA

)

IA

i o Cl CZ
—kgm(k+1) [8—‘/];—+g2-;]
~ C,Be a+1/2

a+1 ’

as n — o, for some constants C; and C,, where the last equality follows from
Lemma 1 and Proposition 1. The lemma follows. O

Asymptotic normality of (1/ Vn )V, may be established from Lemma 7 and
Theorem 3 using Slutsky’s theorem.

THEOREM 5. Under conditions H)—(vi),

1
—V,=41(0,%) asn — x,
n

=
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where
p(1-p) 2y* o? . 7 y [0 7P
+ — —
20+1 (a+l)(2a+1D) | p 1-p a+lyi p 1-p
- y o? 2 ol T2
— + —
a+1\ p 1-p p 1-p

and = denotes convergence in distribution.

Proor.
v, D;'D,V, D!
(14) Tn = = = Tn (D,V,+M,+R,).
Here

D_l ‘/;cn ‘/;cn j=m+1 -] -1
Vn 1

0 T

By Lemma 7 and equations (6) and (13), the limiting distribution of V, / Vn
is the same as the limiting distribution of

1
o2 peaMun
0 1 WM“

By Theorem 3, the limiting distribution of (15) is bivariate normal with mean
0 and covariance matrix

1
1oy |5 o0
B o 21 5 =2 Od
0 1 — 1
@
COROLLARY 3.
S, 1 p(1-p) 2y? a? 2
—_ = - N + —— .
Vn ﬁ(mn np) =710, 20+1 (a+1)2a+1) | p 1-p

THEOREM 6. Let

V,(t) = Vi 0<t<l,n>1,

1
=
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and
1 Y
V(¢) = | Bte o [M(2), O0<t<l,
0 1

where M(t) is as in Theorem 4. Then V, = V in D?[0, 1].
Proor. By (14),

1
\/n(t) = _‘/'TD[_n{f](Dme + M[nt] + R[nt])’

for all0 <t <1 and n > 2m/¢. So, by Lemma 7 and equations (6), (13) and
(14),

1y
lim E{ sup |V,(¢) — | Bt* & [My(#)|} =0 VO<s<1.
noe 1e<t<1
0 1
Also,
(16) sup[E{ sup l\/k(t)l} =0(V/8) as 8\ 0.
k 0<t<é

To verify (16), let r be the least integer for which 2” > n. Then there is a
constant C for which

n
E{max|D; 'Ry} < C ¥ E{k~Iry 4l + Iy 41} = O(Vr)
=n k=m
and

[E{maxIIDk“leH} <CY [E{max2“’le1 l + 1M, kl} =0(Vn),

k<n j=1 k<27 ’ ’
as n — «, by Propositions 2 and 3 and Doob’s (1953) maximal inequality.
Relation (16) and Theorem 6 follow. O

8. Example: normal responses. Suppose it is desired to design a se-
quential procedure, with a randomized allocation scheme, for the fixed width
interval estimation of the difference of the means of two populations. Mini-
mizing the total size of the experiment can be accomplished by designing the
sequential procedure so that subjects are allocated to the two treatments in
the correct proportions.

More formally, assume that X,, X,,... and Y,,Y,,... are independent
random variables for which

X, Xy,... ~#(w,0?) and Y,,Y,,... ~Mv,7?),

where the four parameters u, v, o and 7 are unknown. Here, X, X,,...
denote responses to treatment A, and Y,,Y,,... denote responses to treat-
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ment B. These could be, for example, blood pressure readings. Then the
correct allocation proportions for minimizing the total sample size and retain-
ing preassigned coverage probability and interval width are [see Robbins,
Simons and Starr (1967) or Eisele (1990)] /(o + 7) X k to treatment A and
7/(0 + 7) X k to treatment B. Thus,

o
2 2y _
p(a' 7 ) o+ 71
Taking
52 1y 7 ) A2 . 2
Tmy = (mk h 1) ,Zl(Xi —ka) and Ty = (nk - 1) EI(Y: - Ynk)
i= i=

to be the usual estimates of 0% and 72 gives

~
A Om
Pr = & At
O, + Ta,

k

The sequential procedure can now be described as follows: to start, take
ny = 2 observations on X and on Y. Then, if at any stage there are m,
observations on X and n, on Y, with 2 = m, + n, > 2n,, take observation
k+1lon X if

my .
Upi1 < Q1 = Q('k—,Pk)~

Otherwise, take observation 2 + 1 on Y.

If the desired width and coverage probability of the confidence interval are
2h and «, respectively, and if the constant a is defined by 2®(a) — 1 = a,
where ® denotes the .#10, 1) distribution function, then a possible stopping
rule for the sequential procedure is: stop after N observations, where

6, &2 h\?
N =inf{k >2ny: — + —+ < | —

my ny ay

and {a,} is a given sequence of positive constants such that a, — a as & — =,

THEOREM 7 (Central limit theorem). Under conditions (1)—(vi), as h — 0,
for all u, v, o and 7,

PrOOF. Theorem 7 is a special case of Corollary 3. To find the variance,
note that

1
W(mw — Np)
ol + 7

4o7(0o + 7)3

oT 2y?

=70 (o + 1)} (2a+1) T larD@ar 1)

T

0'2,72 = —
Plo( ) 2T(a+ 7)2
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and
— g

02,7 = ——
por( ) 27(o + 7)2

Now apply Corollary 3 to get the variance. O

For more details on this sequential procedure, including derivations, other
stopping rules, asymptotic properties and simulation results, see Eisele (1990).
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