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NONPARAMETRIC TESTS FOR NONSTANDARD
CHANGE-POINT PROBLEMS

By D. FERGER

University of Giessen

We consider independent random elements X,,..., X,, n € N, with
values in a measurable space (#, #) so that X, ..., X|,,; have a common
distribution », and the remaining Xj,9;.1,..., X, have a common distri-
bution vy # vy, for some 6 € (0,1). The change point 0 as well as the
distributions are unknown. A family of tests is introduced for the nonstan-
dard change-point problem H,: 6 € ®, versus H;: 6 € @,, where 0, is
an arbitrary subset of (0, 1). The tests are shown to be asymptotic level-a
tests and to be consistent on a large class of alternatives. The same holds
for the corresponding bootstrap versions of the tests. Moreover, we pre-
sent a detailed investigation of the local power.

0. Introduction. Suppose we observe independent random elements
Xy,..., X, in a sample space (2, &) so that X,,..., X|,, have a common
distribution », and the remaining X;,4;,y,..., X, have a common distribu-
tion v, # v,, for some 6 € (0, 1). The change pomt 0 as well as the distribu-
tions are unknown. Many situations can be modeled in this way. Well-known
and illustrative examples are the Nile data [cf. Cobb (1978)], the coal mines
data [cf. Maguire, Pearson and Wynn (1952)] and the Lindisfarne scribes data
[cf. Smith (1980)]. One basic question is whether there is a change at all. In
other words, we are concerned with the test problem Hg: 6 = 0 versus H}:
6 € (0, 1). There is a host of papers dealing with this standard change-point
problem. For example, see Bhattacharya and Brockwell (1976), Bhattacharya
and Frierson (1981), Csorgé and Horvath (1987, 1988a, b), Deshayes and
Picard (1981), Lombard (1987), Lorden (1971), Page (1954, 1955), Pettitt
(1979) or Worsley (1986). In principle there exist two different approaches.

As to the first, recall that 6 € (0,1), divides the data into two different
subsamples. Since 6 is unknown, we consider, for each possible change point
t €(0,1), the subsamples X, ..., X|,,; and Xint)+15---» X, and their corre-
sponding empirical measures

1 [nt] 1 n

‘P, = st and Pl=——1+— Y &,
[nt] ll RC2 P Y i

where 8, denotes the Dirac measure at x € 2. Next a “distance” d(‘P,, P})
between these two empirical measures is determined. For example, Diimbgen
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(1991) suggests d(‘P,, P!) = supp . ,|'P,(D) — P!(D)|, where 9 C % is some
given subclass of measurable sets. In the case 2= R and 2 = {(—, x]:
x € R} this leads to the familiar Kolmogorov—Smirnov distance between the
two empirical distribution functions of the two subsamples [cf. Deshayes and
Picard (1981)]. The underlying philosophy is that the distance d(‘P,, P}) is
small if Hf holds and that there are significant deviations otherwise. Hence
these tests reject Hy in favor of Hf if max, . ;, d(‘P,, P}) is significantly
large. Csorgé and Horvath (1988b) deal with the “distance” d(‘P,, P}) =
[Kd'P, ® P!, where K is a given kernel. For K(x, y) = sign(x — y) we
obtain a test proposed by Pettitt (1979). Of course the distance d(‘P,, P}) can
also be used to define estimators for the unknown changepoint 6; namely,
since we expect the distance d, as a function of ¢ € (0, 1), to be maximal at
the point ¢ = 6 we are led to set

6, = argmaxd('P,, P}).
te(0,1)
Special versions of this estimator have been suggested by Bhattacharya and
Brockwell (1976), Carlstein (1988), Hinkley (1970), Darkhovskh (1976) or
Diimbgen (1991).

For the second approach assume that, for 0 < ¢ < 1, S,(¢) is a statistic
designed for testing whether the two subsamples differ in distribution or not.
If, for example, an upper two-sample test is used, H{ is rejected if
max, o 3, S,(¢) is too large. Similarly, 6, = argmax, ;) S,(¢) may serve as
an estimator of 6. See Darkhovskh (1976), whose method is based on the
Mann—Whitney statistic.

Besides the question whether a change has occurred or not it is in many
situations more natural to ask if a change has taken place within a certain
time period or not. As an example, consider an environmental system which
is exposed to an external pollution during a given time period. Then we want
to know whether the pollution has effects on a certain population living in
this system. Formally, we are faced with the test situation

H,:0€ 0, versus H,;:0¢& 0,,

where 0, is a given subset of the open unit interval. If the time interval
degenerates to a single point, that is, ®, = {6,}, one can proceed as follows:
take any estimator 6, of the unknown change point 6 for which an (asymp-
totic) distribution theory is available. In many cases we have that n(6, — )
-, &, where ¢ is the maximizer of a two-sided random walk on Z. Results of
that kind have been proved by Hinkley (1970) in a parametric setup and by
Diimbgen (1991) and Ferger (1994a—c) in a nonparametric framework. The
decision rule

Tn = 1(n|o,,— o> c}

gives an asymptotic level-a test, provided c satisfies the equality 1 — F(c) =
a, with F' denoting the distribution function of the limit variable | £|. More-
over, it is easy to see that 7, is consistent, that is, lim, ,, P,(r, = 1) = 1 for
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each 6 # 6,. In general F is unknown. Hence we cannot determine the
critical value c. It can be approximated, however, via bootstrap methods as
carried out by Diimbgen (1991) and Ferger (1994a). This method does not
apply when ®; contains more than one element, for example, ®, = [a, b]
with 0 <a < b < 1. To the best of our knowledge we are not aware of any
contribution to this nonstandard test situation. It will be the subject of the
present paper.

1. The tests and their large-sample properties. In this section we
will present a large class of nonparametric tests for H, versus H,. To
facilitate the presentation of the large-sample results, we prefer to work with
a triangular array X,,,..., X, of random elements rather than a sequence.
Now, consider the modified empirical measures of the two subsamples gener-
ated by ¢ € (0, 1):

t . -1 t . -1
w, =n Y & and ui=n Y 8.
1<i<nt nt<i<n

If, for example, 2 is a separable metric space a variation of arguments of
Varadarajan (1958) yields that u, and u! converge in the weak topology
with probability 1 to the measures

= Ly coptvy + Lys g0y + (2 — 0)vy)

and
w= 1(tso}((0 —t)v;+ (1 - 0)”2) + 1(t>0)(1 —t)vy,
respectively. Let K: 22 — R be a measurable mapping (kernel). Set
tu(0—1t) +tAM1—9), 0<t<@,
= Pty =
r(t) = [Kdu' @ {(1—t))u9+ (1-t)r(t—0), 0<t<l,

with u = [Kdv, ® v;, 7= [Kdv, ® v, and A = [Kdv, ® v,. Obviously r is
continuous on [0,1] and differentiable at ¢ + 6. Let w(¢), 0 <t <1, be a
weight function of the type

w(t)=t"*(1-1t)"", 0<a,b<l.

For the sake of simplicity let us assume, for a moment, that K is antisym-
metric, that is, K(x,y) = —K(y, x) for all x,y €2, In that case u = 7=10
and the function r(¢) is a simple polygonal line through the points (0, 0),
(0, A6(1 — 0)) and (1, 0). Thus 6 is the unique maximizer or minimizer of r(¢)
according as A is positive or negative. The weighted function

p(t) =w(t)r(t), 0<t<l,

has roughly the same shape as r(¢). Consequently, we define our estimator 6,
of 6 to be the maximizer of the empirical analogue of | pl:

(1.1) 6, = argmaxw(¢t)|r,(¢)l
teG,
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with

ro(t) = de,L; ®u,=n? Y ¥ K(X,.X,), O0<t<I,
nt<i<n l1<j<nt

and
G,={kn":1<k<n-1)}.

In the general case we need the following assumption (P) on the shape of the
function p.

(P) There exists a positive constant L such that either
(1.2) p(0) —p(t) = LIt — 0| Vte[0,1] and O—infl'p(t) <p(0)
<t<

or
(13) p{t) —p(6)=LIt -6l V¢e[0,1] and sup p(t) < —p(6).
1

O<t<

Geometrically (P) means that the graph of | p(¢)| has a unique peak at 6. Of
course (P) is an implicit assumption on the underlying distributions v, and
v,. Note that, for an antisymmetric K, (P) reduces to the simple requirement
that A is nonzero. Especially the quantities L or A may be interpreted as a
means to measure the distance between v, and v,.

REMARK. Observe that 6, and p depend on K. We write 6, = 6,[ K] and
p = plK]. Since ,[K] = 6,[—K] and p[—K] = —p[K] we can theoretically
assume that, for example, (1.2) holds. Ferger and Stute (1992) proved (for
bounded kernels and w = 1) that

16, — 6l=0(n"'logn) Pras.,V6e<(0,1).

Here and in the sequel the notation P, is used to stress the fact that  is the
true change point. Now, it is plausible to reject H, if the distance of 6, and O,
is too large. Formally,

o = Lig, e 0577y
where for A ¢ [0,1] and £ > 0, A° denotes the s-neighborhood of A: A = {x
€ [0,1]: d(x, A) < &} with d(x, A) = inf{|lx — al: a € A}. Furthermore, c is
defined by

(1.4) c=min{fk €N:1-F_, (k- 1) + F.(—k) < a},
with F_ .  and F_;, denoting the distribution functions of the Z-valued

random variables T, ., and T, as defined in Section 4. In applications,

0y =[a,b],0<a <b<1,sothat 6= (a — &,b + &). Besides (P) we need
the following second moment condition:

(M) [IKP dv; @ v, <0  Vis<js<ise.
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THEOREM 1.1. Let (%, &) be a measurable space and assume that (P) and
(M) hold. Then, for all a € (0,1),

(1.5) limsup Py(7, rejects Hy)) <a VO 0,
n— o

and

(1.6) lim P,(7, rejects H)) =1 Vo0& 0,,
n— o

where ®, denotes the topological closure of Oy.

The theorem states that 7, is a consistent and asymptotic level-a test. Of
course, the consistency (1.6) of the test 7, is a global power property. In
contrast the next theorem describes the local power of 7,. Here, we let the
change point 6 = 9, & 0, tend to ®, as the sample size n tends to infinity.
More precisely, let (0 ) €(0,1) \ ©, be a convergent sequence such that the
distance

&n = d(6,, )

between 6, and 0, converges to zero. Without loss of generality, we can and
do assume that ®, € G, for all n € N. Observe that the limit § = lim, _, 6,
necessarily is a boundary point of ©,.

THEOREM 1.2. Assume the assumptions of Theorem 1.1 hold and that
0, < (0,1).
If &, = " 'en™ !, where n € (0, 1) is arbitrary, then

(1.7)  liminf P; (7, rejects Hy) = Fy,. ([c]) — Fui( =[] — 1),
n—oo
where ) = n~'(1 — m). Note that the lower bound in (1.7) increases to 1 as

1 1 0. Moreover, the rate n™" is exact in the following sense: if &, tends to zero
at a rate slower than n™', that is, ne, — «, then

(1.8) lim P; (7, rejects Hy) = 1;
n—o

otherwise, that is, if ne, — 0, then

(1.9) limsup P; (7, rejects Hy) < a.
n—o

A detailed discussion concerning an appropriate choice of the kernel K
follows in Section 3. The critical value c is in general unknown. As a way out
we will show the validity of a bootstrap approximation in the next section.

2. Bootstrap approximations. If the uniqueness condition
(U) F, max F, min
is satisfied, the unknown critical value ¢ can be rewritten as

=F'1(1 —a)+1,
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with F' denoting the distribution function of |7 ; |. By Theorem 4.1,
£, =n6, —[no]

converges in distribution to T, . Therefore we approximate the unknown
distribution #(|T,,;,D by the conditional distribution

Z(1&] IXln,...,Xnn),
where
=n6} —no,

and 6 is the change point estimator (1.1) pertaining to a bootstrap sample
Xy ...» X0, To be precise, given X, = (X,,,..., X,,) the variables X} are
independent with distribution », , for 1 <i <n6, and v, , otherwise. Here
vy, and v, , denote the empirical measures of the two subsamples gener-
ated by 6,:

1 1

Vl,n = 70 Z 6Xm and Vz’n = n—no Z 8Xm'
n 1<i<né, n n@,<i<n

The existence of a probability space ({2, %, P) which is rich enough to carry
all random variables is ensured by a canonical construction [cf. Ferger
(1994a)]. Now, let F} be the conditional distribution function of [£¥| given
X, , that is,

Fr(z) =P(IgF <xX,), xR
We define the bootstrap estimate of ¢ by
¢t = ci(X,) = (F) (1 - a) + 1.
Then the bootstrap test is given by
T = Ligs ¢ ogim-

We can prove the following counterparts of Theorem 1.1 and Theorem 1.2.

THEOREM 2.1. Let 2 be a separable metric space and let K be bounded and
uniformly continuous. If (P) holds, then, for all a € (0, 1),

(2.1) limsup Py( 7, rejects Hy) <a V6 € Int(0,),

n—o

where Int(®,) denotes the interior of ©,. Moreover,
(2.2) lim Py(7} rejects Hy)) =1 VO ¢&0,.
n—oo
THEOREM 2.2. Suppose the assumptions of Theorem 2.1 and (U) hold and
that ®, c (0,1). If &, = n"'en™ 1, where n € (0,1) is arbitrary, then
(2.3) lim infP; (7f rejects Hy) > 2F([37c]) — 1,
n—oo

where 7 = n~1(1 — n). Note that the lower bound converges to 1 as 7 — 0.
Moreover, the rate n™! is exact in the following sense: if &, tends to zero at a
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rate slower than n™1, that is, ne, — , then
(2.4) lim P; (7, rejects Hy) = 1;
n—o

otherwise, that is, if ne, — 0, then, forall 0 <p < 1,
(2.5) limsupP; (7, rejects Hy) <2 — (F([ pc] — 1) + F([(1 — p)c] — 1)).

n— o

REMARKS.

(i) Diimbgen (1991) used the same resampling method for constructing
bootstrap confidence sets. In practice one can approximate the critical values
c} via Monte Carlo simulation.

(i1) If it is known in advance whether (1.2) or (1.3) holds, it is advanta-
geous to deal with the one-sided variant of our test. In view of the remark in
Section 1 we can w.l.o.g. assume that (1.2) holds. Then we need to replace 6,
by

0, = argmaxw(¢)r,(t).
teG,

3. Choice of kernels. As we pointed out in Section 1, antisymmetric
kernels K play a particular role. So, before a set of data can be analyzed, an
antisymmetric kernel K needs to be chosen such that, hopefully, A =
A K, v, v,] # 0. In many cases where some prior information about the type
of change is available, we are able to find such kernels. At first let 2° be the
real line. To detect a change in location we may take K(x, y) = f(x) — f(y)
with f strictly monotone. Indeed, if, for example, there is a positive shift after
the time [n.6], then a strictly increasing f induces a positive A. For a change
in scale we may take the same f and set K(x, y) = f(x2) — f(?), obtaining a
positive A for a scaling factor with abolute value greater than 1. These
kernels also work if v, is an e-contaminated v,, that is, v, = (1 — &)v, + ev,.
In this case ALK, v, v,] = eAl K, vy, v5], so that the above conclusions apply
to v; and vy, if v results from v, by a change in location or scale. If we want
to detect 2 change in the kth (absolute) moment, then K(x,y) =x* — y*(=
lx|* — |y|*) yields a nonzero A. Finally, to detect a change from v, to a
stochastically larger v,, K(x, y) = sign(x — ) is suitable. We are also able to
deal with models involving general sample spaces. Let £ be any normal
linear space. Take, for instance, 2= Rd d > 1, or = C[0, 1]. Consider the
general location-scale model:

Xino1+1 =2 T(X(ne)) + %o,

where T: 2> 2 is some linear mapping and x, €2. For T equal to the
identity map Id and x, # 0, this reduces to the location model and, for
T + Id and x, = 0, to the scale model. Suppose the expectation n = EX 0 €

& (in the sense of Pettis integral) exists. Let f € 2*, the dual space of 2, and
define K(x,y) =f(x —y). Then A = f(y,) with y, = (T — Id)(n) + x,. Pro-
vided that y, # 0 (which is always true in the location model as well as in the
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scale model if 7 is not an eigenvector of the eigenvalue 1), there exists, as a
consequence of the Hahn-Banach theorem, an f € 2* such that A = f(y,) =
lyoll > 0. For 2= R? d > 1, we can construct such an f explicitly: let
¥o=(y1,...,¥5)and D = {1 <i <d: y;, + 0} # . For each i € D, take some
A; > 0 and define a; = A;y7*. Then for f(x) =X, pa;x;, x = (x,..., %),
one has A = f(y)) = L,.pA; > 0.

Finally, assume that we observe continuous random functions X; = (X,(¢):
0 <t < 1) on [0, 1] such that the change has been caused by a transformation
in time t € [0, 1]

X[n0]+1 7 X[no] ° e,

where ¢: [0,1] — [0, 1] is continuous. For example, our data could be the
height growth curves of children observed over a fixed period of time [see,
e.g., Miiller (1988)]. Recently there has been an increasing interest in the
statistical literature on so-called functional data analysis. Here we are faced
~ with data for which the ith observation is a real function rather than a point
in the Euclidean space R? [cf, e.g., Rice and Silverman (1991)]. If EX? ,,(¢) =
h(t), 0 <t <1, and [§(h(e(¢)) — h(¢))dt # 0, one can take K(x,y) =
Jo(x2(t) — 2(t)) dt, since then A = [J(h(p(8)) — h(¢)) dt + 0.

4. Proofs. The proofs of our theorems basically rely on Theorem 4.1. For
its formulation we need to generalize our original model slightly. Let
Xipsooo» Xuynsn €N, be a triangular array of rowwise independent random
elements defined on a probability space ({,.w, P) with values in (2, %).
Suppose there exist sequences (v, ,) and (v, ,) of distributions and a se-
quence (6,) in (0, 1) such that X, has distribution vy, forl<ic< n6, and
distribution v, n for nf, <i < n If necessary we will write P = Pg) or
simply P = P; in order to stress the fact that P depends on the sequence
(6,). We assume that the following stability condition holds:

(S) Vi, ~w V1, Vo n =w Vas 6, > 0<(0,1),

,n w ,n w

where —, denotes convergence in the weak topology on the space of
probability measures on (2, #). Moreover, let Z be a two-sided random walk
on Z defined by

k

Y H(Y)), k>0,
j=1
Z(k) = 0
- Y H(X;), k<O.
Jj=k+1

Here, (X;);.; and (Y;);., are two independent sequences of ii.d. random
elements with X; ~ v; and Y; ~ v,. The mapping H is given by

H(z) = (1 - 6) [K(x,2)vy(dx) - 0[K(2,y)vi(dy), 2z€Z.
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Finally, let
Y(k) =w(0)[Z(k) — m(k)] + A(k), keZ,
where
[(1-6)r—6AlE, E=>0,
m(k) = {[(1 —0)A— 6u]k, k<O,
is the expectation EZ(%k) and
A(k) =w'(6)A0(1 — 6)k + w(0)m(k), kez,

is a drift function. The following sign variable is only introduced for a
convenient presentation of our results:

ET if (1.2) holds,

771 -1, if(1.3) holds.
Notice that the gradient of the drift function A coincides with the right
derivative p'(8 + ) or the left derivative p'(8 — ) according as k is positive or

negative. Thus, by (P), ¢Y is a two-sided centered random walk with a linear
negative drift. By the strong law of large numbers,

lim oY(k) = —~ with probability 1,

k-
whence the following random variables are well defined almost surely:
Tpin = min{k, € Z: aY(k) < 0 Y (ko) V k € Z}
and
Tax = max{ky € Z: aY(k) < cY(ko) V k € 7},
and T,

max

that is, T, are the minimal and the maximal maximizers of o¥.

THEOREM 4.1. Let & be a separable metric space and let K be bounded and
uniformly continuous. Suppose (S) and (P) hold. Then, for all z € Z,

P(Tpey < 2) < liminfP(no, — [n8,] <z2)
e

(4.1) < limsupP(nOn - [n(_i’n] < z)

< P(Tpi, < 2).

If vi, = vy, vy, =v, and 6, = 0 for all n € N, then the conditions can be
weakened to the following: (%, #) is a measurable space and (M) and (P)
hold. Moreover, if in addition (U) holds, then

(4.2) &, =no, — [n@n] =g Thin-

REMARKS.

(1) A proof of Theorem 4.1 is given in Ferger (1994b).
(i) It is easy to see that the uniqueness condition (U) is fulfilled if v, - H™*
and v,° H ! have no atoms. This is true in the location, the scale, the
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contamination and the moment models provided v, is atomless (as well as v,
in the case of the moment model) and K is such as described in Section 3.
Also note that (U) is equivalent with T}, = T, ;. almost surely.

Proor oF THEOREMS 1.1 AND 2.1. Let 6 € ®,. Note that
{7, rejects H,} c {|6, —al>c/n} Vae0,.
Since 8 € ®, and c is an integer, it follows that
P,(, rejects Hy) < Py(In6, — [n6]] = ¢).

Hence (1.5) follows from (1.4) and (4.1). To prove (1.6), take an arbitrary
0 & ©, and define ¢, = d(0, ©,), so that &, > 0. Observe that

d(e,,9,) zd(%ﬂ,@o) -6, — [n0] (VreN)
2 [r6]
228 |0~

for all n exceeding some n,(g,) € N, by continuity of d(:, ®,). Thus, for all

n > ny(g,) with cn™! < %&,,
né 1
(4.3) { 6, — [ - ] ‘ < an} c {6, € 65"}
By Ferger [(1994b), Theorem 2.2],
[n6] : -
(4.4) 6, — - = o(1) with P;-probability 1.

Therefore (1.6) follows from (4.3) and (4.4). As to the proof of Theorem 2.1,
note that

¥ rejects Hy}) c {16 — 6| = c*/n} U {6, & O,}.
n 0 n n n n 0

Consequently,
lim sup P,(7,* rejects Hy)
n—o
< limsupPy (16} — 6,| = ¢} /n) + limsupPy(6, &€ ©y) =1+ IL

n-— o n—o

From Fatou’s lemma and (4.4) we can conclude that II is equal to zero if
0 € ©,. Moreover, by the definition of ¢,

I = limsupE(Py(1&F| > ckIX,)) < a,
which proves (2.1). To prove (2.2), let 6 ¢ ©,. Recall that ¢, = d(8, ©,) > 0.
Similarly as above we have that, for all n > ny(¢g,),
[n6] ) O |

—| < 7% < Eso} c{oF & 8 /).

9 —
" 4

* 1 n
|0n - 9n| < Zé‘o, —’?
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Since {c}/n < §&o} = (F}(3ney — 1) = 1 — a} we may infer with Fatou’s
lemma and (4.4) that
liminfP)( 7} rejects H,)
n—o
(4.5) > liﬂingo(lo,f — 6,l < 35)
+ Po(liﬂigf{Fj(%nso ~1)21-0) -1
Set Oy =1{6, > 0, v, , = vy, v, , = v, as n — «}. Then, by (4.4) and Ferger

[(1994a), Lemma 3.2], P,(Q,) = 1. By (4.1),
liminfF*(2) > F,,(z) VYzeZ,VweQ,.
n—ow

Now, $ney, — 1 - ®w as n — », so that

(4.6) P,(liminf{F} (dns, — 1) 2 1 - a}) = 1.

n—o
Another application of Fatou’s lemma and (4.1) yields
liminfP, (16} — 6,| < 1&)
n-—o
(4.7)
> [ HminfP(nl6} - 6, < $eon|X,) dP, = Py(Q,) = 1.
Q, n—o®
Combine (4.5)-(4.7) to get (2.2). O

PrOOF OF THEOREMS 1.2 AND 2.2. It is well known that the function
d(-,0,) is Lipschitz continuous, which ensures that

d(6,,9,) > d(6,,0,) — 16, — 6,/ = &, — 16, — 6,.

Therefore,
{lg, -8, < (1 - )&,
(4.8) c {d(6,,0,) = 1¢,} [VYne€(0,1)]
= {1, rejects Hy} by definition of &, .
By (4.1) it follows that

\

lim infP; (7, rejects H,) > liminfP; (16, — 6,/ < (1 — n)e,)
n-— oo n—-o

= liminfP;(n6, — nb, < [#c])

n—o
—limsup P; (n6, — nb, < —[7c] — 1)
n-—o
= Fmax([;lc]) - Fmin( _[ﬁc] - 1)’
which shows (1.7). For the proof of (1.8) set

— op—la-1
N, =cn g, .
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Since neg, — « by assumption we have that 7, € (0, 1) eventually. By (4.8),
P; (7, rejects Hy) < P(In6, — n6,l < (1 - n,)ns,). |
However (1 — n,)ne, converges to infinity, so that a further application of
(4.1) yields (1.8). Recall the Lipschitz continuity of d(:,®,) to see that
d(6,,0) <16, — 6,1 + d(5,,0,) =16, — 6, + &,.
Thus
PB; (7, rejects Hy) < P(In6, — nb,|>c — ne,),
which yields (1.9) upon noticing (4.1) and ne, — 0. This completes the proof
of Theorem 1.2. As to the proof of Theorem 2.2, set Q, = {6, — 6, Vi ™

Vy, Vg n = Vy}. Note that using Theorem 2.2 of Ferger (1994b) and similar
arguments as in the proof of Lemma 3.2 of Ferger (1994a), one shows that

P(ﬁn)(QO) =1,

if (S) holds. Hence, by (4.2), F* converges weakly to F with P ,-probability
1. By the lemma of Chung [(1974), page 133], the convergence even holds
uniformly on R. Especially, we can deduce that

(4.9) ¢y = ¢ with Pg -probability 1.
Since

d(6;,0) > &, — 16 — 6, =16, — 6,1,
it holds that, for all n € (0, 1),

1 _ 1
(4.10) {IO,;" —0,l< E(l -n)e,, 10, — 6, < 5(1 - n)en}

c {d(e:,@o) > %}
(4.11) C {7} rejects Hy} + {c < c*}.
Note that ¢ and c are integer-valued so that, by Fatou’s lemma and (4.9),
r}i_r)roloP(gn)(c <c¥)=0.

Therefore (4.10) implies that
liminfP (7 rejects H,)
n— oo

> liminfP(nlg — 6, < 37c) + liminfP(nl6, — 6, < 37c) — 1
n-—® n-— o

> [ HminfP(nl6} - 6,/ < 17c)X,) dP
0

° n— oo

+ liminfP(nl6, — 6, < 37c) — 1

n-— o

=2F([37c]) - 1.
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This proves (2.3). Using (4.10) the proof of (2.4) is similar to that of (1.8).
Finally, since
d(6},0y) <&, +16¥ — 0, +16, — 6,],
it follows that, for all 0 < p < 1,
lim sup P( 7, rejects H)

n-— o
< limsupP(nl6; — 6,| = p(c} — ne,))
n-—o
+limsup P(nl6, — 6,/ > (1 - p)(c} — ne,))
n—o
< [ limsup P(n|6, — 6,| = p(ck — ne,)X,) dP
Q

0 n—®

+ lim sup P(nl6, — 6,l> (1 -p)(c* - ne,)).

n-— o

An application of (4.2) yields (2.5) upon noticing that ¢} — ¢ on Q, and
ne, » 0. O
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