UNIFORMLY MORE POWERFUL, ONE-SIDED TESTS FOR HYPOTHESES ABOUT LINEAR INEQUALITIES

BY HUIMEI LIU AND ROGER L. BERGER

National Chung Hsing University and North Carolina State University

Let X have a multivariate, p-dimensional normal distribution ($p \geq 2$) with unknown mean μ and known, nonsingular covariance Σ. Consider testing $H_0: b_i^T \mu \leq 0$, for some $i = 1, \ldots, k$, versus $H_1: b_i^T \mu > 0$, for all $i = 1, \ldots, k$, where b_1, \ldots, b_k, $k \geq 2$, are known vectors that define the hypotheses. For any $0 < \alpha < 1/2$, we construct a size-α test that is uniformly more powerful than the size-α likelihood ratio test (LRT). The proposed test is an intersection–union test. Other authors have presented uniformly more powerful tests under restrictions on the covariance matrix and on the hypothesis being tested. Our new test is uniformly more powerful than the LRT for all known nonsingular covariance matrices and all hypotheses. So our results show that, in a very general class of problems, the LRT can be uniformly dominated.

1. Introduction. Let $X = (X_1, \ldots, X_p)$, $p \geq 2$, be a p-variate normal random variable with mean vector $\mu = (\mu_1, \ldots, \mu_p)^T$ and known, nonsingular covariance matrix Σ. We consider the problem of testing

$$H_0: b_i^T \mu \leq 0 \quad \text{for some } i = 1, \ldots, k$$

versus

$$H_1: b_i^T \mu > 0 \quad \text{for all } i = 1, \ldots, k.\quad (1.1)$$

Here b_1, \ldots, b_k, $k \geq 2$, are specified p-dimensional vectors that define the hypotheses. Berger (1989) gives several examples of hypotheses that can be expressed in this way. We assume H_1 is nonempty, so the testing problem is meaningful. (We use the symbol H_1 to denote the set of μ vectors specified by the hypothesis, as well as the statement of the hypothesis.) We also assume that the set $\{b_1, \ldots, b_k\}$ has no redundant vectors in it, that is, there is no b_j such that $\{\mu: b_i^T \mu > 0, \ i = 1, \ldots, k\} = \{\mu: b_i^T \mu > 0, \ i = 1, \ldots, k, \ i \neq j\}$.

Sasabuchi (1980) discusses conditions that are equivalent to our two assumptions.

In this paper, for any testing problem of the form (1.1) and any $0 < \alpha < 1/2$, we propose a new size-α test that is uniformly more powerful than the size-α likelihood ratio test (LRT). First we consider hypotheses that have only two linear restrictions ($k = 2$). Two new tests, ϕ_0 and ϕ_1, are proposed for the cases $b_1^T \Sigma b_2 \geq 0$ and $b_1^T \Sigma b_2 < 0$, respectively. In both cases, the rejection

Received August 1993; revised May 1994.

Key words and phrases. Uniformly more powerful test, linear inequalities hypotheses, likelihood ratio test, acute cone, obtuse cone, intersection–union test.
region of the new test is like Berger's (1989) in that it contains the rejection region of the LRT and an additional set, but the size of the new test is still α. So the new test is uniformly more powerful than the LRT. Berger (1989) proposed a more powerful test for the $b'_i\Sigma b_i \leq 0$ case. The test ϕ_0 we propose is different than Berger's test and, in some cases, appears to be more powerful. Then, recognizing that, for $k > 2$, H_1 can be written as the intersection of sets each defined by two inequalities, we use the intersection–union method to combine tests of the form ϕ_0 and ϕ_1 to obtain a test ϕ_g that is uniformly more powerful for the general problem (1.1).

The initial work on testing problems where both null and alternative hypotheses are determined by k linear inequalities was by Sasabuchi (1980). Sasabuchi (1980) treats the problem where the null hypothesis corresponds to the boundary of a convex polyhedral cone determined by linear inequalities and the alternative corresponds to its interior. His problem is to test

$$H_{0S}: b'_i\mu \geq 0 \quad \text{for all } i = 1, \ldots, k, \text{ where equality holds for at least one value of } i$$

(1.2)

versus

$$H_{1S}: b'_i\mu > 0 \quad \text{for all } i = 1, 2, \ldots, k.$$

Sasabuchi (1980) showed that the size-α likelihood ratio test (LRT) of problem (1.2) is the test that rejects H_{0S} if

$$Z_i = \frac{b'_iX}{(b'_i\Sigma b_i)^{1/2}} \geq z_\alpha \quad \text{for all } i = 1, \ldots, k,$$

where z_α is the upper 100α percentile of the standard normal distribution. Berger (1989) shows that, although $H_{0S} \subset H_0$ and H_0 is a much bigger set than H_{0S}, the size-α LRT in problem (1.1) is the same as in Sasabuchi (1980). The LRT has some optimal properties. Lehmann (1952), Cohen, Gatsonis and Marden (1983) and Sierra-Cavazos (1992) prove under various conditions that the LRT is uniformly most powerful among all monotone, size-α tests. Cohen, Gatsonis and Marden (1983) also show that, in a bivariate problem, the LRT is admissible. However, the LRT is a biased test. Berger (1989) points out that the power will be approximately α^p when μ is close to 0 in the sign testing problem. Lehmann (1952) showed that in some problems of this type, no unbiased, nonrandomized test exists. Iwasa (1991) also points out the LRT is d-admissible but not α-admissible in a bivariate problem. The α-admissibility would guarantee the nonexistence of a uniformly more powerful test of size α, but the d-admissibility does not. So it is possible that we can find a nonmonotone test which is uniformly more powerful than the LRT, and several researchers have worked on finding such tests. We believe the increased power of these tests outweighs their lack of monotonicity, even in practical situations. However, if monotonicity is the primary criterion, then the LRT is the most powerful test.

Gutmann (1987) constructs two tests, when X_1, \ldots, X_k are independent, that are uniformly more powerful than the uniformly most powerful mono-
tone test in the sign testing problem. Nomakuchi and Sakata (1987) also give a uniformly more powerful test in the bivariate normal case, which is a special case of Sasabuchi’s (1980) problem. Berger (1989) gives a class of tests which are more powerful than the LRT if \(b_1^T \Sigma b_2 \leq 0\). If \(X\) is a normal random vector, then Gutmann’s (1987) problem is a special case of Berger’s (1989), and Berger’s test is more powerful than Gutmann’s test. Iwasa (1991) generalized the Nomakuchi–Sakata test to an exponential family. In the same paper, he also generalized Berger’s test to an exponential family in the sign testing problem when \(k = 2\). Shirley (1992) proposes a test that is more powerful than Gutmann’s when \(k = 3\).

To simplify computation we consider the transformed version of the original problem that is similar to the one used by Sasabuchi (1980) and Berger (1989). Let \(\Gamma\) be a \(p \times p\) nonsingular matrix such that \(\Gamma^T \Sigma \Gamma = I_p\), the \(p \times p\) identity matrix. So \(\Gamma^{-1}(\Gamma^{-1})^T = \Sigma\). Make the transformation \(Y = \Gamma X\). Then \(Y \sim \mathcal{N}_p(\theta, \Gamma^T)\), where \(\theta = \Gamma \mu\). Let \(\|a\| = (a^T a)^{1/2}\) denote the norm of a vector. Define \(h_i' = b_i^T \Gamma^{-1} / \|b_i^T \Gamma^{-1}\|\). Then \(b_i^T \mu = h_i' \theta \|b_i^T \Gamma^{-1}\|\). Therefore, problem (1.1) is equivalent to observing \(Y\) and testing

\[
H_0 : h_i' \theta \leq 0 \quad \text{for some } i = 1, \ldots, k
\]

versus

\[
H_1 : h_i' \theta > 0 \quad \text{for all } i = 1, \ldots, k.
\]

We will use \(Y\), \(h_i\) and \(\theta\) throughout the rest of the paper. Note that \(\|h_i'\| = 1\). This will simplify some expressions. For example, in terms of these variables, the size-\(\alpha\) LRT of (1.1) or (1.3) is the test that rejects \(H_0\) if \(h_i'Y \geq z_\alpha\), for all \(i = 1, \ldots, k\).

In Section 2 we propose a new test \(\phi_o\) for the case \(k = 2\) and \(h_1' \Sigma h_2 \geq 0\) \((b_1^T \Sigma b_2 \geq 0)\). To our knowledge, this is the first more powerful test described for these problems except that Berger considered the \(h_1' \Sigma h_2 = 0\) case. We compare the power of \(\phi_o\) and the LRT in an example. We also discuss a restriction on size-\(\alpha\) tests that shows why some types of construction will not give uniformly more powerful, size-\(\alpha\) tests in this case. In Section 3 we consider the \(k = 2\) and \(h_1' \Sigma h_2 < 0\) case, which was also considered by Berger (1989). We imitate the strategy used in Section 2 to propose another test \(\phi_a\), which is more powerful than the LRT. We compare the power functions of \(\phi_o\), Berger’s test and the LRT in an example. In Section 4, we construct a uniformly more powerful, intersection–union test based on \(\phi_o\) and \(\phi_a\), for the general, \(k \geq 2\), problem (1.1). Section 5 contains some general comments on intersection–union tests.

2. **Uniformly more powerful test when the cone is obtuse.** In this section, we will consider the testing problem (1.3) when \(k = 2\) and \(h_1' \Sigma h_2 \geq 0\). Let \(\tau\) be the angle between the vectors \(h_1\) and \(h_2\). Since \(\cos(\tau) = h_1' \Sigma h_2 \geq 0\), \(\tau\) is acute. However, the angle in the cone \(\mathcal{F} = \{0: h_1' \theta \geq 0, h_2' \theta \geq 0\}\) is \(\xi = \pi - \tau\), which is obtuse. So we say \(H_1\) is an obtuse cone when \(h_1' \Sigma h_2 \geq 0\). Figure 1 illustrates this. Berger (1989) describes a test in the opposite case, \(h_1' \Sigma h_2 \leq 0\).
His method of test construction does not yield a size-\(\alpha\) test when \(h_1' h_2 > 0\). We discuss this in Section 2.2.2.

2.1. A test that is uniformly more powerful than the LRT. In this section we will describe a new test that is uniformly more powerful than the LRT when the alternative hypothesis is an obtuse cone. We start by defining the test \(\phi_o\). Then we show that \(\phi_o\) is a size-\(\alpha\) test and is uniformly more powerful than the LRT.

Before describing the test \(\phi_o\), we will define the functions and set which will be used to construct the rejection region for the test \(\phi_o\).

Definition 2.1. For any \(s, -\infty < s < \infty\), let \(c_s = (\sqrt{1 + s^2} - s)z_\alpha\) and let \(L_s\) be the two-dimensional set defined by

\[
L_s = \left\{ (u, v) : \frac{u + sv}{\sqrt{1 + s^2}} \geq z_\alpha, v \geq z_\alpha \right\}.
\]

The set \(L_s\) is an obtuse cone if \(s \geq 0\), and \(L_s\) is acute cone if \(s < 0\). Examples of each are shown in Figure 2 and in Figure 6. The vertex of the cone is \((c_s, z_\alpha)\). We will eventually express the LRT in terms of \(L_s\). Throughout the rest of the paper, \(\varphi(u)\) and \(\Phi(u)\) denote the standard normal pdf and cdf, respectively.

Definition 2.2. For any \(u, -\infty < u < \infty\), define

\[
P_s(u) = \alpha - \int_{L_s(u)} \varphi(v) \, dv,
\]

where \(L_s(u) = \langle v : (u, v) \in L_s \rangle\). Specifically, for \(s > 0\),

\[
P_s(u) = \begin{cases}
\alpha - \left(1 - \Phi \left(\frac{\sqrt{1 + s^2} z_\alpha - u}{s} \right) \right), & u < c_s, \\
0, & u \geq c_s.
\end{cases}
\]
For $s = 0$,
\[P_s(u) = \begin{cases}
\alpha, & u < c_s = z_\alpha, \\
0, & u \geq c_s = z_\alpha.
\end{cases} \]

For $s < 0$,
\[P_s(u) = \begin{cases}
\alpha, & u < c_s, \\
1 - \Phi\left(\frac{\sqrt{1 + s^2} z_\alpha - u}{s}\right), & u \geq c_s.
\end{cases} \]

The specific formulas for $P_s(u)$ are easily verified by using the definition of L_s; $0 \leq P_s(u) \leq \alpha$ for all u; $P_0(u)$ is the limit of $P_s(u)$ as $s \to 0$, and, if $(U, V) \sim N_2((\mu, 0), I_2)$, $P((U, V) \in L_s) = \int (\alpha - P_s(u)) \phi(u - \mu) \, du$. The line between the origin and (c_s, z_α), the vertex of L_s, has the equation $v = z_\alpha u/c_s = (\sqrt{1 + s^2} + s)u$. We now define a set that contains this line, for $s \geq 0$.

Definition 2.3. For $s \geq 0$, $0 < d < 1$ and $0 < \alpha < 1/2$, let B_s be the set defined by
\[B_s = \{(u, v): -c_s \leq u \leq c_s, l_2^s(u) \leq v \leq l_1^s(u)\}, \]
where

\[l_1^s(u) = \min \left\{ \Phi^{-1}\left(\Phi\left(\sqrt{1 + s^2} + s \right) + dP_s(u) \right), su - sc_s + z_\alpha \right\}, \]

\[l_2^s(u) = \max \left\{ \Phi^{-1}\left(\Phi(l_1^s(u)) - P_s(u) \right), 0 \right\}. \]

An example of the set \(B_s \) is shown in Figure 2; \(B_s \) is a set that touches \(L_s \) at the vertex of \(L_s \) and extends down toward the origin. Note, the restriction \(\alpha < 1/2 \) ensures that the vertex \((c_s, z_\alpha)\) is in the first orthant and that \(B_s \) is a nonempty set above the \(v = 0 \) axis. Ignoring the Max and Min, the constant \(d \) is the proportion of the probability \(P_s(u) \) that is placed above the line \(v = (\sqrt{1 + s^2} + s)u \). Increasing \(d \) moves the lines \(l_1^s(u) \) and \(l_2^s(u) \) upward. If \(l_1^s(u) \geq 0 \), then \(l_2^s(u) \leq l_1^s(u) \), but if \(l_1^s(u) < 0 \), then \(l_2^s(u) > l_1^s(u) \). The set \(B_s \) does not contain any \((u, v)\) for which \(l_2^s(u) > l_1^s(u) \). In Figure 2, \(l_2^s(u) = 0 > l_1^s(u) \) for most negative values of \(u \). The following lemma is the key fact that will ensure that the size of \(\phi_\alpha \) is \(\alpha \).

Lemma 2.1. Let \((U, V) \sim N_2((\mu, v), I_2)\) where \(v \leq 0 \). Let \(s \geq 0 \), \(0 < \alpha < 1/2 \) and \(A_s = L_s \cup B_s \). Then \(P_{(\mu, v)}((U, V) \in A_s) \leq \alpha \).

Proof. For every \((u, v) \in A_s\), \(v \geq 0 \). Since \(v \leq 0 \), by Theorem 2.2 of Berger (1989),

\[
P_{(\mu, v)}((U, V) \in A_s) \leq P_{(\mu, 0)}((U, V) \in A_s)
= \int_{-\infty}^{+\infty} \left(\int_{L_s(u)} \varphi(v) \, dv + \int_{B_s(u)} \varphi(v) \, dv \right) \varphi(u - \mu) \, du
= \int_{-\infty}^{+\infty} \left(\alpha - P_s(u) + \int_{B_s(u)} \varphi(v) \, dv \right) \varphi(u - \mu) \, du,
\]

(2.1)

where \(L_s(u) \) is defined in Definition 2.2 and

\[
B_s(u) = \{ v : (u, v) \in B_s \} = \begin{cases} \emptyset, & u < -c_s \text{ or } u > c_s, \\ \{ v : l_2^s(u) \leq v \leq l_1^s(u) \}, & -c_s \leq u \leq c_s. \end{cases}
\]

The expression in parentheses in (2.1) is clearly bounded above by \(\alpha \) if \(u < -c_s \) or \(u > c_s \). For \(-c_s \leq u \leq c_s \), \(B_s(u) = \emptyset \) and the integral over \(B_s(u) \) is zero, if \(l_1^s(u) < l_2^s(u) \). Otherwise,

\[
\int_{B_s(u)} \varphi(v) \, dv = \Phi(l_1^s(u)) - \Phi(l_2^s(u))
\leq \Phi(l_1^s(u)) - \Phi(\Phi^{-1}(\Phi(l_1^s(u)) - P_s(u))) = P_s(u).
\]

So again the expression in parentheses is bounded above by \(\alpha \), and, hence, \(P_{(\mu, v)}((U, V) \in A_s) \leq \alpha \). \(\square \)

Our new tests will be defined in terms of variables \(U_1, V_1, U_2 \) and \(V_2 \), which we now define.
DEFINITION 2.4. Let h_1 and h_2 be noncollinear vectors ($|u_1 - h_1 h_2| < \|h_1\| \cdot \|h_2\| = 1 \cdot 1 = 1$). Let $g_1 = h_2 - (h_2 h_2)h_1$ and $g_2 = h_1 - (h_2 h_2)h_2$ (g_1 and g_2 are vectors spanned by h_1 and h_2 that are orthogonal to h_1 and h_2; $g_1 h_1 = 0, g_2 h_2 = 0$). Define $h_i^t y = v_i$ and $g_i^t y / \|g_i\| = u_i, i = 1, 2$. Also define the corresponding random vectors $h_i^t Y = V_i$ and $g_i^t Y / \|g_i\| = U_i, i = 1, 2$.

Note that $\|g_1\| = \|g_2\| = \sqrt{1 - (h_1 h_2)^2}$. Since $g_i h_i = 0$, we know that U_i and V_i are independent.

Now we define the test ϕ_0. In fact, we define a whole family of tests, indexed by the constant d, $0 < d < 1$, that appears in Definition 2.3.

DEFINITION 2.5. Consider the testing problem (1.3) for vectors h_1 and h_2 that satisfy $h_1 h_2 > 0$. Fix d, $0 < d < 1$. Let $s = h_1 h_2 (1 - (h_1 h_2)^2)^{-1/2}$. For any α that satisfies $0 < \alpha < 1/2$, define ϕ_0 as the test that rejects H_0 if $Y \in S^*_1 \cap S^*_2$, where $S^*_1 = \{y: (u_1, v_1) \in A_s\}$, $S^*_2 = \{y: (u_2, v_2) \in A_s\}$ and $A_s = L_s \cup B_s$.

The following lemma will show that the rejection region for the LRT is a subset of that for ϕ_0.

LEMMA 2.2. Consider the testing problem (1.3) when $k = 2$ and $0 < \alpha < 1/2$. The rejection region for the size-α LRT is $R_L = \{y: h_1 y \geq z_\alpha \}$ and $h_2 y \geq z_\alpha$. Let $L_i = \{y: (u_i, v_i) \in L_s\} \subset S^*_i$, $i = 1, 2$, where $s = h_1 h_2 (1 - (h_1 h_2)^2)^{-1/2}$. Then $L_i = R_i$ for $i = 1, 2$. Hence, the rejection region for ϕ_0, namely, $S^*_1 \cap S^*_2$, contains R_L.

PROOF. For $i = 1$,

$$u_1 = \frac{g_1^t y}{\|g_1\|} = \frac{h_2 y - (h_1 h_2)h_1 y}{\sqrt{1 - (h_1 h_2)^2}} \quad \text{and} \quad v_1 = h_1 y.$$

Since $s / \sqrt{1 + s^2} = h_1 h_2$, then $\|g_1\| = \sqrt{1 - (h_1 h_2)^2} = 1 / \sqrt{1 + s^2}$. Hence,

$$u_1 + sv_1 = a_1^t y,$$

where

$$a_1^t = \left(\frac{h_2 - (h_1 h_2)h_1}{\|g_1\|} \|g_1\| + (h_1 h_2)h_1\right) = h_2.$$

Therefore, $L_i = R_L$. For $i = 2$, similar algebra yields $(u_2 + sv_2) / \sqrt{1 + s^2} = h_1 y$ and $v_2 = h_1 y$. So $L_s = R_L$, also. \[\square\]

Note that Lemma 2.2 is true for any h_1 and h_2, not just obtuse cones with $h_1 h_2 > 0$. Another way to state Lemma 2.2 is to say that the three events, \{\(Y \in R_L\), \{(U_1, V_1) \in L_s\} and \{(U_2, V_2) \in L_s\}, are all the same event. The following theorem shows ϕ_0 is a size-α test and uniformly more powerful than the LRT.
THEOREM 2.1. For the testing problem (1.3) when \(k = 2 \), suppose that \(h_1' h_2 \geq 0 \). If \(0 < \alpha < 1/2 \), then \(\phi_o \) has size exactly \(\alpha \), and \(\phi_o \) is uniformly more powerful than the size-\(\alpha \) LRT.

PROOF. From Lemma 2.2 we know the rejection region of the size-\(\alpha \) LRT, \(R_L \), is a subset of the rejection region of \(\phi_o \). Hence, \(\phi_o \) is uniformly more powerful than the size-\(\alpha \) LRT. Also,

\[
\text{the size of } \phi_o \geq \text{size of LRT} = \alpha.
\]

For any \(\theta \in H_0 \), \(h_i' \theta \leq 0 \) for either \(i = 1 \) or \(i = 2 \). For this \(i \),

\[
P_o(Y \in S_1^* \cap S_2^*) \leq P_o(Y \in S_i^*) = P_\theta((U_i, V_i) \in A_\alpha) \leq \alpha.
\]

The last inequality is from Lemma 2.1 since \(U_i \) and \(V_i \) are independent normal random variables, each with variance 1, and \(EV_i = h_i' \theta \leq 0 \). Since, (2.3) is true for any \(\theta \in H_0 \), the size of \(\phi_o \) is less than or equal to \(\alpha \). With (2.2) this implies \(\phi_o \) has size exactly \(\alpha \). \(\square \)

Figure 3 shows two examples (different \(s \) and \(d \), \(\alpha = 0.1 \)) of the rejection region of \(\phi_o \). Consider \(p = 2 \), \(h_1' = (0, 1) \) and \(h_2' = (1/\sqrt{1 + s^2}, s/\sqrt{1 + s^2}) \).

\[
\text{Fig. 3(a). Rejection region of } \phi_o \text{ when } s = 0.1, d = 1/2 \text{ and } \alpha = 0.1.
\]
so that \((y_1, y_2) = (u_1, v_1)\). In Figure 3a and 3b, the solid line above the line from \((0, 0)\) to the vertex of \(R_L\) is \(l^0_1(u_1)\) and that below the line is \(l^0_2(u_1)\). The lower dotted line is \(l^0_1(u_2)\) and the upper dotted line is \(l^0_2(u_2)\). These are the same functions, \(l^0_1\) and \(l^0_2\), but these are graphed in the \((u_2, v_2)\) axes. The intersection of the region between the solid lines and the region between the dotted lines is the additional set which is added to the rejection region of the LRT. Specifically, this is \(C = \{y: (u_1, v_1) \in B_\delta \} \cap \{y: (u_2, v_2) \in B_\delta \}\). The region \(R_L \cup C\) is the rejection region of \(\phi_0\). When \(s\) increases as in Figure 3b, the added area decreases. The constant \(d\) that will produce the biggest intersection, and hence the highest power, depends on \(s\). We discuss this more in Section 3.

Example 2.1. Suppose \(Y_1\) and \(Y_2\) are independent and \(Y_i \sim N_1(\theta_i, 1)\). Consider \(h_1' = (0, 1), h_2' = (1/\sqrt{1+s^2}, s/\sqrt{1+s^2})\), \(s > 0\), so that we are testing \(H_0: \theta_2 \leq 0\) or \(\theta_1 + s\theta_2 \leq 0\) against \(H_1: \theta_2 > 0\) and \(\theta_1 + s\theta_2 > 0\). Here we selected \(\alpha = 0.1, s = 0.1\) and \(d = 1/2\) (as in Figure 3a) to compute the power of \(\phi_0\) and LRT. Let \(\beta_2(\theta)\) and \(\beta_{\phi_0}(\theta)\) be the power functions of the LRT.
Table 1
Power of LRT and ϕ_o for $s = 0.1$, $d = 1/2$ and $\alpha = 0.1$

<table>
<thead>
<tr>
<th>θ</th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
<th>2.0</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_L(\theta, 0)$</td>
<td>0.013</td>
<td>0.027</td>
<td>0.046</td>
<td>0.065</td>
<td>0.081</td>
<td>0.092</td>
<td>0.097</td>
<td>0.099</td>
<td>0.100</td>
</tr>
<tr>
<td>$\beta_{\phi_o}(\theta, 0)$</td>
<td>0.048</td>
<td>0.066</td>
<td>0.081</td>
<td>0.091</td>
<td>0.096</td>
<td>0.099</td>
<td>0.100</td>
<td>0.100</td>
<td>0.100</td>
</tr>
<tr>
<td>$\beta_L(0.905\theta, \theta)$</td>
<td>0.013</td>
<td>0.059</td>
<td>0.181</td>
<td>0.390</td>
<td>0.633</td>
<td>0.827</td>
<td>0.936</td>
<td>0.981</td>
<td>0.996</td>
</tr>
<tr>
<td>$\beta_{\phi_o}(0.905\theta, \theta)$</td>
<td>0.048</td>
<td>0.106</td>
<td>0.224</td>
<td>0.416</td>
<td>0.643</td>
<td>0.829</td>
<td>0.936</td>
<td>0.982</td>
<td>0.996</td>
</tr>
<tr>
<td>$\beta_L(0.4505\theta, \theta)$</td>
<td>0.013</td>
<td>0.043</td>
<td>0.108</td>
<td>0.219</td>
<td>0.367</td>
<td>0.526</td>
<td>0.668</td>
<td>0.781</td>
<td>0.863</td>
</tr>
<tr>
<td>$\beta_{\phi_o}(0.4505\theta, \theta)$</td>
<td>0.048</td>
<td>0.087</td>
<td>0.153</td>
<td>0.255</td>
<td>0.389</td>
<td>0.536</td>
<td>0.672</td>
<td>0.782</td>
<td>0.863</td>
</tr>
</tbody>
</table>

and ϕ_o, respectively. Values of these two functions for certain θ values are in Table 1. These values are calculated by two steps. First, we calculate the cross-sectional probability $\int_{A(u)} \phi(v - \theta_2) \, dv = f(u, \theta_2)$, which is a function of u and θ_2. Second, we calculate $\int_{-\infty}^{\infty} f(u, \theta_2) \phi(u - \theta_1) \, du$ using the trapezoidal rule with 300 points. The first part of the tables are for values of $\theta' = (\theta, 0)$, $\theta \geq 0$. These values are on the boundary of H_0, so the powers are less than $\alpha = 0.1$. If a test is unbiased, then the power is equal to α for the values of θ which are on the boundary of H_0. Here we can see that the LRT and ϕ_o are biased, but the difference between α and the power of ϕ_o is considerably smaller than that between α and the power of the LRT. The second part of the table is for values of $\theta' = ((\sqrt{1 + s^2} - s)\theta, \theta)$ which are on the line from the origin to the vertex (c_s, z_a). For example, $\beta_{\phi_o}(0.4525, 0.5) / \beta_L(0.4525, 0.5) \approx 1.80$ and $\beta_{\phi_o}(0.4525, 0.5) > \alpha > \beta_L(0.4525, 0.5)$. $\beta_{\phi_o}(\theta)$ is clearly bigger than $\beta_L(\theta)$ for $\theta \leq 1.5$. The largest difference is 0.047. The bottom of the table is for values of $\theta' = (0.5(\sqrt{1 + s^2} - s)\theta, \theta)$; $\beta_{\phi_o}(\theta)$ is clearly larger than $\beta_L(\theta)$ for $\theta \leq 2.5$. As s increases, there is less space to add to the rejection region of the LRT. Figure 3b shows this fact. So we cannot improve the power as much when s is large.

2.2 Restriction on the construction of a size-α test. The set that is added to the rejection region of the LRT to construct ϕ_o touches the LRT rejection region R_L at only a single point (see Figure 3). One might ask, if we can add a set along the boundary of R_L to obtain a more powerful test. Gutmann (1987) constructed such a set for a nonnormal problem. The following theorem will show that a test with a rejection region like this will have size greater than α in a normal problem. It will also show that a construction like Berger (1989) used for acute cone problems will not work for obtuse cone problems. Liu (1992) also showed this.

Theorem 2.2. Let $(U, V) \sim N_2((\theta, 0), I_2)$. For a constant c, let

$$
R = \{(u, v): u \geq c, v \geq z_a\} \quad \text{and} \quad Q_1 = \{(u, v): u \geq c, v < z_a\}.
$$
If \(Q \subset Q_1 \) and \(P_\theta((U,V) \in Q) > 0 \), then \(P_\theta((U,V) \in R \cup Q) > \alpha \) for all large \(\theta \).

Proof. Suppose \(U \sim N(\theta,1) \) and \(\psi(u) \) is a nonnegative function such that \(P_\theta(U > c \land \psi(U) > 0) > 0 \). Then, as in an argument in Stein (1956),

\[
E_\theta \psi(U) = \frac{\int_{-\infty}^{\infty} \psi(u) \exp(\theta(u-c)) \varphi(u) \, du}{\int_{-\infty}^{c} \exp(\theta(u-c)) \varphi(u) \, du} \to \infty \quad \text{as} \quad \theta \to \infty,
\]

because the numerator goes to \(\infty \) and the denominator goes to 0. Now define \(\psi(u) = P(Q \mid U = u) \) and \(R_1 = \{(u,v) : u < c, v \geq z_a\} \). Then \(R_1 \subset \{(u,v) : u < c\} \) and

\[
\alpha = P_{(\theta,0)}(R_1 \cup R) < P_\theta(U < c) + P_{(\theta,0)}(R) < E_\theta \psi(U) + P_{(\theta,0)}(R) = P_{(\theta,0)}(Q \cup R),
\]

for large enough \(\theta \), where the second inequality is from (2.4). \(\square \)

Now consider a test \(\phi^* \) whose rejection region \(R^* \) contains \(R_L \). In Section 2.1, we saw that \(R_L = \{(u_1,v_1) : (u_1,v_1) \in L_s\} \) and this set contains \(\{(u_1,v_1) : u_1 \geq c_s, v_1 \geq z_a\} \). So, by Theorem 2.2, if \(\phi^* \) has size \(\alpha \), then \(R^* \) cannot contain any part of \(Q_1 = \{(u_1,v_1) : u_1 \geq c_s, v_1 < z_a\} \) (except for a set with probability zero). Similarly, we can also write \(R_L \supseteq \{(u_2,v_2) : u_2 \geq c_s, v_2 \geq z_a\} \) and \(R^* \) cannot contain any part of \(Q_2 = \{(u_2,v_2) : u_2 \geq c_s, v_2 < z_a\} \). These sets are shown in Figure 4. The set added to \(R_L \) to form a more powerful, size-\(\alpha \) test cannot be in the shaded region \(Q_1 \cup Q_2 \). It must lie in the triangular region labeled \(Q_3 \), which is where the set that defines \(\phi_o \) lies.

Berger (1989) constructed tests that were uniformly more powerful than the LRT for problems in which \(h_1 h_2 \leq 0 \). Theorem 2.2 can be used to show that Berger’s method of construction will not give a size-\(\alpha \) test if \(h_1 h_2 > 0 \). Figure 4 illustrates this. The region \(R_L \) is the rejection region of the LRT. The diamond shapes \(R_L \cup R_2 \cup \cdots \cup R_5 \) would be the rejection region of Berger’s test. This rejection region contains some area in the shaded region which causes the size of the test to be greater than \(\alpha \). Berger’s method cannot be applied to obtain cone alternative hypotheses when \(p = 2 \).

3. **Uniformly more powerful test when the cone is acute.** In this section, we describe a size-\(\alpha \) test that is uniformly more powerful than the size-\(\alpha \) LRT for problems in which \(h_1 h_2 < 0 \). In these problems, the cone defined by the alternative hypothesis is acute. Berger (1989) described a size-\(\alpha \) test \(\phi_b \) that is more powerful than the LRT for these problems. Here we describe a new test \(\phi_a \) that has smoother boundaries and sometimes appears more powerful than \(\phi_b \). The method we use to construct \(\phi_a \) is very similar to the method we used to construct \(\phi_o \). So we will omit the formal proofs that \(\phi_a \) has the described properties. One difference in this acute case
is that, unlike in Section 2.2, the rejection region for ϕ_a completely surrounds and enlarges upon the rejection region of the LRT.

Our description of ϕ_a will be similar to our description of ϕ_b in Section 2.1. The set L_s, constant c_s, function $P_s(u)$ and variables (u_1, v_1) and (u_2, v_2) are as defined in Section 2.1. Lemma 2.2 remains valid, and the LRT's rejection region can be expressed in any of the following ways:

\[R_L = \{ y : h_1'y \geq z_a \text{ and } h_2'y \geq z_a \} = \{ y : (u_1, v_1) \in L_s \} = \{ y : (u_2, v_2) \in L_s \}, \]

where $s = h_1'h_2(1 - (h_1'h_2)^2)^{-1/2}$. The test ϕ_a is defined in terms of a set A_s that we now define.

Definition 3.1. For $s < 0$, $0 < \alpha < 1/2$ and $0 < d < 1$, let A_s be the set defined by

\[A_s = \{ (u, v) : u \geq 0, l_2^a(u) \leq v \leq l_1^a(u) \}, \]

where

\[
 l_1^a(u) = \begin{cases}
\Phi^{-1}\left\{ \Phi\left(\sqrt{1 + s^2} + s\right)u\right\} + dP_s(u), & 0 \leq u < c_s, \\
\Phi^{-1}\left\{ 1 - (1 - d)P_s(u)\right\}, & u \geq c_s,
\end{cases}
\]

and

\[
l_2^a(u) = \max\{\Phi^{-1}(\Phi(l_1^a(u)) - \alpha), 0\}, \quad u \geq 0.
\]
Examples of the sets L_s and A_s and the lines $l_1^s(u)$ and $l_2^s(u)$ are shown in Figure 5. In this figure, $s = -2$, $d = 1/2$ and $\alpha = 0.1$. The solid lines are $l_1^s(u)$ and $l_2^s(u)$. For $u \geq c_s$ the line $l_1^s(u)$ lies above the upper boundary of L_s, which is given by the line $v = (\sqrt{1 + s^2} z_\alpha - u)/s$. This is true since $1 - (1 - d)P_s(u) = \Phi((\sqrt{1 + s^2} z_\alpha - u)/s) + dP_s(u) > \Phi((\sqrt{1 + s^2} z_\alpha - u)/s)$. For $u \geq c_s$, $l_2^s(u)$ is below the lower boundary of L_s because the lower boundary is $z_\alpha = \Phi^{-1}(1 - \alpha) > l_2^s(u)$. Therefore, $L_s \subset A_s$ and, for $i = 1$ or 2, we have

$$R_L = \{y: (u_i, v_i) \in L_s\} \subset \{y: (u_i, v_i) \in A_s\}. \tag{3.1}$$

If $(U, V) \sim N_2((\mu, \nu), I_2)$, with $\nu \leq 0$, then $P_{(\mu, \nu)}((U, V) \in A_s) < \alpha$. This follows as in the proof of Lemma 2.1. In this case we have

$$P_{(\mu, \nu)}((U, V) \in A_s) \leq P_{(\mu, 0)}((U, V) \in A_s)$$

$$= \int_0^\infty \left\{\int_{l_2^s(u)}^{l_1^s(u)} \varphi(v) \, dv\right\} \varphi(u - \mu) \, du$$

$$= \int_0^\infty \{\Phi(l_1^s(u)) - \Phi(l_2^s(u))\} \varphi(u - \mu) \, du,$$

$$\leq \int_0^\infty \{\Phi(l_1^s(u)) - \Phi(\Phi^{-1}(\Phi(l_1^s(u)) - \alpha))\} \varphi(u - \mu) \, du$$

$$= \int_0^\infty \alpha \varphi(u - \mu) \, du < \alpha. \tag{3.2}$$

Thus, we can define a size-\(\alpha\) test, just as we did in Section 2.1.

Definition 3.2. Consider the testing problem (1.3) for vectors h_1 and h_2 that satisfy $h_1' h_2 < 0$. Fix d, $0 < d < 1$. Let $s = h_1' h_2 (1 - (h_1' h_2)^2)^{-1/2}$. For
any α that satisfies $0 < \alpha < 1/2$, define ϕ_α as the test that rejects H_0 if $Y \in S_1^* \cap S_2^*$, where $S_i^* = \{y: (u_i, v_i) \in A_s\} (A_s$ is defined in Definition 3.1).

Because (3.1) and (3.2) are true, as in Theorem 2.1, we can show that ϕ_α is a size-α test that is uniformly more powerful than the size-α LRT.

Consider the testing problem with $h_1' = (0, 1)$ and $h_2' = (1/\sqrt{5}, -2/\sqrt{5})$, so that $(y_1, y_2) = (u_1, v_1)$ and $s = -2$. Let $d = 1/2$ and $\alpha = 0.1$. Then in Figure 5, the solid lines are $l_1^*(u_1)$ and $l_2^*(u_1)$ and the region between them is S_1^*. The dotted lines are $l_1^*(u_2)$ (lower line) and $l_2^*(u_2)$ (upper line), and the region between them is S_2^*. The rejection region is $S_1^* \cap S_2^*$, and it contains $L_s = R_L$, the LRT's rejection region. In Figure 6, the union of the diamond shaped regions, $R_L \cup R_2 \cup \cdots \cup R_5$, is the rejection region for Berger's (1989) test ϕ_b for this problem. Note that the rejection region for ϕ_b is almost completely contained in the rejection region for ϕ_α. In fact, ϕ_α may be uniformly more powerful that ϕ_b. In general, as s decreases, the containment of ϕ_b in ϕ_α comes closer and closer to reality.

For this same problem, the power functions of the LRT, ϕ_b and ϕ_α are compared in Table 2. Denote these power function by $\beta_L(\theta)$, $\beta_b(\theta)$ and $\beta_\phi(\theta)$, respectively. These values are calculated in the same way as in Example 2.2. The first part of the table is for values of $\theta' = (\theta, 0)$, $\theta \geq 0$. These values are on the boundary of H_0, so the powers are less than $\alpha = 0.1$. Again here we can see that the LRT, ϕ_b and ϕ_α are biased, but the bias of ϕ_α is considerably smaller than the bias of the LRT. The power of the LRT is much smaller than those of ϕ_b and ϕ_α when θ is close to 0; $\beta_\phi(0, 0) > \beta_b(0, 0)$. Both tests improve greatly on the LRT; $\beta_b(2, 0) = 0.052$ and $\beta_\phi(2, 0) = 0.091$, but $\beta_L(2, 0) \approx 0.0$. The largest difference between $\beta_b(\theta, 0)$ and $\beta_L(\theta, 0)$ is 0.095. The largest difference between $\beta_\phi(\theta, 0)$ and $\beta_b(\theta, 0)$ is 0.042. The second part of the table is for values of $\theta' = (\sqrt{1 + s^2} - s)\theta, \theta)$, values on the line from $(0, 0)$ to $(c_s, z_0); \beta_\phi(4.236, 1)/\beta_L(4.236, 1) \approx 15.3$. The largest difference is 0.143; $\beta_\phi(\theta)$ is significantly bigger than $\beta_L(\theta)$ for $\theta \leq 3; \beta_\phi(4.236, 1)/\beta_L(4.236, 1) \approx 1.75$. The largest difference is 0.066; $\beta_\phi(\theta)$ is

![Fig. 6. Rejection regions of ϕ_α and ϕ_b.](image)
Table 2

Power of LRT, ϕ_b and ϕ_a for $s = -2.0$, $d = 1/2$ and $\alpha = 0.1$

<table>
<thead>
<tr>
<th>θ</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta_0(\theta, 0)$</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.002</td>
<td>0.014</td>
<td>0.040</td>
<td>0.071</td>
<td>0.089</td>
</tr>
<tr>
<td>$\beta_0(\theta, 0)$</td>
<td>0.026</td>
<td>0.045</td>
<td>0.052</td>
<td>0.053</td>
<td>0.053</td>
<td>0.050</td>
<td>0.054</td>
<td>0.073</td>
<td>0.090</td>
</tr>
<tr>
<td>$\beta_0(\theta, 0)$</td>
<td>0.029</td>
<td>0.069</td>
<td>0.091</td>
<td>0.095</td>
<td>0.092</td>
<td>0.090</td>
<td>0.090</td>
<td>0.092</td>
<td>0.096</td>
</tr>
<tr>
<td>$\beta(4.236\theta, \theta)$</td>
<td>0.000</td>
<td>0.010</td>
<td>0.528</td>
<td>0.914</td>
<td>0.993</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>$\beta(4.236\theta, \theta)$</td>
<td>0.026</td>
<td>0.087</td>
<td>0.528</td>
<td>0.914</td>
<td>0.993</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>$\beta(4.236\theta, \theta)$</td>
<td>0.029</td>
<td>0.153</td>
<td>0.536</td>
<td>0.914</td>
<td>0.993</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
<td>1.000</td>
</tr>
<tr>
<td>$\beta(2.118\theta, \theta)$</td>
<td>0.000</td>
<td>0.000</td>
<td>0.135</td>
<td>0.481</td>
<td>0.691</td>
<td>0.830</td>
<td>0.920</td>
<td>0.968</td>
<td>0.989</td>
</tr>
<tr>
<td>$\beta(2.118\theta, \theta)$</td>
<td>0.026</td>
<td>0.067</td>
<td>0.151</td>
<td>0.481</td>
<td>0.691</td>
<td>0.830</td>
<td>0.920</td>
<td>0.968</td>
<td>0.989</td>
</tr>
<tr>
<td>$\beta(2.118\theta, \theta)$</td>
<td>0.029</td>
<td>0.119</td>
<td>0.222</td>
<td>0.484</td>
<td>0.691</td>
<td>0.830</td>
<td>0.920</td>
<td>0.968</td>
<td>0.989</td>
</tr>
</tbody>
</table>

clearly bigger than $\beta_0(\theta)$ for $\theta \leq 2$. The bottom of the table is for $\theta' = (0.5\sqrt{1 + s^2} - s)\theta, \theta)$. Again ϕ_b improves on ϕ_a for these parameter values; $\beta(2.118, 1)/\beta(2.118, 1) > 100$. The largest difference is 0.119; $\beta_0(\theta)$ is significantly bigger than $\beta_0(\theta)$ and $\beta_0(\theta)$ for $\theta \leq 2$; $\beta(2.118, 1)/\beta(2.118, 1) \approx 1.8$. The largest different is 0.071. The power of ϕ_a may be greater than that of ϕ_b for all θ, at $s = -2$.

A size-α test that is a good deal more powerful than ϕ_a (or ϕ_a in Section 2) could be constructed by allowing the set A_s (or B_s) to extend into the third orthant, in a construction similar to the one in Berger [(1989), Section 4]. Such tests reject H_0 for sample points at which the estimate of θ does not satisfy the inequalities in H_1. Because of this, such tests do not have much practical value. We have not considered them in this article, but from a power standpoint they do exhibit a further improvement that is possible.

For given values of s and θ, we can numerically find the constant d that gives the test with highest power at θ. This we have done and the results are given in Table 3, for several values of s and two values of θ. For $\theta = (c_s/2, z_a/2)$, the optimal d is slightly less than 1/2, but, for $\theta = (c_s, z_a)$ and very acute cones (small s), the optimal d is somewhat smaller than 1/2. The reason for this can be seen in Figure 5, where $d = 1/2$. Near $u = c_s$, $l_1^2(u)$ and $l_2^2(u)$ do not coincide. When d is reduced, these boundaries are closer

Table 3

Optimal d for ϕ_a and ϕ_a and $\alpha = 0.1$

<table>
<thead>
<tr>
<th>s</th>
<th>θ</th>
<th>-2.41</th>
<th>-1.00</th>
<th>-0.41</th>
<th>0.00</th>
<th>0.41</th>
<th>1.00</th>
<th>2.41</th>
</tr>
</thead>
<tbody>
<tr>
<td>$(c_s/2, z_a/2)$</td>
<td>0.477</td>
<td>0.480</td>
<td>0.488</td>
<td>0.500</td>
<td>0.491</td>
<td>0.479</td>
<td>0.493</td>
<td></td>
</tr>
<tr>
<td>(c_s, z_a)</td>
<td>0.430</td>
<td>0.455</td>
<td>0.480</td>
<td>0.500</td>
<td>0.484</td>
<td>0.477</td>
<td>0.492</td>
<td></td>
</tr>
</tbody>
</table>

1 These s-values correspond to $\xi = i\pi/8$, $i = 1, \ldots, 7$, in Figure 1.
together, and the rejection region $S_1^* \cap S_2^*$ is larger in the neighborhood of (c_s, z_a). Hence, the power is increased.

4. A more powerful test in the general problem. We will now describe a size-α test that is uniformly more powerful than the size-α LRT for the general problem (1.3) when $k \geq 2$ and $0 < \alpha < 1/2$. We will denote this test by ϕ_g. The intersection–union method will be used to construct ϕ_g. A summary of this method may be found in Casella and Berger ([1990], Sections 8.2.4 and 8.3.5) or in Berger (1982).

To use the intersection–union method, H_0: $h'_i \theta \leq 0$, for some $i = 1, \ldots, k$, must be written as a union. Let D denote any division of the indices $(1, \ldots, k)$ into the minimal number of subsets of size two such that each value $1, \ldots, k$ appears at least once. Elements of D are just pairs of indices (i, j). If k is even, D has $k^* = k/2$ elements and each index appears once. If k is odd, D has $k^* = (k + 1)/2$ elements. All indices appears once except one appears twice. To construct a more powerful test, any such division of $(1, \ldots, k)$ will work, but different divisions will lead to different tests.

For each $(i, j) \in D$, consider testing H_{0ij}: $h'_i \theta \leq 0$ or $h'_j \theta \leq 0$ versus H_{1ij}: $h'_i \theta > 0$ and $h'_j \theta > 0$. If $h'_i h'_j \geq 0$, let C_{ij} denote the size-α rejection region of ϕ_0 (for some d) from Section 2. If $h'_i h'_j < 0$, let C_{ij} denote the size-α rejection region of ϕ_a (for some d) from Section 3. Since $H_0 = \bigcup_{(i, j) \in D} H_{0ij}$, we can define an intersection–union test based on the C_{ij}.

Definition 4.1. For the testing problem (1.3) with $k \geq 2$ and $0 < \alpha < 1/2$, let ϕ_g^* be the test that rejects H_0 if $y \in \cap_{(i, j) \in D} C_{ij}$.

Theorem 4.1. For $0 < \alpha < 1/2$, the test ϕ_g is a size-α test of H_0 versus H_1, and ϕ_g is uniformly more powerful than the size-α LRT.

Proof. Since each of C_{ij} is a size-α rejection region for testing H_{0ij}, by Berger ([1982], Theorem 1), ϕ_g^* has size less than or equal to α. However, the size-α LRT's rejection region is

$$R_L = \{y: h'_i y \geq z_a, i = 1, \ldots, k\} \subset \{y: h'_i y \geq z_a \text{ and } h'_j y \geq z_a\} \subset C_{ij},$$

for every $(i, j) \in D$. Hence R_L is contained in the rejection region of ϕ_g^*, the size of ϕ_g^* is greater than or equal to the size of the LRT $= \alpha$, and ϕ_g^* is uniformly more powerful than the LRT. \square

The test ϕ_g^* is, in fact, strictly more powerful than the LRT because ϕ_g^*'s rejection region contains an open set that is not in R_L. Let y denote a point satisfying $h'_i y = z_a$, $i = 1, \ldots, k$. (If $k \geq p$, there is only one such y. If $k < p$, there are many such y's.) Every C_{ij} contains an open set that contains the line from y to the origin. So the intersection of the C_{ij}'s, ϕ_g^*'s rejection region, contains an open set containing this line, and this open set is not in R_L.

As mentioned earlier, different choices of D will lead to different tests. More work needs to be done to determine which D's yield generally more
powerful tests, but one principle seems reasonable. In Tables 1 and 2, we see that the improvement in power over the LRT is much greater for small \(s \) (acute cones) than for large \(s \) (obtuse cones). So it seems that we will get more improvement from \(\phi_g \) if \(D \) is chosen so that the values \(s_{ij} = (\mathbf{h}_i, \mathbf{h}_j) (1 - (\mathbf{h}_i, \mathbf{h}_j)^2)^{-1/2}, (i, j) \in D \), are small rather than large.

Example 4.1. Consider the hypothesis testing problem defined by the three vectors \(\mathbf{h}_1' = (1/\sqrt{2}, 1/\sqrt{2}, 0), \mathbf{h}_2' = (1/\sqrt{3}, \sqrt{2}/\sqrt{3}, 0) \) and \(\mathbf{h}_3' = (1/\sqrt{3}, -\sqrt{2}/\sqrt{3}, 0) \). Then \(s_{12} \approx 5.83, s_{13} \approx -0.17 \) and \(s_{23} \approx -0.35 \). So we conjecture that \(D = \{(1, 1), (2, 2), (3, 3)\} \) will give a generally more powerful \(\phi_g \) than will \(D = \{(1, 2), (2, 3)\} \). However, we would not expect the first test to be uniformly more powerful than the second.

5. **Further comments on intersection–union tests.** In Section 4, \(\phi_g \) was explicitly constructed as an intersection–union test (IUT). In fact, most of the tests considered in this paper are naturally thought of as IUT’s.

For \(i = 1, \ldots, k \), \(R_{L_i} = \{y: \mathbf{h}_i'y \geq z_0\} \) is the size-\(\alpha \) LRT of \(H_{0i}: \mathbf{h}_i'\theta = 0 \) versus \(H_{1i}: \mathbf{h}_i'\theta > 0 \). Since \(H_0 = \cup_{i=1}^k H_{0i} \), the test with rejection region \(R_L = \cap_{i=1}^k R_{L_i} \) is a level-\(\alpha \) IUT of \(H_0 \) versus \(H_1 \). This test is just the size-\(\alpha \) LRT. Berger ([1982], Theorem 1) shows that this test is level-\(\alpha \). A more specific analysis, such as in Berger (1989), is required to show the test is size-\(\alpha \).

The tests \(\phi_o \) and \(\phi_a \) are also constructed as IUT’s for their \(k = 2 \) problems. For example, consider an obtuse cone problem. By Lemma 2.1 and Definition 2.5, for \(i = 1 \) or \(2 \) the test with rejection region \(S_i^* = \{y: (u_i, v_i) \in A_0\} \) is a size-\(\alpha \) test of \(H_{0i}: \mathbf{h}_i'\theta \leq 0 \) versus \(H_{1i}: \mathbf{h}_i'\theta > 0 \). So the test with rejection region \(S_i^* \cap S_2^* \), that is, \(\phi_o \), is a level-\(\alpha \) IUT of \(H_0 \) versus \(H_1 \). Since \(R_L \subset S_1^* \cap S_2^* \) and we know \(R_L \) is size-\(\alpha \), \(\phi_o \) must in fact have size equal to \(\alpha \).

For the \(k = 2 \) case, both the LRT and \(\phi_o \) (or \(\phi_a \)) are IUT’s constructed starting from the same individual hypotheses, \(H_{01} \) and \(H_{02} \). This illustrates that some foresight in choosing the rejection region for the individual hypotheses, foresight concerning how the rejection regions will intersect, might result in increased power in the resulting IUT. Starting with the more complicated regions \(S_i^* \) and \(S_2^* \), rather than the simpler \(R_{L_i} \) and \(R_{L_2} \), yields a more powerful test. Also, although the \(R_{L_i} \)’s have certain optimality properties, for example, \(R_{L_i} \) is an unbiased test of \(H_{0i} \), whereas \(S_i^* \) is not, this optimality does not carry over to the IUT’s.

The test \(\phi_b \) could also be described as an IUT in terms of the variables \((u_i, v_i), i = 1, \ldots, k \), but it was not described in this way in Berger (1989).

Acknowledgments. Portions of this paper are from the Ph.D. dissertation of Huimei Liu, written under the direction of Roger L. Berger at North Carolina State University. We thank an Associate Editor for the simplified proof of Theorem 2.2.
REFERENCES

DEPARTMENT OF STATISTICS
NATIONAL CHUNG HSING UNIVERSITY
TAIPEI, TAIWAN 10433
REPUBLIC OF CHINA

DEPARTMENT OF STATISTICS
NORTH CAROLINA STATE UNIVERSITY
RALEIGH, NORTH CAROLINA 27695-8203