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COMPLETE CLASS RESULTS FOR THE MOMENT
MATRICES OF DESIGNS OVER
PERMUTATION-INVARIANT SETS!

By CHING-SHUI CHENG

University of California, Berkeley

In 1987 Cheng determined ¢,-optimal designs for linear regression
(without intercept) over the n-dimensional unit cube [0, 1]* for —© <p <
1. These are uniform distributions on the vertices with a fixed number of
entries equal to unity, and mixtures of neighboring such designs. In 1989
Pukelsheim showed that this class of designs is essentially complete and
that the corresponding class of moment matrices is minimally complete,
with respect to what he called Kiefer ordering. In this paper, these results
are extended to general permutation-invariant design regions.

1. Introduction. Let X be a permutation-invariant and compact set in
R™={x = (xq,..., x,)": x;, > 0}, and let = be the set of all the probability
measures on the Borel subsets of X. Each ¢ € E is called an approximate
design, or simply a design. For each £ € E, define its moment matrix M(£) to
be

M(¢) = fXxng(dx),

the n X n matrix whose (i, j)th entry is equal to [xx,x;£(dx). Consider the
linear regression model (without the constant term) on X:

E(y,) = x7o,
where y, is an observation at x € X, and 6 = (6,,..., 6,)T is the vector of
unknown parameters. The observations are assumed to be uncorrelated with
constant variance. Then M(¢) is also the information matrix of ¢. This paper
is concerned with the problem of optimally choosing £.

Pukelsheim (1989) introduced an ordering among such moment matrices.
We say that a moment matrix M(&,) is at least as informative as another
moment matrix M(&,) (or design &, is at least as informative as ¢&,), denoted
by M(£;) >, M(&,), if there is an n X n matrix B (not necessarily a moment
matrix) such that

(1.1) M( ¢,) — Bis nonnegative definite
and

(1.2) B belongs to the convex hull of {PM( &,)P”: P € Perm( n)},
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where Perm(n) is the symmetric group consisting of all the n X n permuta-
tion matrices. Pukelsheim (1993) called > the Kiefer ordering (relative to
the symmetric group), apparently because the two steps (1.1) and (1.2) go
back to Kiefer’s (1975) fundamental result on universal optimality. A subset
9 of E is called an essentially complete class with respect to this ordering if,
for any ¢ € EH, there exists a £’ €9 such that M(¢) >, M(¢). Further-
more, a moment matrix M(£;) is more informative than another moment
matrix M(&,) if M(£)) >, M(&,), but M(§)) is not of the form PM(¢,)P7,
where P € Perm(n). A set .# of moment matrices is minimally complete if,
for any moment matrix M not in .#, there exists a moment matrix M* in .#
such that M* is more informative than M and there is no proper subset of .#
with the same property.

It follows from the preceding definitions that if &, is at least as infor-
mative as §,, then S(M(&;)) > (M(&,)) for all real-valued functions ¢
that are concave, permutation-invariant and Loewner-isotonic [here Loewner-
isotonicity means that if A — B is nonnegative definite, then ¢(A) > ¢(B)].
We shall say that a design is ¢-optimal if its moment matrix is positive
definite and maximizes ¢(M(&)) over £ € B Therefore, if 9 is essentially
complete and there exists a ¢-optimal design in F, then there exists a design
£ in 9 such that £ is also ¢-optimal.

An important family of concave, permutation-invariant and Loewner-
isotonic functions are the p-means ¢,. For any p such that — <p <1 and
p # 0, let

1
¢, (M) = [n 1 tr(M(£)")]"”.

Furthermore, define

$o(M) = [det(M(£))]""
and
¢_.(M) = the smallest eigenvalue of M( ¢).

Then we have lim, , _, ¢, = ¢_., and lim,_,, ¢, = ¢y. The ¢,-, ¢_;- and
¢_.-optimal designs are the Well known D-, A- and E-optimal designs,
respectively.

One purpose of this paper is to determine ¢,-optimal designs for linear
regression (without the constant term) over a general permutation-invariant
set X in R}. This extends the work of Cheng (1987), who studied the
n-djmensional unit cube X =[0,1]", solving a conjecture of Harwit and
Sloane (1976) in Hadamard transform optics. For X = [0, 1]*, the ¢-optimal
designs have a very nice but curious structure: depending on the values of p,
they are uniform distributions on the vertices with a fixed number of entries
equal to 1, or are mixtures of neighboring such designs. Pukelsheim (1989)
showed that this class of designs is essentially complete under the Kiefer
orderlng Example 2 in Section 4 of the present article demonstrates that, for
other sets X, the class of ¢,-optimal designs may not be essentially complete;
so Pukelsheim’s result cannot be extended to all permutation-invariant sets.
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However, the extension holds for a somewhat different but closely related
ordering which we call the Schur ordering. For any two vectors x and y in R”,
we say that x is upper weakly majorized by y, denoted by x <" y, if
Tt x; = Th, yy for all 1 <k < n, where x;, < x5 < = <, and yp
< ¥y < ** < Y are the ordered components of x and y, respectively. We
say that a moment matrix M({;) is at least as informative as another
moment matrix M(&,) under the Schur ordering, denoted by M(¢;) >
M(&,), if the vector of eigenvalues of M(£,) is upper weakly majorized by that
of M(&,). If M(&;) and M(£,) have different eigenvalues and M(&;) >
M(¢&,), then M(&)) is said to be more informative than M(&,). It follows from
this definition and from Theorem A.8 in Marshall and Olkin [(1979), Chapter
3] that if M(&)) >¢ M(¢,), then ¢(M(&)) > ¢(M(&,)) for all ¢ that are
Schur-concave and componentwise increasing functions of the eigenvalues of
the moment matrices. As in the case of Kiefer ordering, all the p-means
¢,, —® <p <1, are covered. The concepts of essentially complete classes
and minimally complete classes under the Schur ordering can be similarly
defined.

In Section 2, essentially complete classes for Kiefer and Schur orderings
for any permutation-invariant and compact set X in R} are determined. In
Section 3, ¢,-optimal designs are derived and are shown to constitute an
essentially complete class for the Schur ordering. As a consequence, for any ¢
that is a Schur-concave and componentwise increasing function of the eigen-
values of the moment matrices, there exists a p, —© < p < 1, such that a
certain ¢,-optimal design is also ¢-optimal. As we mentioned earlier, this
may not be true for the Kiefer ordering. Conditions on X under which the
class of ¢, -optimal designs, —© < p <1, is also essentially complete for the
Kiefer ordering are given in Theorem 2.3. The cube [0,1]” is an example
where Kiefer and Schur orderings give the same minimally complete class.
While the derivation of ¢,-optimal designs in Cheng (1987) was based on the
Kiefer-Wolfowitz equivalence theorem, the result on essentially complete
classes provides an alternative solution. In light of the general results derived
here, the curious structure of the optimal designs on the cube also becomes
clearer. Detailed examples are given in Section 4.

For any x = (x,,...,x,)" € X and any permutation 7 of {1,...,n}, let
m(x) denote (x,,.),..., xﬂ(n))T. Throughout the rest of the paper, the orbit of
x, denoted (x), is defined as the set {7 (x): 7 is a permutation of 1,..., n}. The

uniform measure on (x), that is, the measure which assigns equal weights to
each mw(x), will be denoted by ixy Finally, |x|l; = X |x,| (= X}, x; for
x € R?) and [x|l; = /X?_, x? are the usual L,- and L,-norms.

2. Essentially complete classes. For any £ € E, let £ be the sym-
metrized version of ¢, that is,

- 1
E(B) = T —&(n(B)),
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for all Borel subsets B, where the sum is over the n! permutations of
{1,...,n}. Then £ is permutation-invariant and its moment matrix is also
permutation-invariant. It is easy to see that £ is at least as informative as ¢
under both Kiefer and Schur orderings. Therefore the set of all permutation-
invariant moment matrices (or moment matrices of permutation-invariant
designs) is essentially complete for both orderings. Although this provides a
substantial reduction of the problem, the set of permutation-invariant de-
signs is still too large. We shall look for a further reduction, with the eventual
goal to find a set of designs whose moment matrices are minimally complete.
From now on, without loss of generality, all the designs £ are assumed to be
permutation-invariant.

If ¢ is permutation-invariant, then M(¢) is of the form a(&)I + B(&)d,
where I is the n X n identity matrix and J is the n X n matrix of 1l’s.
Therefore ¢ has at most two distinct eigenvalues: u(¢) = a(¢) + nB(€) with
multiplicity 1, and »(£) = a(£) with multiplicity n — 1. Since X ¢ R}, it is
clear that B(¢) > 0, and

(2.1) w(€) = v(€).

For the Kiefer ordering, a permutation-invariant design &; is at least as
informative as another permutation-invariant design ¢, if and only if

(2.2) m(é1) = p(§;) and v(&) = v(§);
while for the Schur ordering the condition is
v(£) 2z v(§;) and
(n=1Dv(&) +u(é) = (n - Dr(é) + u(é).
In both cases, the comparison of permutation-invariant designs can be based

on their two eigenvalues. Consequently, it is enough to consider the following
subset of R?:

R ={(p(€),v(£)): & is a permutation-invariant design in E}.

(2.3)

The comparison of information matrices is thereby reduced to a two-
dimensional problem.

The following can be said about %: (a) % is compact and convex. (b) For
any a which is equal to u(¢) for a certain £, let g(a) = max,. ), v(§). If
£* is such that u(¢*) = a and v(£*) = g(a), then ¢* is at least as informa-
tive as ¢ under both orderings.

In (a), the convexity follows from the fact that

E E
Zaifi) =
i=1 i

for any convex combination ©*_; e, ¢;, and (b) is trivial. By (b), the moment
matrices whose eigenvalues correspond to the upper boundary of % form an
essentially complete class, that is, { £: ¢ is permutation-invariant and v(¢) =
g(u(£))} is an essentially complete class for both orderings. This further
reduces the comparison of information matrices to a one-dimensional problem

k k
1 a; u(§;) and V(Zaifi) = 2 av(§)
1

i=1 i=1
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and is also where the two orderings may start to give different results. We
now consider Kiefer and Schur orderings separately.

2.1. Kiefer ordering. Since % is convex, the function g that defines its
upper boundary is concave throughout the interval [min, w(¢), max, u(£)].
Let A be the set of all the a’s at which the maximum of g(a) over
[min, w(¢), max, u(£)] is attained, and let a; be the largest number in A.
Furthermore, let ap = max, u(£). Then
g is increasing on [min§ w(é),a L]

(2.4)
and strictly decreasingon [a;, ag].

An immediate consequence of (2.1) and (2.4) is
(2.5) a>g(a) foralla € (a;,az], and a; >g(ay).

Let
Fx ={(a,b):a; <a <ag, b=g(a)}

Then the following lemma shows that %y is the part of the upper boundary
of # that corresponds to the eigenvalues of the moment matrices in a
minimally complete class.

LemMA 2.1. For linear regression without the constant term over any
permutation-invariant and compact set X in R, an essentially complete class
of designs for the Kiefer ordering is

&x = {&: € is permutation-invariant and ( u( €),v(€)) € %},

and the moment matrices of the designs in %y constitute a minimally complete
class.

PrROOF. Let & be a design such that u(¢;) = a;, and v(&,) = g(a). By
(2.4), for any &,

(2.6) if w(¢) <ay,then v(¢) <g(ar).

Therefore £; is more informative than ¢ under the Kiefer ordering. It follows
that all the designs with u(¢) < a; can be eliminated. Hence %% is an
essentially complete class under the Kiefer ordering. Furthermore, since g is
strictly decreasing on [a;, ag], for any two designs ¢, and &, in %, if
m(€) < u(€y), then v(§;) > v(§&,). In other words, neither design is more
informative than the other. This shows that the moment matrices of the
designs in %% constitute a minimally complete class under the Kiefer order-
ing. O

Since v(¢) is the smallest eigenvalue of M(£), by the definitions of a; and
&, we see that &, is an E-optimal design over E. [If the set A contains more
than one number, then any ¢ with w(¢) € A and v(¢) = g(u(§)) is also
E-optimal, but &; is at least as informative as any such ¢£.]
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For convenience, denote the point (a, g(a)) by g(a). Then %, consisting of
the points g(a) with a; <a < ag, is a curve whose leftmost point g(a;)
corresponds to an E-optimal design.

It is clear that each point in %) is a convex combination of at most two
extreme points of %Z. Although extreme points are usually defined for convex
sets only, one can extend the definition to nonconvex sets; so X is an extreme
point of a set S if it cannot be expressed as ax, + (1 — a)x,, where
0 < @ <1 and x,,x, € S. With this in mind, we can say that each point in
Ay is a convex combination of at most two extreme points of . More
precisely, if g(a) € %y is not an extreme point, then it lies on the line
segment formed by the two neighboring extreme points.

We shall give a further reduction of @ to a much smaller subclass which
can be described in terms of the geometry of X. There are many
permutation-invariant designs corresponding to the same point of %y, and it
is enough to keep only one of them. Let X = {x € X: x is an extreme point of
the convex hull of X U (—=X)}. It follows from Theorem 8.5 of Pukelsheim
[(1993), page 191] and the discussion in the preceding paragraph that each
-design in %% has the same moment matrix as ¢, for some x € X (which
corresponds to an extreme point of ), or a convex combination of two
&xy'S, 8aY, &xy and &4, where x,, X, € X. Our final task is to characterize
the points x € X such that the moment matrices of ¢, or convex combina-
tions of two such designs belong to a minimally complete class.

A simple calculation shows that for each x € X, we have M( &ix )=
a I + B d, with o, = (nlxl3 — Ixl})/[n(n — D] and B, = (Xl - IIXﬁg)/
[n(n — 1)]. So

(2.7) w(€xy) = ay + nBy = n |7
and
(2.8) v(Eeey) = ag = (IIE = 2~ YlE) /(7 = 1).

Notice that n !|x|? and |x|2 — n~!|x||? are the squared lengths of the
orthogonal projections of x onto the equiangular line and its orthogonal
. . . 2 -1 2 G

complement, respectively. Let x; maximize [x|lz — n” '] over x € X, and
maximize [x||? among those which maximize Ixllz2 — »~Yx||?; furthermore,
let x maximize Ix|lZ over x € X, and maximize IxllZ2 — n~x||? (or, equiva-
lently, maximize |ix||;) among those which maximize |Ix|I2. Then by (2.7), (2.8)
and the definitions of a; and ay, it is clear that §, , and &, , correspond to
the leftmost and rightmost points of %y, respectively, and a; = n kI3
and ap = n_lllxRIIf.

For each a with n x|l <a < n kg2, we would like to find a design
cog‘respondjng to g(a) in the form of §,,, where x € X, or a convex combina-
tion of two such designs. Let C, be the set

{y € X: y maximizes |||, over all the points of X with ntx|I? = a}.
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Pick an arbitrary point from each C, if it is nonempty. Let E be the resulting
set, and let Ex be

{x €E: (n‘lllxllf, (IIxII% - n'lllxllf)/(n - 1)) is an extreme point of %K}.
Then we have the following theorem.

THEOREM 2.1. An essentially complete class for the Kiefer ordering is the
set My consisting of the designs & such that £ = &, for some x € Eg, orisa
convex combination of § y and & ., where X, and x, are two neighboring
points in Ey in the sense that there is no other point x € Ey such that

Il < lxlly <Iqlls or Iyl < lixlly < [yl

Proor. If 3y € X such that &.yy corresponds to g(a), then we must have
n_llbillf = a, and y must maximize x|z — n~Yx|1? (or, equivalently, maxi-
mize |x|z) over the set {x € X: n !|x||? = a}. In other words, if &y, corre-
sponds to a point in %y, then 3 x € E such that £, and £, have the same
moment matrices. A £, with x € E may not correspond to a point in %y,
but it is clear that #y is the upper boundary of the convex hull of the set
{(n~YxI?, (xl3 — 2 /(n — 1)): x € E). If we remove all the points x in
E such that (n k|2, (x| — n_lllxllf)/(n — 1)) is not an extreme point of
Ry, then the resulting set Ey has the property that each £,, with x € Ex
corresponds to an extreme point of #y. Each of the remaining points of %y
lies on the line segment connecting two neighboring extreme points and
corresponds to a convex combination of two neighboring §,,’s. O

The class .# is obtained by picking one design out of those corresponding
to the same point in #%. Thus there is a one-to-one correspondence between
My and Fy through the mapping

(2.9) e€xy T (L — )&,y — 8(a),

where a = n [ ¢lix,I} + 1 - #)Ikx, /7], and x, and x, are two neighboring
points in Ej.

2.2. Schur ordering. We shall show that the minimally complete class for
the Schur ordering is a subclass of that for the Kiefer ordering.

LEMMA 2.2. Let a3 be the smallest value of a that maximizes a +
(n — Dg(a) over a € [a;, agl, and let Zg be the subset {g(a): a € [a,, aslt of
Rx. Then the moment matrices whose eigenvalues correspond to the points in
R constitute a minimally complete class for the Schur ordering.

PrROOF. We have already seen that the moment matrices whose eigenval-
ues correspond to the upper boundary of % form an essentially complete
class under both orderings. For any ¢ with u(¢) < ap = u(§4,,), by (2.4), we
also have »(¢) < g(a;) = v(£,,)). It follows from (2.3) that &, , is more
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informative than £ under the Schur ordering. Therefore, all the designs with
w(€) < ay, can be eliminated.

Suppose &5 is a de31gn with w(&5) = ap and v(£5) = g(a3). Then for any
design ¢ with u(¢) > a3, by (2.4), we must have v(¢) < v(£5). Then since
(n — Dv(&S) + w(€8) = (n — Dw(€) + u(€), by (2.3), & is more informa-
tive than &. This eliminates all the points g(a) with a > a3.

To finish the proof, we need to show that if £, and &, are two designs such
that a; < u(¢) < u(&;) <al, and v(§) = g(w(§)), i = 1,2, then neither is
more informative than the other. Since the function a + (n — 1)g(a) is
concave and achieves its first maximum at a$, it is strictly increasing on
[a;,a3]. Therefore w(¢;) + (n — Dv(§) < w(&y) + (n — Du(€,). On the
other hand, by (2.4), v(¢,) > v(&,). Hence neither of £, and &, is more
informative than the other. O

Lemma 2.2 shows that % is a part of the curve %y, starting from g(a;)
and ending at g(a$). For any design ¢ corresponding to g(a), a + (n — 1)g(a)
= tr M(¢) o ¢,(M(£)). Therefore the rightmost point of %y corresponds to a
¢,-optimal design. From the mapping in (2.9), an essentially complete class
for the Schur ordering can be obtained as a subclass of the essentially
complete class .#x for the Kiefer ordering given in Theorem 2.1.

THEOREM 2.2. Suppose xg maximizes |x||ls over x e X and also mini-
mizes |x||; among those which maximize |x||s. Let Eg be the following subset

of Eg:

Es = {x:x € Ey and Il < IIx3ll:}.
Then an essentially complete class for the Schur ordering is

Mg = {f: &= &xy for some x € Eg,
or is a convex combination of £ , and &,

where x, and x, are two neighboring points in Eg}.

PROOF By (2.7) and (2.8), (n — Dv(&,,) + u(€xy) = IxI13. So by Lemma
2.2, a5 can be obtained by maximizing lejlz over x € X, and then minimizing
llx||1 among those which maximize |x|l;. Then a$ =~ !x$[%, and Exsy

corresponds to g(a$), the rightmost point of #g. O

The following result is concerned with when minimally complete classes
for the two orderings are the same.

THEOREM 2.3. The minimally complete classes of moment matrices for
Kiefer and Schur orderings are the same if and only if all the points that
maximize |[x|ls over X also maximize |||, (therefore all the points maximizing
IIx|lz over X have the same L,-norm).
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Proor. Comparing #x with g, we see that the two orderings have the
same minimally complete classes of moment matrices if and only if ay = a3,
or, equivalently,

(2.10) Ix3l: = Ixgll:.

By definition, x5 maximizes |x|l; over x € X, and minimizes |x|; among
those which maximize |x|l2. On the other hand, Xp maximizes |x|l; over
x € X, and maximizes x|, among those which maximize [x|[l;. It is easy to
see that (2.10) is equivalent to all the points that maximize [x||; over X also
maximizing [x[l;. O

Detailed examples illustrating the results in this section can be found in
Section 4.

3. &,-optimal designs. Since the ¢, -criteria are Schur concave, ¢,-
optimal designs can be found among the designs in the essentially complete
class .#g. In other words, for any — <p < 1, there exists a ¢,-optimal
design of the form £, for some x € Eg, or a convex combination of f x, and
&(x,ys Where X, and x, are two neighboring points in Eg. We shall show that
the converse is also true.

THEOREM 3.1. Each design in M is ¢,-optimal for at least onep € [—, 1].

PrROOF. For —» <p <1, p # 0, define a function f, on lag, af;,] by

1

fo(a) = (n"Ha? + (n = D]g(a)]") "
for p =0, let fy(a) ={a-[g(@)]* }/*; and for p = —, let f_.(a) = g(a).
To determine a d) -optimal design, we can maximize f, (a) over a € [a;, ad].
If the maximum is attamed at a, then the design in %’S corresponding to g(a)
is ¢,-optimal over = E. Due to the one-to-one correspondence between .Z; and
Zs, for s1mp11c1ty, in the rest of the proof, we shall only deal with #Zg. If the
maximum of f, is attained at a, then we say that g(a) is ¢,-optimal. It is
enough to show that each g(a), a € [a;,a5], is ¢,-optimal for at least one
p €l—x1].

Since g is concave on [ay, aj], for all —» < p < 1, f, is strictly concave on
[ay,a3]. Therefore the maximum of f (a) over [aL,aR] is achieved at a
unique a. By the definitions of a; and a3}, this is also true for p = —% and 1.
Let

F(p) = max _f,(a).
aclar,apl]
Using the strict concavity of f, for all —~ < p < 1 and the fact that, for fixed
a, f,(a) is a continuous functlon of p € [—,1], it can easily be seen that
F( pg is a continuous function of p € [ —, 1]. We have already known that
gla;) is ¢_.-optimal and g(a}) is ¢,-optimal. The contlnulty of F(p) over
p € [—»,1] now implies that each g(a), a € [q,, aR] is ¢, -optimal for at
least one p € [—o,1]. O
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A consequence of Theorem 3.1 is that the ¢,-optimal designs constitute an
essentially complete class for the Schur ordering. When the conditions in
Theorem 2.3 are satisfied, they are also an essentially complete class for the
Kiefer ordering.

When a; = a}, % consists of one single point, and g(a;) is ¢,-optimal for
all p € [—x,1]. Therefore, to derive d) -optimal designs, without loss of
generality, we may assume that ar < aR For any —» < p < 1, since f (a) is
a concave function of a, the maximum of f, over [a;, a3] occurs at ae
(ar, a3) if and only if

(3.1) fi(a,) <0
and
(3.2) fi(a ) >0,

where f,(a,) and f,(a_) are the right- and left-derivatives of f, at a,
respectively. Similarly, the maximum occurs at a; (respectively, a3) if and
only if f;(a,,) < 0 [respectively, f(aj_) > O].

By direct calculation, (3.1) and (3.2) are equivalent to

(8.3) [a/g(a)]” ' < —(n—1)g'(a,)
and
(3.4) [a/g(a)]” ™' = —(n—1)g'(a_).

We have the following theorem.

THEOREM 3.2. Suppose ga) is ¢,-optimal and g(b) is ¢,-optimal, where
p,q € (—x,1). Ifa <b, then p <gq.

PrROOF. By (3.3) and (3.4), we have

(3.5) [a/g(a)]” ' < —(n-1)g'(a,)
and
(3.6) [6/8(b)]" ' > —(n - 1)g'(b_).

We shall show that p > g would lead to a contradiction. By (2.4) and (2.5),
1<a/g(a) <b/g(b).If p > q,then[b/g(b)]? ! < [a/g(a)]?~ . On the other
hand, —(n — Dg'(b_) > —(n — Dg’'(a,). These two inequalities together
with (3.5) imply that [b/g(b)]7"! < —(n — 1)g'(b_), contradicting (3.6). O

By (2.5), for a € (a, a3), (3.3) and (3.4) are the same as

In[—(n —1)g'(a.)] In[—(n - Dg'(ay)]

In[a/g(a)] Tisps In[a/g(a)] it

(3.7)
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For each a € (ay, a3), let
_In[-(n-1)g'(a_)]

s(a) = nla/z(a)] +1 and
_In[-(n-1)g'(a,)]
)= lee@l b

Then, for any a € (a,, a3), gla) is ¢,-optimal for all p € [s(a), t(a)]. Let
In[—(n - Dg'(aj_)]

s(ad) = +1 and ¢(af) =1.
(%) = = [as/e(ad)] (ex)
Then g(a5) is ¢,-optimal for p € [s(a3), t(a$)]. Furthermore, let s(ay) = —oo,
and define
In[—(n - Dg'(ay.)]
+1, ifa; #g(a;),
t(ay) = In[a;/g(a;)] r (1)

—, ifay =g(ar).

Then g(a;) is ¢,-optimal for p € [s(a,), t(a;)]. Notice that when a; = glap),
(3.3) cannot be satisfied by any p € (—,1). In this case, g(a,) is only
¢_n-optimal. By Theorem 3.2, #(a) < s(b) for any a < b; so
{[s(a), t(a)l, < (q,, 03, gives a partition of [, 1]. If g is differentiable at a,
then s(a) = t(a), and g(a) is ¢,-optimal with respect to a single p; otherwise,
it is ¢,-optimal with respect to all the p-values in an interval.

Consider once again the one-to-one correspondence (2.9) between Mg and
Hg. We see that any design g€y, + (1 — e)§<x2> in #g is ¢,-optimal over &
with respect to all p € [s(a), t(a)], where a = n ™[ &lix,[I? + (1 — &)lx,lI3]. In
particular, for any x € Eg, if g is differentiable at a = n~!|x||?, then éixy 1
¢,-optimal for exactly one p-value, p = s(a). Otherwise, it is ¢,-optimal for
all p-values in the interval [s(a),#(a)l. On the other hand, for any two
neighboring points x,; and x, in Eg and 0 < & < 1, since g(a) lies in the
interior of a line segment, g must be differentiable at a = n~elx, |7 +
a- s)llx2||f]. Therefore, eéxy t a- a)§<x2> is ¢,-optimal for exactly one
p-value. As one moves from &x,y 10 &gy in increasing order of [xl;, while
connecting two neighboring designs &xy with their mixtures, the points on
Hs from gla;) to glaf) are generated in increasing order of a. In the
meantime, ¢,-optimal designs are produced in increasing order of p.

4. Examples.

ExamPLE 1. Consider the case where X = {x: X , x;, <z, and x, > 0 for
all i}. Then X consists of the n points: e;,e,,...,e,, where e, has ith entry
equal to z and all the other entries are zero. Since lle;lls = lle;llz for all i, the
condition in Theorem 2.3 is satisfied. Therefore the two orderings have the
same minimally complete classes. Indeed, we have (x;) = (x;) = {e,). So
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Ry (=Ag) contains only one point, and the essentially complete class .Z
(=) consists of one single design: ¢, ,, which puts equal weights on the n
vertices e,,...,e,. This is the best design under both Kiefer and Schur
orderings; in particular, it is ¢,-optimal for all —» <p <1. We point out
that it is also universally optimal in the sense of Kiefer (1975).

ExampLE 2. Let X = {x: X7, x? < r?, and x; > O for all i}. Then

i
n

X= {x: Y x2=r?, and x; > O for all i}
i=1

is the spherical surface. All the points in X have the same L,-norm, but may
have different L;-norms; so in this case we have different minimally complete
classes for Kiefer and Schur orderings. Since all the points in X have the
same Ly-norm, x; (respectively, xp) is obtained by minimizing (respectively,
maximizing) Ix||? over x € X. Therefore x r 1s the point with all entries equal
to r/Vn , and x; can be any e, whose ith entry is r, and all the other entries
are 0, 1 < i < n. For any a with n7'r? < a < r?, the set C, described in the
paragraph preceding Theorem 2.1 is the cross section X N {x: I*_, x; = Vna},
and the set E is obtained by picking an arbitrary point x, from C,, n™'r? <
a < r2. Since n7 Y, = a and (Ix [} — n 7 lx | /(n = D = (r* = a)/(n -
1), all the points (n~[x 1%, (Ik,ll3 — n”lllxalrf)/(n -1), n7'r?<a<r?
are on a straight line. Hence Ex = {x, Xy}, and an essentially complete class
for the Kiefer ordering consists of all the designs of the form &¢, , + (1 —
e_)§<xR>, 0 < ¢ < 1. On the other hand, xﬁ = x; since X; minimizes x|l over
X. Therefore the essentially complete class .#g for the Schur ordering con-
sists of one single design: §, ,. As in Example 1, this design is universally
optimal and is ¢, -optimal for all —» <p < 1.

It can easily be seen that £¢, ,+ (1 — £)¢x,y has the same moment
matrix as the uniform measure on C, with a =n"[er?+ (1 — &)nr?l.
Therefore an alternative essentially complete class for the Kiefer ordering is
{£,: n71r? < a < r?}, where £, is the uniform measure on C,,.

ExamMPLE 3. Consider X = [0, 1]*, which was treated in Cheng (1987) and
Pukelsheim (1989). Then X consists of all the vertices of X that have at least
m entries equal to 1, where m is the integral part of (n — 1)/2. Let v, be a
vertex with & entries equal to 1. Then

(4.1) Wl =% and [iv,lls = V&

The condition in Theorem 2.3 is satisfied, so we have the same minimally
complete class for the two orderings. In this case, x; and xj (= x3) are
obtained by maximizing ||vk||% — n‘lllvkllf and Ilvkllf, respectively, over m < k
" < n. It is easy to see that xz(= x3) = v, and x; = v,,. Then the set E is {v,:
m < k < n}. By (4.1), the convex hull of {(n ||}, (]I} — »~YIxII})/(n — D):
x € E} is a polytope on the vertices (k%/n,(k — n"1k2)/(n — 1)), m <k <n.
It follows that E, = E; therefore the essentially complete class .#; (=)
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consists of all the designs of the form &, , + a- 8)§<vk+1>’ 0<ex<l,
m <k <n — 1, where ¢, , is the uniform measure on all the vertices with &
entries equal to 1. Cheng (1987) showed that each £, is ¢,-optimal for the
p-values in an interval, while each proper mixture &¢.,, + 1 - &)y, is
¢,-optimal for one single p. This is because on the boundary of the polytope,
the slopes change at the vertices only, which correspond to the designs ¢, ,,
m < k < n. Explicit formulas for ¢,-optimal designs as derived in Cheng
(1987) can be obtained from (3.7), and there is no need to use the equivalence
theorem. See also Pukelsheim [(1993), Section 14.10].

In Example 3, the function g is piecewise linear. We shall end the paper
with an example in which g is differentiable.

EXAMPLE 4. Let X be the ball {x: X7_, (x; — z)? < r?}, where r < z. Then
XcR? and X = {x: ¥7_, (x; — 2)> = r? and L}_, x; > nz}. Again, the condi-
tion in Theorem 2.3 is satisfied, and the minimally complete classes for the
two orderings coincide. It is clear that x5 is the point with all entries equal to
z + r/Vn. We notice that, for any x on the spherical surface
{x: It (x; —2)2 =r?%, if n lx|? = a, then x5 = r2 — nz% + 2zVna; so
Ixl? — n=Yx|I? = r2 — nz? + 22Vna — a is a function of a. Therefore x; can
be obtained by maximizing r? — nz? + 2zVna — a with respect to a. The
solution is @ = nz?% So x; can be any point in the intersection of the spher-
ical surface {x: Y7_,(x;, —2)? = r?} and the hyperplane {x: I}_; x; = nz}
that passes through the center (z, z, ..., 2)* of X. For any a with nz® <a <
n(z + r/ Vn )?, the set C, is the cross section C, = {x: X7_, (x; — 2)* = r?} N
{x: 7, x; = Vna}. Pick an arbitrary point x, from C,. Then the set E is
{x,: nz? <a <n(z +r/Vn)?. Let

F= {(a,(r2 —nz? +2z/na —a)/(n—1)):nz’ <a<n(z+ r/\/—r?)2>.

Since r2 — nz? + 2zVna — a is a strictly concave function of a, %g, the
upper boundary of the convex hull of F, is F itself. Therefore Ex = E.
Furthermore, E contains no neighboring points because it is a continuum. It
follows that the essentially complete class .#x (=.#g) consists of all the
measures &, ,, nz? <a <n(z +r/Vn)?.

It is easy to see that {, , has the same moment matrix as the uniform
measure on C,. Let this design be denoted £,. Then an alternative essentially
complete class for both Kiefer and Schur orderings is {£,: nz? <a <n(z +
r/Vn)?). For any such £,, g(a) = (r? — nz% + 2zVna — a)/(n — 1). Since g
is differentiable, each ¢,, nz? <a <n(z +r/ Vn)?, is ¢,-optimal for a single
p:

In[—(n - 1)g'(a)]
p= +1
In[a/g(a)]

3 ln[l —z\/n/a]
B In[(n — 1)a/(r® — nz® + 22Vna - a)]

+ 1.
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On the other hand, §, .. is ¢_.-optimal, and &, ,, sy is ¢,-optimal for all

ln[r\/;/(nz+r\/;)]
peE 5 1 + 1,1}
ln[(n - Dn(z + r/\/;) /(r2 —nz? + 2nz(z + r/\/;) -n(z+ r/\/;) )]
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