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OPTIMAL RATE OF CONVERGENCE FOR
FINITE MIXTURE MODELS!

By J1aHUA CHEN
University of Waterloo

In finite mixture models, we establish the best possible rate of con-
vergence for estimating the mixing distribution. We find that the key for
estimating the mixing distribution is the knowledge of the number of com-
ponents in the mixture. While a ,/n-consistent rate is achievable when
the exact number of components is known, the best possible rate is only
n 14 when it is unknown. Under a strong identifiability condition, it is
shown that this rate is reached by some minimum distance estimators.
Most commonly used models are found to satisfy the strong identifiability
condition.

1. Introduction. Let {f(x,0): 0 € ®} be a family of densities with re-
spect to a measure u, and let &, be the class of all m-point mixing distribu-
tions whose support points lie in the compact set ®. A finite mixture model
with m-mixing components is given by

(L.1) f(x,G) = ] f(x,0)dG(0),

with G € &,. Suppose we are doing inference based on the model assumption
that G € UL, & but the true G, call it Gy, is in U;-":_l ;. Let G be a consistent
estimator of G in the model G € U}, ;. We will show that this estimator,
viewed as a distribution function, cannot converge to G in the .#;-metric any
faster than n~4, where n is the sample size. This should be compared with
the rate n~1/2 that is possible if Gy € %,,. Here the #;-metric is defined to be

d(Gh,Gs) = [@ 1G1(6) — G2(0)] d.

The optimal rate of estimating the mixing distribution G has recently at-
tracted much discussion when f(x,0) = f(x — 6). It is known that the opti-
mal rate ranges from (logn)~1/2 to n=1/4 for various distribution families of
f(x—0). See Carroll and Hall (1988), Zhang (1990) and Fan (1991) for details.
The optimal rate of convergence for other mixture models remains largely un-
known. The nonparametric maximum likelihood estimator of G is known to be
consistent under general conditions; however, its rate of convergence remains
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almost untouched. See Kiefer and Wolfowitz (1956) and Pfanzagl (1988). For
more complete references, see Titterington, Smith and Makov (1985) and Tit-
terington (1990).

In Section 2, we will consider a simple one-parameter model, with param-
eter A, that is embedded in the general problem. In this parametric model,
the mixing distribution has one component if 2~ = 0, and has two components
otherwise. We will show that the optimal rate of convergence for estimating
h, when h = 0, is n~1/4 using a result of Héjek. Moreover, the _#;-distance
between G, and Gy is proportional to A. This one-parameter problem is con-
tained in our original problem, which proves our claim about the best possible
rate. In Section 3, we will show that this rate is optimal, since it is attain-
able by a minimum distance estimator. In Section 4, several commonly used
distribution families are shown to satisfy required conditions.

2. The best possible convergence rate. We begin by constructing a
one-parameter model that captures the essential features of our problem. Let

2.1 Gr(0) = 286_1(0) + 3621(0),

where
0, 6<h,
51(0) = {1, oo

and h € R. We show that the maximum likelihood estimator (MLE) of A has
convergence rate n~1/4 at A = 0. Note that

IGs = Goll = [ 1G4(6) — Go(6)Id6 = $h.
Hence, G;, estimates G at the rate n=/* too.

PROPOSITION 1. Let X1, Xgq,...,X, be independent and identically dis-
tributed (iid) random variables with density function f(x,Gp), and let

UX1,Xs,...,Xn, h) =) log(3f(Xi,—h)+ 3 (Xi,2h))
i=1
be the log-likelihood function. Assume the density function f(x,0) satisfies
regularity conditions

<o fori=2,3,4,

(X, 0"
‘ f(X,0)

and there exists a function g(x) such that

fO(X,00)  fH(X,00)
F(X,00)  F(X,02)

< g(X)|61 — 62)°,
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for some & > 0, and
Eg%(X) < co.

Then the MLE of h has convergence rate n='/* at h = 0.

The proof is given in the Appendix.

The slower rate of convergence is due to the fact that G has only one support
point at A = 0 and [60dG = 0. As a consequence, the model has zero Fisher
information at A = 0. The distribution family {G;, h € R} is otherwise well
defined in the sense that different 4 correspond to different G and it is smooth
around A = 0.

Even though the MLE fails to achieve a ./n rate of convergence at A = 0,
this does not mean it is impossible, due to the phenomenon of superefficiency.
However, it will be shown that if one considers the performance of an esti-
mator in a neighborhood of 2 = 0, then no estimator can uniformly over that
neighborhood achieve a rate better than n~1/4, For this purpose, let us intro-
duce the following simplified definition of local asymptotic normality (LAN)
from Ibragimov and Has’'minski (1981) and a result from Hajek (1972).

DEFINITION 1. Let X, X,,...,X,,... be iid random variables with the
density function belonging to {f(x,0), 8 € ®}. The latter is called locally
asymptotically normal at the point 8y € ® as n — oo if, for some ¢(n) =
¢(n,0y) and any u € R, the representation

[Ty F(Xi,00 + @(n)u)
;l:l f(Xi:BO)

1
= exp{uZn - §u2 + (,l’n(u, 00)}

Zn,@o(u) =
(2.2)

is valid, where
Z,—>q4 N(0,1) asn— o0
under 6 = 6y, and, moreover, for any u € R we have
Yn(u,0) > 0 when 6 =6

in probability as n — oo.

Distribution families which satisfy the LAN condition have special proper-
ties. Let w(¢) be a nonnegative symmetric function of ¢ which is continuous
at 0, not identically 0 and w(0) = 0. Further, assume the sets {¢: w(¢) < c}
are convex for all ¢ > 0 and are bounded for all sufficiently small ¢ > 0. The
following result is attributed to Hajek (1972).
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THEOREM 0. Let {f(x,0),0 € O} satisfy the LAN condition at the point
0o € ©® with the normalizing value ¢(n) and let ¢(n) — 0 as n — oo. Then,
for any family of estimators T, of 0 and any ¢ > 0, the inequality

liminf sup Eg{w[e Y (n)(T, - 0)]} > \/—;—_ﬂ_fw(x)exp{—%xz} dx

n—=00 |19—gy|<e
is valid.

The theorem we have just described shows that when an arbitrarily small
neighborhood of a parameter point is considered, no estimator can do better
than what is described above. The ¢(n) is the best possible rate of convergence
at the point. Under this consideration, we will show that the best possible
rate for the mixture model (1.1) is n~1/4 at some parameter points under some
regularity conditions.

LEMMA 1. Suppose in the model f(x,Gp) with Gy, given by (2.1), the den-
sity function f(x,0) satisfies the same regularity conditions given in Propo-
sition 1 with the moment requirements increased to the third order. Then
{f(x,Q:), Q:= Gt/«/m} satisfies the LAN condition at t = 0 with

17 . 29-1/2

The proof is given in the Appendix.

The fundamental way that this LAN analysis differs from the standard
parametric theory is that here the first derivative of the log-likelihood in A is
identically zero, regardless of the data, at A = 0, so that higher-order deriva-
tives come into play in the asymptotic analysis and one must switch from
parameter A to parameter ¢ to obtain a ./n rate.

With this result, we obtain the following theorem.

THEOREM 1. Suppose that in model (1.1), the true mixing distribution G €

U;":'ll &,. Then the optimal rate of convergence ¢(n) for estimating G is at most
Z1/4
n~1/4,

PROOF. The general model contains the submodel given in Lemma 1. The
best possible rate for estimating ¢ in the submodel is ¢(n) = n~Y2. Since
| Q: — Qoll = O(t1/2), the best possible rate for estimating @; or, in general, G
is O(n~V4). O

3. The optimal rate. We have shown in a finite mixture model when
the number of components is known up to an upper bound, the best possible
convergence rate is n~1/4, We show in this section that the convergence rate
n~1/4 is achievable.
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Before stating our main results, we need to introduce some concepts of
identifiability. The mixture model (1.1) is identifiable if F(x,G1) = F(x,G2)
implies G; = G2. When (1.1) is restricted to finite mixtures, this property is
called finitely identifiable.

DEFINITION 2. The family {F(x, 6),6 € ®} is called strongly identifiable if
F is twice differentiable in 6 and for any m and m different 64,..., 0, the
equality

sup Z[ajF(x,Gj) + BjF’(x,Oj) + ij”(x, Bj)] =0.
x |j=1

implies that ;= B;=vy;=0for j=1,2,...,m.

Clearly the strong identifiability implies finite identifiability if F is twice
differentiable. We will show that when a distribution family is strongly iden-
tifiable the sup norm distance between two finite mixtures is at least propor-
tional to the size of the squared .#;-distance between their mixing distribu-
tions. This enables us to estimate the mixing distribution with the desired
convergence rate.

Also, we define

sup, |F(x,G1) — F(x,G2)|/I1G1 — G2ll%, if G1 # Gq,
o0

¥(G1,G2) = { if G1 = Go.

K

Then we have the following lemma.

LEMMA 2. If, for all x, F(x,0) is twice differentiable with respect to 0 with
second derivative F"(x,0) satisfying a uniform Lipschitz condition

(3.1) |F"(x,01) — F"(x,02)| < c|61 — 62/°,

for all x, 81, 62 and some fixed c and & > 0, and if {F(x,0), 0 € O} is strongly
identifiable and © is compact, then, for fixed Gy,

(3.2) alimoalimoinf{tp(Gl,Gz): |G1 — Goll <81, IIG2 — G1|l < 82} >0,
1—> 2—>
where Gy, G1 and Go have at most m < oo components.

The proof is given in the Appendix.

In terms of this lemma, the minimum distance type estimators can be con-
structed to achieve the best rate of convergence. Let F,(x) be the empirical
distribution function constructed from iid samples X, Xo,..., X, with distri-
bution function given by (1.1). Let G, be a distribution function on ® such
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that
. 1
(3.3) sup |F(x,Gp) — Frp(x)| < ir(l;f sup |F(x,G) — Fp(x)| + -
X X

where inf is taken over all the distribution functions with at most m support
points. The term n~! on the right-hand side is used to ensure the existence

of én

THEOREM 2. Under the conditions of Lemma 2,
1Gn — Gall = Op(n™14),

in probability under F(x,G1) uniformly for G such that |G1— G,| < &, where
G, is a fixed mixing distribution with at most m components.

PrOOF. By (3.3), we have
sup |F(x,G,) — F(x,G1)|
X

(3.4) < sup|F(x, Gy) — Fp(x)| +sup | Fu(x) — F(x,G1)|

<2sup|F,(x) — F(x,G1)| + % = 0,(n"12),

Note that sup, |F,(x) — F(x,G1)| = 0p(n‘1/2) is the Kolmogorov—Smirnov
distance. Clearly, én has to converge to G;. Otherwise, from the compactness
of O, there would be a subsequence of G, which converges to Gg # G1. This
would lead to sup, |F(x,G1) — F(x,G2)| = 0, which contradicts the identifia-
bility. Lemma 2 then implies

||én — G1|? < csup|F,(x) — F(x,G1)| = 0p(n_1/2), O

The above minimum distance type estimator of G was also discussed in
Deely and Kruse (1968). They found that the estimator is consistent and that
efficient linear programming algorithms can be used to construct estimators.
They did not, however, discuss the rate of convergence.

4. Conditions on moments and identifiability. In previous sections,
a best possible rate of convergence for estimating G in model (1.1) is found
and it was shown that this rate is achievable. In this section, we present some
results on the strong identifiability of mixture models. Some commonly used
models are shown to satisfy the conditions required by Theorems 1 and 2.

THEOREM 3. Suppose that [(x) is a differentiable density function and
F(x,0) = [%, (¢t —0)dt. If limy ,1c0 f(x) = limy s 400 f'(x) = O, then F(x,0)
satisfies the strong identifiability condition.
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PROOF. We need to show that if

4.1) Z[ajF(x,Gj) + ,BjF’(x,Oj) + ij”(x,Bj)] =0,
j=1

for any x, then a;, B, and vy; are all 0. If (4.1) is true, we have

/ exp{itx}d{i[a,-mx,oj) B F (x,0,) + v, F(x, am} _o,

J=1

where i2 = —1. Hence
3 [aj — B;(it) + v;(it)*Texplit;} [ explitx} dF(x) = 0.
=1

J=

Since [exp{itx}dF(x) equals 1 when ¢ = 0 and is continuous at the point,
we have

>l — Biit) + y;(it)*]exp{it;} = 0,
j=1

for ¢ in a neighborhood of 0. Since this is an analytic function of i#, it must
be 0 for all ¢£. Multiplying it by exp{—%tz} and taking the inverse Fourier
transformation, we obtain

D [aj— BiHi(x —0;) +v;Ha(x — 6;)]exp|—1(x — 6;)*} =0,
j=1

for all x, where Hq(x) and H(x) are Hermite polynomials. Observe that,
when x — oo, one of exp{—%(x — 6;)%} tends to 0 with the slowest rate, hence
its corresponding polynomial a; — B;H1(x — 6;)+v; H2(x—6;) must be 0. This
implies that all @}, 8, and vy, equal 0. Hence the theorem is proved. O

COROLLARY. The conclusion of Theorem 3 remains true when

Fe0 =1 [ f(g) dt,

where 0 is in (0, 00).

PROOF. If a random variable X has distribution F(x), then Y = |X]| has
distribution F(x) — F(—x). Further, the distribution of logY belongs to a
location model [see also Teicher (1961)]. Hence Theorem 3 applies and it proves
the corollary. O

By Theorem 3 and straightforward calculations, the location and scale fam-
ilies of normal and Cauchy distributions satisfy conditions of Theorem 2.
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The following calculations illustrate that the Poisson distribution family

also satisfies these conditions: since

x

F(x,6) = - expl-o},

we have
f"(x,0) x(x—-1) 2x
Fxo) - & g b
fO(x,0) x(x—1)(x—2) _ 3x(x-1) N 3x 1
f(x,0) 63 602 0
and

f®(x,0)  x(x—1)(x—2)(x —3) 4x(x-1)(x-2)
f(x’o) B 04 03

6x(x—1) 4

R

+ L

Clearly, the moment and Lipschitz conditions of Theorems 1 and 2 are satis-
fied. Now let us examine the strong identifiability. In this model, we have

X 01
F(x,0) =) —exp{—6}.
i=o v
Thus, if
m
=1

for any x, we have to show that all «j, B8; and v; are 0. By calculating the
moment generating function of (4.2), we obtain

(4.3) i[(a,- — Bj+vj)+ (B —2y;) exp{t} + v, exp{2t}]exp{6;(e' = 1)} = 0,
Jj=1

for any ¢. Suppose 0, is the largest among 6;’s. Then exp{fn(e’ — 1) + 2t}
goes to oo with the fastest speed as ¢ goes to co. So y,, must be 0 because of
(4.3). When this is the case, exp{6,, (e’ — 1) + ¢} becomes the fastest one, hence
B must be 0 and so on. Repeating this procedure, we conclude that if (4.2)
and hence (4.3) hold, all the a;, B; and y; are 0. This shows that the Poisson
mixture model is strongly identifiable.
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APPENDIX

PROOF OF PROPOSITION 1. The first two derivatives of [( X1, Xo,..., X, h)
(with respect to A, the same for f) are
I =21 (X;,—h)+2f(X;,2h)
U'(h) =
W) =2 SR, W+ [(X.,2h)

i=1
and
S ERfUK —h) 4 4F (X 2h) I (2f(X;,2R) — 2f/(Xs, —h)\?
VN =Y = r X kT (X5, 2h) Z( SF(X:,—h) & [(X;,2h) )

P
Let us try to find the local maximum of the likelihood for which 4 is closest to
0. Note that no other local maxima, if any, can converge faster. Since //(0) =0
for any set of observations, A = 0 is a local maximum when [”(0) < 0. Note
that

, "(X;,0)
o) = Z F(X5,0) "

Let E( denote the expectation under the distribution corresponding to A = 0.
We have
Eyl"(0)=0
Under regularity conditions, we can apply the central limit theorem and hence
Py{l"(0) <0} — % as n — oo.
Thus, the MLE A = 0 when 7(0) < 0, which has probability % if h = 0.
However, when 1”(0) > 0, we need to calculate 1®)(0) and (¥ (0) to locate the

local maximum point of I(4).
By some simple calculations, we obtain

FO(X;,0)
l(3)(0) Z f(X“O)
and
X;,0 "(X;,0
1o = Z f(gf“O)) ‘lzz@((x“m))
Let
LX) X0 f9(X00)
= ExL0 BT, YT R0

Under regularity conditions,
E()Ai = O, E()Bi = 0, E()Ci = 0;

2 2 2 .
EyA? < oo, EyB; < oo, EC% < o0
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so we have
Y Ai=0,(n"?), Y Bi=0,(n"?), Y Ci=0,(n"?.
i=1 i=1 i=1

With this fact and Taylor’s expansion, we find
UR) = 10) + )" Ak 4 33" Bk — 3" A% 4 0,(n'?h),
i=1 i=1 i=1

as h — 0. Differentiating and setting equal to zero, we find an approximating
cubic equation, one of whose roots is zero. Since we have assumed Y7 ; A; =
%l"(O) > 0, the nearest local maximum to A = 0 must be one of the other roots

n n 2 n n 1/2 n -1
[ZB,-¢<<ZB,-) +162A?2Ai) ]x[4ZA%] (14 0,(1)).
i=1 i=1 i=1 i=1 i=1

Unless Eo[f"(x,0)/f(x,0)]? = 0, the average n~1 Y7 ; A? tends to a positive
constant and, hence,

N n n _1/2 n 1/2
h= SO(ZAi) I:ZA?] [ZA;‘] [1+0,(1)]= 0,(n~Y4). -

i=1 i=1 i=1

PROOF OF LEMMA 1. Denote o2 = E[f"(x,0)/f(x,6)]?. Using the same no-
tation as in Definition 1, when u > 0 (v < 0 is similar), we have

R 2f(Xu «/¢U)+f(Xz,2«/§0u)—3f(Xu0)
log Zya(u) = 3 og 1+ 37(X.,0)
Let
Y. — 2f(X;, - «/¢U)+f(Xz,2«/§0u)—3f(Xu0)
' 3f(X;,0)
Then we have the following expansion:
-~ ["(X,,0) 1/®(X;,0) 3/2
=, 0 Y s TR0
1f®(X;,0
1L (pu)? + O,lpu) 1 X0)
By simple calculation, using ¢ = n"/20~! and Eo[ f9/f1=0, we find
n _ _1/2 4 f”
Yvi=n oty Lt Fxs0) oD
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and
n
Y 1Y 2 = 0,(n712) = 0p(1).
i=1
Note that, when min{Y;} > -%,
log(14+Y,)-Y,;+ ;Y% <|Y;P

Hence, under the same condition,

n n n
log Zpo=7 log(1+Y;)=) Y, - %ZY?+CZ|Y,«|3

i=1 i=1 -1
(A.1)

"(X;,0 1 ., _ "(X;,0
=ty L - “Z(f((xl,m)) Forll),

where C is a bounded random variable. At the same time, by the Markov
inequality, the finite third moment conditions and the expansion of Y;, we get

P(min{Y;} < -3) <> P(Y ) < BZEIYII3 O(n~1/2),
i=1
Hence (A.1) holds with probability tending to 1, which implies that the LAN
condition is satisfied. O
PROOF OF LEMMA 2. If(3.2) is not true, there will be sequences of G,; and
G2 tending to Gy and making (G,1, G,2) converge to 0. Note that

1

W(Gn1, G [P (.G (w) = F(x, G5 (w)} du|/1Gm — Grazl®
= sup| [ {F(x,G;}) - F(x,G73)) du
(, G} -G ;ldu
(A2) / n2 n2}
+ %/0 F”(x Gn2){G - n21}2du'
+ Rn(x)l/“Gnl - Gn2||2
=sup|Ap(x)+ Bp(x) + Cr(x) + Rn(x)|/ D,
where

O, ={u: 0<u<1; |Gyi(u)— G| < IGu — Gnall'?},
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Os, is its complement and

Ru(x) = o(/on{G;ll(u) - G;zl(u)}2du) - o(/ol{G;}(u) - G;zl(u)}zdu)

because of (3.1) and the definition of set O,. The set O, is needed because
lG;ll(u) — G;%(u)[ may not converge to zero for some u. The terms A,(x),
B,(x) and C,(x) are linear combinations of F(x,6), F'(x,6) and F"(x,0) for
different 6’s, respectively. Since ® is bounded, we can select a subsequence of
Gn1 and G, further such that they have fixed numbers of components and
each of their support points converges to a fixed point in ®. Hence, after being
properly rescaled, the limits of A,(x), B,(x) and C,(x) are still linear com-
binations of these functions with constant coefficients (not depending on x).

This implies C,(x)/D, — Z;?’:l v;F"(x,80;) for some y; and not all of them
vanishing and with 6; € ©. The coefficients in A,(x)/D, and B, (x)/D,, can
go either to infinity or to a constant by further selecting a subsequence of
G’s. If they go to infinity, a sequence d, = O(1) can then be found such
that d,A,(x)/D, converges to Y it1@jF(x,6;) and d, B,(x)/D, converges to
Y71 BjF'(x,6;) for some noninfinite a; and 8; and not all of them vanishing.
Hence, in any case, we have d, and «;j, 8),7 j not all zero (although y; may
have been changed if multiplied by d,,), such that

| fo{F(x,G1(w)) — F(x,G; (w))} dul

dn
”Gnl - Gn2”2

m/
Jj=1

for some integer m’. By the strong identifiability, the supremum of the
right-hand side of the above equation is nonzero, which contradicts
¥(Gn1,Gr2) - 0. O
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