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Location estimators induced from depth functions increasingly have been
pursued and studied in the literature. Among them are those induced from
projection depth functions. These projection depth based estimators have
favorable properties among their competitors. In particular, they possess the
best possible finite sample breakdown point robustness. However, robustness
of estimators cannot be revealed by the finite sample breakdown point
alone. The influence function, gross error sensitivity, maximum bias and
contamination sensitivity are also important aspects of robustness. In this
article, we study these other robustness aspects of two types of projection
depth based estimators: projection medians and projection depth weighted
means. The latter includes the Stahel–Donoho estimator as a special case.
Exact maximum bias, the influence function, and contamination and gross
error sensitivity are derived and studied for both types of estimators.
Sharp upper bounds for the maximum bias and the influence functions are
established. Comparisons based on these robustness criteria reveal that the
projection depth based estimators enjoy desirable local as well as global
robustness and are very competitive among their competitors.

1. Introduction. Depth induced location estimators, especially depth medi-
ans, increasingly have been pursued and studied in the literature. Among them are
the half-space median [Tukey (1975)], the simplicial median [Liu (1990) and Liu,
Parelius and Singh (1999)], the projection median [Tyler (1994), Zuo and Serfling
(2000a) and Zuo (2003)] and the projection depth weighted mean, which includes
the Stahel–Donoho estimator as a special case [Zuo, Cui and He (2004)]. The
half-space and projection medians and the projection depth weighted mean are
implementations of the projection pursuit methodology. They have been shown to
possess high finite sample breakdown points [Donoho and Gasko (1992), Tyler
(1994), Maronna and Yohai (1995), Zuo (2003) and Zuo, Cui and He (2004)] and
are favorable as robust location estimators among their competitors. The finite
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sample breakdown point alone, however, does not depict the entire robustness pic-
ture of an estimator. The influence function, gross error sensitivity, maximum bias
and contamination sensitivity, as local and global measures of estimator robust-
ness, also play indispensable roles in assessing robustness of estimators. Deriving
these robustness measures (especially maximum bias and contamination sensitiv-
ity) for multivariate location estimators, however, is usually very challenging and
difficult. This is true even at spherically symmetric distributions. The robustness
picture of the half-space median for very general distributions was completed by
Chen and Tyler (2002). Adrover and Yohai (2002) obtained important results on
the maximum bias and gross error sensitivity of the projection median for spher-
ically symmetric distributions. The corresponding results under weaker assump-
tions of symmetry, however, are yet to be explored. Further, the influence function
of the projection median is unknown. As for the projection depth weighted mean,
its robustness features beyond the finite sample breakdown point have not yet been
characterized.

In this article, we focus on the influence function, gross error sensitivity,
maximum bias and contamination sensitivity of the projection median and
projection depth weighted mean. Sharp upper bounds for the maximum bias
and influence function are established, and exact influence functions, gross error
sensitivities, maximum bias functions and contamination sensitivities are also
derived for nonelliptically as well as elliptically symmetric distributions. It turns
out that the influence functions of these estimators are bounded and so are their
maximum bias functions for contaminations under 50%. Comparisons with the
half-space median indicate that these estimators share desirable local and global
robustness properties and are very favorable overall. Our results here fill the gap in
the robustness study of the projection depth weighted mean and complement the
work of Adrover and Yohai (2002) (AY02) on the projection median. Specifically,
(a) we study the robustness of both the projection depth weighted mean and the
projection median, while AY02 studied only the robustness of the latter, and (b) we
drop, in the robustness study of the projection median, the spherical symmetry and
other assumptions required in AY02 (consequently our results are more general,
but proofs become truly multivariate and technically more demanding): we provide
a sharp upper bound of gross error sensitivity and an influence function that are not
given in AY02, establish a maximum bias upper bound that is sharper than that in
AY02 and prove a conjecture in AY02.

The rest of this article is organized as follows. Formal definitions of projection
depth, maximum bias, contamination sensitivity, the influence function, and gross
error sensitivity and related notation are presented in Section 2. The main results
of the paper are given in Sections 3 and 4. In Section 3, for the projection depth
weighted mean we (a) establish upper bounds for its maximum bias and influence
function, (b) derive its exact influence function and gross error sensitivity for
very general as well as elliptical distributions and (c) obtain the exact maximum
bias and contamination sensitivity (under point-mass contamination) for elliptical
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distributions. Section 4 is devoted to the projection median, where (a) sharp
upper bounds for the maximum bias and influence function are established,
(b) exact maximum bias and contamination sensitivity are derived for “d-version
symmetric” distributions (including as special cases elliptical distributions and
distributions generated from i.i.d. Cauchy marginals), and are shown to be
dimension-dependent for nonspherical distributions (proving a conjecture in
AY02) and (c) exact the influence function and gross error sensitivity are obtained
for elliptical distributions. Simulation studies and comparisons of projection depth
estimators with Tukey’s half-space median are undertaken in Section 5. A special
weight function is used for the weighted mean. The asymptotic breakdown point
for both projection estimators is 1/2, whereas it is only 1/3 for the half-space
median. The maximum bias of the projection weighted mean is the smallest when
compared with those of the two medians at standard normal models in R

d for
d ≤ 5. The maximum bias of the half-space median is slightly smaller than that
of the projection median for contamination close to or less than 0.3, but jumps
to infinity as the contamination approaches 1/3. The contamination sensitivities
of the two medians are the same at elliptical models, but larger than that of
the projection weighted mean for the weight function we choose. The influence
function and gross error sensitivity of the projection median are twice those of
the half-space median at elliptical models and the influence function norm of the
projection weighted mean is smaller than those of the two medians for most points
at standard normal models. The dimension-free property of the maximum bias,
contamination and gross error sensitivity of the two medians at spherical models
disappears at other models (in fact, they are of order

√
d at some other models

for all three estimators). Selected (sketches of ) proofs and auxiliary lemmas are
presented in Appendix A.

2. Definitions and notation. For a given distribution F in R
d and an ε > 0,

the version of F contaminated by an ε amount of an arbitrary distribution G is
denoted by F(ε,G) = (1 − ε)F + εG. The maximum bias of a given location
functional T under an ε amount of contamination at F is defined as [Hampel,
Ronchetti, Rousseeuw and Stahel (1986)]

B(ε;T,F ) = sup
G

‖T (F (ε,G)) − T (F )‖,

where (and hereafter) ‖ · ‖ stands for Euclidean norm. The contamination
sensitivity of T at F [He and Simpson (1993)] is defined as

γ (T ,F ) = lim
ε→0+B(ε;T,F )/ε,

where B(ε;T,F ) is the maximum deviation (bias) of T under an ε amount
of contamination at F and it mainly measures the global robustness of T . The
notation γ (T ,F ) indicates the maximum relative effect on T of an infinitesimal
contamination at F and measures the local as well as global robustness of T .
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The minimum amount ε∗ of contamination at F which leads to an unbounded
B(ε;T,F ) is called the (asymptotic) breakdown point (BP) of T at F , that is,
ε∗ = min{ε :B(ε;T,F ) = ∞}.

The influence function (IF) of T at a given point x ∈ R
d for a given F is defined

as

IF(x;T,F ) = lim
ε→0+

(
T (F (ε, δx)) − T (F )

)/
ε,

where δx is the point-mass probability measure at x ∈ R
d , and the gross error

sensitivity of T at F is then defined as [Hampel, Ronchetti, Rousseeuw and Stahel
(1986)]

γ ∗(T ,F ) = sup
x∈Rd

‖IF(x;T,F )‖.

The function IF(x;T,F ) describes the relative effect (influence) on T of an
infinitesimal point-mass contamination at x and measures the local robustness
of T . The function γ ∗(T ,F ) is the maximum relative effect on T of an
infinitesimal point-mass contamination and measures the global as well as local
robustness of T .

Let µ(·) and σ(·) be univariate location and scale functionals, respectively. The
projection depth (PD) of a point x ∈ R

d for a given distribution F of the random
vector X ∈ R

d is defined as

PD(x,F ) = 1
/(

1 + O(x,F )
)
,

where the outlyingness O(x,F ) = sup‖u‖=1 g(x,u,F ) and g(x,u,F ) = (u′x −
µ(Fu))/σ (Fu), and Fu is the distribution of u′X [Liu (1992) and Zuo and Serfling
(2000b)]. Throughout our discussions, µ and σ are assumed to exist for the
univariate distributions considered. We also assume that µ is translation and
scale equivariant, and σ is scale equivariant and translation invariant, that is,
µ(FsY+c) = sµ(FY ) + c and σ(FsY+c) = |s|σ(FY ), respectively, for any scalars
s and c, and random variable Y ∈ R. Further, we assume that sup‖u‖=1 µ(Fu) < ∞
and 0 < inf‖u‖=1 σ(Fu) ≤ sup‖u‖=1 σ(Fu) < ∞. Denote the projected distribution
of F(ε,G) to a unit vector u by Fu(ε,G). Then Fu(ε,G) = (1 − ε)Fu + εGu.
Define for any ε > 0, any unit vector u and any distribution G,

B(ε;µ,F ) = sup
u,G

∣∣µ(
Fu(ε,G)

) − µ(Fu)
∣∣,

B(ε;σ,F ) = sup
u,G

∣∣σ (
Fu(ε,G)

) − σ(Fu)
∣∣,

B∗(ε;µ,F ) = sup
u,G

µ
(
Fu(ε,G)

)
,

B∗(ε;σ,F ) = sup
u,G

σ
(
Fu(ε,G)

)
,

B∗(ε;σ,F ) = inf
u,G

σ
(
Fu(ε,G)

)
,
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and

ε∗(µ,F ) = min{ε :B(ε;µ,F ) = ∞},
ε∗(σ,F ) = min

{
ε :B(ε;σ,F ) + B∗(ε;σ,F )−1 = ∞}

.

3. Projection depth weighted means and Stahel–Donoho estimator. Depth
induced multivariate estimators, called DL statistics, were first considered in
Liu (1990) and then elaborated further in Liu, Parelius and Singh (1999). The
DL statistics are weighted means with weights that typically depend on the depth-
induced rank (not depth) of points. This section studies the robustness of projection
depth weighted means with weights that depend directly on the depth of points.
Specifically, a projection depth weighted mean (PWM) at distribution F is defined
as [Zuo, Cui and He (2004)]

PWM(F ) =
∫

xw
(
PD(x,F )

)
dF (x)

/∫
w

(
PD(x,F )

)
dF (x),(3.1)

where w(·) is a weight function. If PD is replaced with a general depth function
[see Liu, Parelius and Singh (1999) and Zuo and Serfling (2000b)], a general depth
weighted mean is obtained. In the following discussion we confine our attention to
PD and the weight function w(·) on [0,1] that satisfies

w(0) = 0,

w∗(s) = inf
t≥s

w(t) > 0 ∀0 < s ≤ 1,(3.2)

w0 = sup
s, t∈[0,1], s �=t

|w(s) − w(t)|/|s − t| < ∞.

That is, w is positive (except with value 0 at 0) and Lipschitz continuous (with the
smallest Lipschitz constant w0). One such w, which was utilized in Zuo, Cui and
He (2004) and is used herein in Section 5 (with parameters k > 0 and 0 < c ≤ 1),
is

w1(r) = (
exp

(−k(1 − r/c)2) − exp(−k)
)/(

1 − exp(−k)
)
I (r < c)

(3.3) + I (r ≥ c).

Taking w(·) = WSD(1/(1 + ·)), where WSD(·) is the weight function in the
Stahel–Donoho (SD) estimator [Donoho and Gasko (1992)], we then have the SD
estimator, a special case of PWM. Now let

µsup(ε,F ) = sup
‖u‖=1,G

∣∣µ(
Fu(ε,G)

) − u′ PWM(F )
∣∣

and

A(ε,F ) = sup
a>0

P {‖X‖ ≤ a}w∗
(
B∗(ε;σ,F )

/(
B∗(ε;σ,F ) + B∗(ε;µ,F ) + a

))
.

We have the following upper bound for the maximum bias of PWM.
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THEOREM 3.1. For w in (3.2) and any given distribution F and ε > 0:

(i) B
(
ε; PWM,F

) ≤ w0 max{µsup(ε,F ),B∗(ε;σ,F )}
A(ε,F )

×
(
(1 − ε)

max{B(ε;µ,F ),B(ε;σ,F )}
B∗(ε;σ,F )

+ ε

)
;

(ii) ε∗(PWM,F ) ≥ min{ε∗(µ,F ), ε∗(σ,F )}.
The upper bound of the maximum bias and the lower bound of the breakdown

point of PWM are determined by those of µ and σ , respectively. When µ and σ

are the median (Med) and the median absolute deviation (MAD), respectively, it is
seen that the maximum bias of PWM is bounded for contamination less than 50%,
and the breakdown point of PWM is 1/2 in this case.

Define the gross error sensitivity of µ and σ for a given F in R
d as

γ ∗(µ,F ) = sup
‖u‖=1, x∈Rd

IF(u′x;µ,Fu) and

γ ∗(σ,F ) = sup
‖u‖=1, x∈Rd

IF(u′x;σ,Fu).

Taking G = δx and following the proof of Theorem 3.1, we obtain an upper bound
for γ ∗(PWM,F ).

THEOREM 3.2. Assume that w is given by (3.2) and:

(i) µ(Fu(ε, δx)) → µ(Fu) uniformly in u as ε → 0 for any x ∈ R
d ;

(ii) σ(Fu(ε, δx)) → σ(Fu) uniformly in u as ε → 0 for any x ∈ R
d .

Then

γ ∗(PWM,F ) ≤ w0 max{µsup(0,F ),B∗(0;σ,F )}/A(0,F )

× (
max{γ ∗(µ,F ), γ ∗(σ,F )}/B∗(0;σ,F )+ 1

)
.

The upper bound of the gross error sensitivity of PWM is determined by those
of µ and σ , and is finite provided that max{γ ∗(µ,F ), γ ∗(σ,F )} < ∞.

Deriving the exact expressions of the maximum bias, contamination and
gross error sensitivity, and the influence function of PWM turns out to be very
challenging and difficult. First we establish the influence function of PWM. Let
u(x) = {u :‖u‖ = 1, g(u, x,F ) = O(x,F )}. For a given y ∈ R

d , define S(y) to be
the set of x such that IF(u′y;σ,Fu) and IF(u′y;µ,Fu) are discontinuous at u(x).
We have the following theorem.

THEOREM 3.3. Assume that the conditions of Theorem 3.2 hold. Additionally
assume:

(i) µ(Fu) and σ(Fu) are continuous in u;
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(ii) the derivative w(1) of w is continuous;
(iii) u(x) is a singleton a.s.;
(iv) IF(u′y;σ,Fu) and IF(u′y;µ,Fu) are bounded (in u) for a given y ∈ R

d .

Then for the given y with P (S(y)) = 0,

IF(y; PWM,F )

=
(∫

h(x, y) dF (x) + (
y − PWM(F )

)
w

(
PD(y,F )

))

×
[∫

w
(
PD(x,F )

)
dF (x)

]−1

,

where

h(x, y) = (
x − PWM(F )

)
w(1)

(
PD(x,F )

)
× (O(x,F )IF(u(x)′y;σ,Fu(x)) + IF(u(x)′y;µ,Fu(x)))

σ (Fu(x))(1 + O(x,F ))2
.

The above result can be extended to a very general setting. For a general
depth weighted mean L [replacing PD in (3.1) with a general depth D] and gen-
eral F , under mild conditions on w, IF(x;L,F ) = (

∫
(y − L)w(1)(D(y,F ))IF(y;

D(x,F ),F )F (dy) + (x − L)w(D(x,F )))/
∫

w(D(x,F ))F (dx), provided that
IF(x;D,F) exists. The latter is true for depth functions such as the half-space
depth function [Romanazzi (2001)] and the projection depth function.

The influence function in Theorem 3.3 takes a much simpler form for special
distributions like elliptically symmetric ones and for (µ,σ ) = (Med, MAD). Let

X ∼ F in R
d such that u′X d=a(u)Z with a(u) = a(−u) > 0 for ‖u‖ = 1, Z

d=−Z,

Z ∈ R
1, where d= stands for equal in distribution. The distribution F (or X) is

called elliptically symmetric about the origin if a(u) = √
u′�u, where � is a

positive definite matrix. Elliptically symmetric about an arbitrary θ ∈ R
d can be

defined similarly. In the following discussion, we assume without loss of generality
(w.l.o.g.) that θ = 0 and MAD(Z) = 1. Let λ1 be the largest eigenvalue of � and
let �−1/2X ∼ F0 (note that F0 is spherically symmetric). For a positive definite
matrix A, define x/‖Ax‖ = 0 when x = 0.

THEOREM 3.4. For (µ,σ ) = (Med,MAD) and elliptically symmetric F of
X ∈ R

d , assume that the density h(z) of Z is continuous, h(0)h(1) > 0, w(1)(·) is
continuous. Then:

(i) IF(y; PWM,F )

= (k0 + ‖�−1/2y‖w(1/(1 + ‖�−1/2y‖)))y/‖�−1/2y‖∫
w((1 + ‖x‖)−1) dF0(x)

for any y ∈ R
d,
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(ii) γ ∗(PWM,F )

= √
λ1 sup

r≥0

∣∣k0 + rw
(
(1 + r)−1)∣∣/∫

w
(
(1 + ‖x‖)−1)

dF0(x),

where k0 = 1/(2h(0))
∫ |x1|w(1)((1 + ‖x‖)−1)/(1 + ‖x‖)2 dF0(x) and x′ =

(x1, . . . , xd).

The theorem implies that for the weight function w such that rw(1/(1 + r)) is
bounded for r ≥ 0, the influence function of PWM is bounded.

Now we derive the maximum bias of the projection depth weighted mean
for elliptically symmetric F and (µ,σ ) = (Med, MAD). In many cases, the
maximum bias is attained by a point-mass distribution, that is, B(ε;T,F ) =
supx∈Rd ‖T (F (ε, δx)) − T (F )‖ [see Huber (1964), Martin, Yohai and Zamar
(1989), Chen and Tyler (2002) and Adrover and Yohai (2002)]. In the following
discussion, we derive the maximum bias and contamination sensitivity of PWM
under point-mass contamination. We conjecture that our results hold for general
contamination. Note that under point-mass contamination the only difference
between the contamination sensitivity γ (T ,F ) and the gross error sensitivity
γ ∗(T ,F ) is the order in which the suprema and the limits are taken in their
respective definitions. This might tempt one to believe that these two sensitivities
are the same if it is taken for granted that the order in which the supremum and
the limit are taken is interchangeable. Unfortunately, this is not always the case
[see, e.g., Chen and Tyler (2002), where γ (T ,F ) = 2γ ∗(T ,F )]. In the following
text, we prove that for PWM, the order is interchangeable and the contamination
sensitivity is the same as the gross error sensitivity. The proof and the derivation
of the following result, given in Appendix A, is rather technically demanding.

For the random variable Z introduced before Theorem 3.4 and any ε ≥ 0
and c ∈ R, let d1(ε) and mi(c, ε), i = 1,2, be the quantiles of Z and |Z − c|,
respectively, such that P (Z ≤ d1(ε)) = 1/(2(1 − ε)), P (|Z − c| ≤ m1(c, ε)) =
(1 − 2ε)/(2(1 − ε)) and P (|Z − c| ≤ m2(c, ε)) = 1/(2(1 − ε)).

THEOREM 3.5. Assume that the conditions in Theorem 3.4 hold. Then:

(i)

B(ε; PWM,F )

= √
λ1 sup

r≥0

|(1 − ε)
∫

x1w(1/(1 + f1(x, r, ε))) dF0 + εrw(1/(1 + f2(r, ε)))|
(1 − ε)

∫
w(1/(1 + f1(x, r, ε))) dF0 + εw(1/(1 + f2(r, ε)))

,

(ii) γ (PWM,F ) = γ ∗(PWM,F ) =
√

λ1 supr≥0 |k0 + rw(1/(1 + r))|∫
w(1/(1 + ‖x‖)) dF0(x)

,
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where

f1(x, r, ε) = sup
0≤u1≤1

√
1 − u2

1‖x2‖ + |u1x1 − f4(u1, r, d1)|
f3(u1, r, d1)

,

f2(r, ε) = sup
0≤u1≤1

|u1r − f4(u1, r, d1)|
f3(u1, r, d1)

,

where f3(u1, r, d1) is the median of {m1(f4(u1, r, d1), ε), |u1r − f4(u1, r, d1)|,
m2(f4(u1, r, d1), ε)} and f4(u1, r, d1) is the median of {−d1, u1r, d1}, x′ =
(x1, x

′
2) and u′ = (u1, u

′
2).

4. Projection medians. For a given depth function, the point with the max-
imum depth (the deepest point) is called the depth median. For a given pro-
jection depth PD, the deepest point is called the projection median, denoted
by PM(F ), that is, PM(F ) = arg maxx∈Rd PD(x,F ). Since PM(F ) is affine
equivariant, we assume, w.l.o.g., PM(F ) = 0 throughout our discussion. De-
fine

C∗(ε;σ,F ) = B∗(ε;σ,F )

B∗(ε;σ,F )
= sup‖u‖=1,G σ (Fu(ε,G))

inf‖u‖=1,G σ (Fu(ε,G))
.

THEOREM 4.1. For any given distribution F in R
d and ε > 0,

B(ε; PM,F ) ≤ sup
G

sup
‖u‖=1

(
µ

(
Fu(ε,G)

) + σ
(
Fu(ε,G)

)
sup

‖u‖=1

µ(Fu(ε,G))

σ (Fu(ε,G))

)
(4.1)

≤ B∗(ε;µ,F )
(
1 + C∗(ε;σ,F )

)
,

ε∗(PM,F ) ≥ min{ε∗(µ,F ), ε∗(σ,F )}.(4.2)

The upper bound of the maximum bias and the lower bound of the break-
down point of PM are determined by those of µ and σ , respectively. When
(µ,σ ) =(Med, MAD), it is seen that the maximum bias of PM is bounded for con-
tamination less than 50%, that is, the breakdown point of PM is 1/2. Note that in
many cases the upper bound in (4.1) is strictly less than that in (4.2). For centrally
symmetric F , Adrover and Yohai (2002) obtained the upper bound of B(ε; PM,F )

in (4.2).
A distribution F in R

d is called µ-symmetric about a point θ if µ(Fu) = u′θ
for any ‖u‖ = 1 [Zuo (2003)]. In the following discussion, we assume w.l.o.g.
that θ = 0. Note that any standard symmetric F is µ-symmetric with µ being
the median functional. Any distribution F of X ∈ R

d is µ-symmetric about E(X)

with µ being the mean functional, provided that E(X) exists.
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THEOREM 4.2. Assume that F is µ-symmetric about the origin and the
conditions in Theorem 3.2 hold. Then

γ ∗(PM,F ) ≤ sup
x

sup
‖u‖=1

(
IF(u′x;µ,Fu) + σ(Fu) sup

‖u‖=1

IF(u′x;µ,Fu)

σ (Fu)

)
(4.3)

≤ γ ∗(µ,F )
(
1 + C∗(0;σ,F )

)
.(4.4)

The gross error sensitivity upper bound of PM is determined by that of µ and
C∗(0;σ,F ) for µ-symmetric F and is finite provided that γ ∗(µ,F ) < ∞. Note
that in many cases the upper bound in (4.3) is strictly less than that in (4.4). Neither
of these bounds was given by Adrover and Yohai (2002).

Now we derive the exact expressions of the maximum bias function, the
contamination and gross error sensitivities, and the influence function of PM. The
derivations are again technically very challenging. In the definition of elliptical
symmetry before Theorem 3.4, if a(u) is a very general function (not necessarily√

u′�u ), then F (or X) is called d-version symmetric about the origin [Eaton
(1981)]. In a similar manner, d-version symmetric about an arbitrary θ ∈ R

d can
be defined, but again we assume w.l.o.g. that θ = 0. Clearly, d-version symmetric
F includes a wide class of distributions such as elliptically and α-symmetric
F (0 < α ≤ 2) [Fang, Kotz and Ng (1990)]. The latter corresponds to a(u) =
(
∑d

i=1 ai |ui|α)1/α with ai > 0. The F generated from i.i.d. Cauchy marginals
is α-symmetric with α = 1 [Eaton (1981)]. Define for any ε ≥ 0, d2 = d2(ε) =
m2(d1, ε), d3 = d3(ε) = m1(d1, ε) and d0 = d0(ε) = sup0≤c≤d1

c/m1(c, ε). Let
u0 ∈ arg max‖u‖=1 a(u).

THEOREM 4.3. Let (µ,σ ) = (Med,MAD), let X ∼ F in R
d (d > 1)

be d-version symmetric about the origin and let a(u)/a(u0) ≥ u′u0. Let the
density h(x) of Z be nonincreasing in ‖x‖ and positive and continuous in small
neighborhoods of Med(Z) and MAD(Z). Then:

(i) B(ε; PM,F ) = a(u0)(d1 + d0d2);

(ii) γ (PM,F ) = a(u0)/h(0);
(iii) ε∗ = 1/2.

The theorem indicates that the maximum bias of PM is bounded for d-version
symmetric distributions as long as the contamination is less than 50%. Note that the
condition a(u)/a(u0) ≥ u′u0 is satisfied by a wide class of distributions including
elliptically and α-symmetric distributions with 1 ≤ α ≤ 2. The detailed proof for
the latter case can be obtained from the authors upon request. The behavior of a(u)

corresponding to α-symmetry with respect to various α’s and d = 2 is illustrated
in Appendix B.

For spherically symmetric F , Adrover and Yohai (2002) obtained B(ε; PM,F ).
Under the assumption that c/m1(c, ε) is nondecreasing for all small ε > 0,
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they also obtained γ (PM,F ) for the same type of F . By Theorem 4.3,
B(ε; PM,F ) is dimension-free for spherically symmetric F . Adrover and Yohai
(2002) conjectured that the dimension-free property of B(ε; PM,F ) no longer
holds for F generated from d independently and identically distributed Cauchy
marginals. Theorem 4.3 proves this conjecture since for this F , a(u0) = √

d .
Furthermore, by Theorem 4.3 it can be shown that B(ε; PM,F ) and γ (PM,F )

increase at a rate d (2−α)/(2α) as d → ∞ when a(u) = (
∑d

i=1 |ui|α)1/α,1 ≤ α ≤ 2.
For the F generated from i.i.d. Cauchy marginals, Chen and Tyler (2002) showed
that the maximum bias and contamination sensitivity of the half-space median also
increase at rate

√
d .

Note that B(ε; PM,F ) and γ (PM,F ) can be dimension-free even for ellip-
tically symmetric F if we adopt the norm ‖x‖� = √

x′�−1x in the definition
of B(ε; PM,F ). Here the dimension-dependent factor is absorbed into the orig-
inal B(ε; PM,F ).

From the proof of Theorem 4.3 it is seen that the maximum bias of PM attains
the upper bound in (4.1). Hence (4.1) is a sharp upper bound. On the other
hand, by Lemmas A.2 and A.3 in Appendix A, B∗(ε;µ,F )(1 + C∗(ε;σ,F )) ≥
a(u0)d1(1 + sup0≤c≤d1

(d2/(m1(c, ε))) > a(u0)(d1 + d2d0), indicating that the
upper bound in (4.1) is sharper than that in (4.2).

Now we present the exact influence function and gross error sensitivity
expressions of PM.

THEOREM 4.4. Let (µ,σ ) = (Med,MAD) and X ∼ F in R
d (d > 1) be

elliptically symmetric about the origin, h(x) be nonincreasing in ‖x‖, and positive
and continuous in small neighborhoods of Med(Z) and MAD(Z). Then for
any x ∈ R

d :

(i) IF(x; PM,F ) = 1

h(0)

x√
x′�−1x

;

(ii) γ ∗(PM,F ) =
√

λ1

h(0)
.

The theorem says that the influence function of PM is bounded [with its norm
≤ √

λ1/h(0)]. Note that the above gross error sensitivity of PM attains the upper
bound in (4.3). To see this, note that by Lemmas A.2 and A.3 in Appendix A,
the upper bound in (4.3) is greater than or equal to

√
λ1/h(0). Hence (4.3) is a

sharp upper bound. Denote by λd the smallest eigenvalue of � associated with
an elliptically symmetric F . The upper bound in (4.4) is greater than or equal
to

√
λ1(1 + √

λ1/λd )/(2h(0)) >
√

λ1/h(0) if λ1 > λd , indicating that the upper
bound in (4.3) is sharper than that in (4.4).

Under spherical symmetry and other assumptions, Adrover and Yohai (2002)
obtained γ ∗(PM,F ) but not IF(x; PM,F ).
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5. Simulation and comparison. In this section, the behavior of the maximum
bias and influence function of the two types of projection depth estimators is
examined and compared with that of the half-space median (HM), a very popular
competitor for robust and nonparametric estimation of multivariate location. The
weight function w1 in (3.3) is utilized here.

5.1. Maximum bias, contamination sensitivity and breakdown point. By The-
orems 3.1 and 4.1, both the projection depth based estimators can have breakdown
point 1/2, substantially higher than that of the half-space median 1/3 [Chen and
Tyler (2002)]. The maximum bias functions B(ε; PWM,F ) and B(ε; PM,F ) are
given in Theorems 3.5 and 4.3 for elliptically and d-version symmetric F , respec-
tively. For elliptically symmetric F , B(ε; HM,F ) = √

λ1 F−1
Z ( 1+ε

2(1−ε)
) [Chen and

Tyler (2002)]. These three functions are plotted in Figure 1(a) for N2(0, I2). The
figure indicates that HM breaks down at 1/3 while PM and PWM do not break
down for any contamination less than 50%. The maximum bias of PWM is lower
than that of HM and PM for any ε < 1/2. This actually is true for d ≤ 5 [but not
true for d > 5 since B(ε; PWM,F ) increases at a rate of

√
d as d increases while

B(ε; PM,F ) and B(ε; HM,F ) are dimension-free for normal models]. The sim-
ulation in Table 1 confirms this fact. The function B(ε; PM,F ) is slightly higher
than B(ε; HM,F ) for ε close to or less than 0.3. The latter jumps to infinity when
ε → 1/3 while the former remains finite for any ε < 1/2.

The slope of the tangent line of B(ε;T,F ) at (0,0) is the contamination
sensitivity γ (T ,F ). For elliptically symmetric F , γ (HM,F ) = γ (PM,F ) =√

λ1/h(0), which is
√

2π ≈ 2.507 > γ (PWM,F ) ≈ 1.772 for N2(0, I2). This fact
is reflected in Figure 1(a). The tangent line for PWM is slightly lower than that
for HM and PM, indicating that the maximum bias function of PWM increases
slightly more slowly than that of HM and PM for small ε > 0.

(a) (b)

FIG. 1. (a) Maximum bias functions, contamination sensitivities (the slopes of the tangent lines)
and breakdown points of PM, PWM and HM. (b) Influence function norms of PM, PWM and HM.
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TABLE 1
Maximum biases of PWM and PM

d PWM0 PWM1 PM PWM0 PWM1 PM

ε = 0.05 ε = 0.10

2 0.076 0.072 0.141 0.196 0.199 0.321
3 0.108 0.092 0.141 0.231 0.226 0.321
4 0.120 0.116 0.141 0.276 0.292 0.321
5 0.131 0.121 0.141 0.310 0.312 0.321
6 0.146 0.141 0.141 0.329 0.334 0.321
7 0.157 0.158 0.141 0.355 0.356 0.321
8 0.165 0.172 0.141 0.392 0.395 0.321
9 0.176 0.183 0.141 0.399 0.399 0.321

10 0.186 0.190 0.141 0.423 0.430 0.321
15 0.236 0.243 0.141 0.531 0.538 0.321
20 0.262 0.258 0.141 0.620 0.613 0.321

ε = 0.20 ε = 0.30

2 0.536 0.568 0.897 1.408 1.354 2.201
3 0.659 0.680 0.897 1.848 1.679 2.201
4 0.771 0.800 0.897 2.248 1.973 2.201
5 0.899 0.889 0.897 2.570 2.198 2.201
6 1.030 0.964 0.897 2.994 2.426 2.201
7 1.089 1.041 0.897 3.256 2.637 2.201
8 1.195 1.113 0.897 3.552 2.816 2.201
9 1.256 1.172 0.897 3.789 2.991 2.201

10 1.304 1.249 0.897 4.005 3.185 2.201
15 1.644 1.525 0.897 5.036 3.935 2.201
20 1.964 1.782 0.897 6.035 4.609 2.201

5.2. Influence function and gross error sensitivity. By Theorem 4.4 and Chen
and Tyler (2002), IF(y; PM,F ) = 2IF(y; HM,F ) = 1/(h(0))y/‖�−1/2y‖ for
elliptically symmetric F . For specific w and F , IF(y; PWM,F ) in Theorem 3.4
takes a much simpler form. For example, for Nd(0, Id) and w0(r) = r/(1 − r)

(Theorem 3.4 holds with this w0), IF(y; PWM,F ) = k1/(h(0))y0 with y0 = y
‖y‖

and k1 = 
(d/2)

2
√

π
(1/
(d+1

2 )+ 2/
(d−1
2 )). For N2(0, I2), k1 = 2/π , corresponding

to a constant ‖IF(y; PWM,F )‖. In Figure 1(b), the norms of the three influence
functions are plotted against ‖y‖ at N2(0, I2) and w1(r) given in (3.3) with
c = 1/(1+√

d ) and k = 3 is used for PWM. ‖IF(y; HM,F )‖ and ‖IF(y; PM,F )‖
are constants

√
2π/2 (≈ 1.253) and

√
2π (≈ 2.507), respectively. The function

‖IF(y; PWM,F )‖ (as a function of ‖y‖) increases from 0 to its maximum value
γ ∗(PWM,F ) = 1.772 and then decreases and is much smaller than that of PM and
HM for most y.

In Figures 2(a) and (b), the first coordinates of the influence functions of PM and
PWM are plotted as functions of y [the graphs of the second coordinates are similar
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(a) (b)

FIG. 2. (a) The first coordinate of the influence function of PM. (b) The first coordinate of the
influence function of PWM.

and the graphs of IF(y,HM,F ) are similar to those of IF(y,PM,F )]. In both
Figures 2(a) and (b), y = 0 is a discontinuous (jump) point. When y(�= 0) → 0,
the first coordinates of the influence functions approach γ ∗sign(y1), the extreme
points.

5.3. Dimension-free property. The maximum bias and sensitivity functions of
HM and PM are dimension-free for spherically symmetric F . This dimension-free
property, however, does not hold for other F ’s such as the F from i.i.d. Cauchy
marginals. Functions B(ε; PWM,F ) and γ ∗(PWM,F ) are dimension-dependent.
Based on an empirical argument and simulation studies (see Table 1), we conclude
that they increase at a rate of

√
d as d → ∞ for fixed ε (this is also confirmed by

the fact that k1/
√

d has a limit as d → ∞). Table 1 lists maximum biases of PWM
and PM for different d’s and ε’s and X ∼ Nd(0, Id), and w0 and w1 are employed
for PWM (called PWM0 and PWM1, respectively). The maximum biases of PM
are constants for different d’s and fixed ε. The maximum biases of PWM0 are
very competitive with those of PWM1 for small ε and d ; they become consistently
larger than those of PWM1 for large ε or d . Adrover and Yohai (2002) also reported
the maximum biases of PWM0, which are consistent with our results for small ε

and d . In our computation, the exact maximum bias formula in Theorem 3.5 is
utilized, which leads to a one-dimensional computational problem (otherwise a
d-dimensional computational problem is encountered). For small ε, the results for
PWM0 in the table are confirmed by using ε(k1/(h(0))).

5.4. Weight function. The idea behind w1 is [see Zuo, Cui and He (2004)]
that with proper k and c, weight 1 is given to the half of the points with higher
depth, while the weight given to the other half of the points decreases rapidly
(exponentially) as the depth of these points decreases, leading to a desired balance
between efficiency and robustness of the resulting depth weighted mean. The
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weight w1 is shown to result in a highly efficient PWM1 (which is more efficient
than PWM0). It is seen that PWM1 also outperforms PWM0 with respect to bias
and sensitivity.

5.5. Computing issue. The formula for B(ε; PWM,F ) given in Theorem 3.5
seems somewhat awkward. Computationally, however, it is very feasible. For
the Nd(0, Id) distribution the computation is rather straightforward because one
needs only to generate independently N(0,1) points (x1 ∼ N(0,1)) and χ2(d −1)

points (‖x2‖2 ∼ χ2(d − 1)). The problem then becomes one-dimensional.

5.6. Conclusion. In summary, PM and PWM have breakdown point 1/2,
which is much higher than the 1/3 value for HM. For spherically symmetric F ,
HM and PM have bounded and dimension-free influence and maximum bias
functions, while those of PWM are bounded but dimension-dependent (with a
rate

√
d as d → ∞). The dimension-free advantage of HM and PM, however,

disappears for other distributions. Furthermore, there seems to be a trade-off
between the dimension-free property and high efficiency. The two cannot always
work in tandem. Note that PWM1 possesses an extremely high efficiency (94%)
in R

2 and approaches 100% rapidly as d increases [Zuo, Cui and He (2004)],
while the finite sample efficiencies of HM and PM are approximately 77 and 79%,
respectively [Rousseeuw and Ruts (1998) and Zuo (2003)].

Taking all the findings into account, we conclude that projection depth based
location estimators appear to be very competitive and represent favorable choices
for location estimators when compared to their competitors.

APPENDIX A

Selected (sketches of ) proofs and auxiliary lemmas.

PROOF OF THEOREM 3.1. (i) Write PWM(F (ε,G)) − PWM(F ) = (I1 +
I2)/I3 with

I1 = I1(ε,G)

= (1 − ε)

∫ (
x − PWM(F )

)[
w

(
PD

(
x,F (ε,G)

)) − w
(
PD(x,F )

)]
dF (x),

I2 = I2(ε,G) = ε

∫ (
x − PWM(F )

)
w

(
PD

(
x,F (ε,G)

))
dG(x),

I3 = I3(ε,G)

= (1 − ε)

∫
w

(
PD

(
x,F (ε,G)

))
dF (x) + ε

∫
w

(
PD

(
x,F (ε,G)

))
dG(x)
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and

J1(ε,G) = sup
‖u‖=1

max
{∣∣µ(

Fu(ε,G)
) − u′PWM(F )

∣∣, σ (
Fu(ε,G)

)}
,

J2(ε,G)

= sup
‖u‖=1

max
{∣∣σ (

Fu(ε,G)
) − σ(Fu)

∣∣, ∣∣µ(
Fu(ε,G)

) − µ(Fu)
∣∣}/σ

(
Fu(ε,G)

)
.

It follows that ‖x − PWM(F )‖/(1 + O(x,F (ε,G))) ≤ J1(ε,G) and∣∣PD
(
x,F (ε,G)

) − PD(x,F )
∣∣

= |O(
x,F (ε,G)

) − O(x,F )|
(1 + O(x,F (ε,G)))(1 + O(x,F ))

≤ sup
‖u‖=1

O(x,F )|σ(Fu(ε,G)) − σ(Fu)| + |µ(Fu(ε,G)) − µ(Fu)|
σ(Fu(ε,G))(1 + O(x,F (ε,G)))(1 + O(x,F ))

≤ J2(ε,G)

1 + O(x,F (ε,G))
.

Thus

‖I1‖ ≤ w0(1 − ε)

∫
‖x − PWM(F )‖∣∣PD

(
x,F (ε,G)

) − PD(x,F )
∣∣dF (x)

≤ w0(1 − ε)J2(ε,G)

∫
‖x − PWM(F )‖/(

1 + O
(
x,F (ε,G)

))
dF (x)

≤ w0(1 − ε)J1(ε,G)J2(ε,G),

‖I2‖ ≤ w0ε

∫
‖x − PWM(F )‖PD

(
x,F (ε,G)

)
dG(x) ≤ w0εJ1(ε,G).

Observe that ‖I3‖ ≥ A(ε,F ). The desired result in part 1 follows.
(ii) Let ε0 = min{ε∗(µ,F ), ε∗(σ,F )}. Then µsup(ε0,F ) ≤ B(ε0;µ,F ) +

sup‖u‖µ(Fu)+‖PWM(F )‖ < ∞, B∗(ε0;σ,F ) ≤ B(ε0;σ,F ) + sup‖u‖σ(Fu) < ∞
and B∗(ε0;σ,F ) > 0. Hence A(ε0,F ) > 0. Thus B(ε0; PWM,F ) < ∞. �

Proof of Theorem 3.3.

LEMMA A.1. Assume that:

(i) u(x) is a singleton for a given x,
(ii) the conditions 1 and 4 of Theorem 3.3 hold, and

(iii) IF(u(x)′y;σ,Fu(x)) and IF(u(x)′y;µ,Fu(x)) are continuous at u(x) for
a given y.

Then

IF
(
y;O(x,F ),F

)
= −

(
O(x,F )IF

(
u(x)′y;σ,Fu(x)

) + IF
(
u(x)′y;µ,Fu(x)

))/
σ

(
Fu(x)

)
.
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PROOF. For any ε > 0 and the given x, y ∈ R
d ,

−(
O

(
x,F (ε, δy)

) − O(x,F )
) = min

{
inf

u∈u(x)
−g

(
x,u,F (ε, δy)

) + O(x,F ),

inf
u∈u(x)C

−g
(
x,u,F (ε, δy)

) + O(x,F )

}
,

where SC denotes the complement of the set S. Define u(x, τ ) = {u :‖u‖ = 1,

d(u,u(x)) ≤ τ } for any τ > 0, where d(x,S) = inf{‖x − y‖ :y ∈ S} for any set S.
Denote g̃(u, x, y, ε,F ) = −g(x,u,F (ε, δy)) + O(x,F ) and write

inf
u∈u(x)C

g̃(u, x, y, ε,F )

= min
{

inf
u∈u(x)C∩u(x,τ)C

g̃(u, x, y, ε,F ), inf
u∈u(x)C∩u(x,τ)

g̃(u, x, y, ε,F )

}
.

Observe that as ε → 0+,(−g
(
x,u,F (ε, δy)

) + g(x,u,F )
)/

ε

= (u′x − µ(Fu))(σ (Fu(ε, δy)) − σ(Fu)) + σ(Fu)(µ(Fu(ε, δy)) − µ(Fu))

εσ (Fu(ε, δy))σ (Fu)

→ (
g(x,u,F )IF(u′y;σ,Fu) + IF(u′y;µ,Fu)

)/
σ(Fu),

which is uniformly bounded in u for given x and y. By this and the given
conditions,

inf
u∈u(x)C∩u(x,τ)C

g̃(u, x, y, ε,F )/ε

= inf
u∈u(x)C∩u(x,τ)C

((−g
(
x,u,F (ε, δy)

) + g(x,u,F )
)/

ε

+ (
O(x,F ) − g(x,u,F )

)/
ε
)

≥ inf
u∈u(x)C∩u(x,τ)C

(
O(x,F ) − g(x,u,F )

)
/(2ε) = O(1/ε)

for any given τ > 0 and sufficiently small ε. Also

O(1) = inf
u∈u(x)C∩u(x,τ)

g̃(u, x, y, ε,F )/ε

= inf
u∈u(x)C∩u(x,τ)

((−g
(
x,u,F (ε, δy)

) + g(x,u,F )
)/

ε

+ (
O(x,F ) − g(x,u,F )

)/
ε
)

≥ inf
u∈u(x)C∩u(x,τ)

(−g
(
x,u,F (ε, δy)

) + g(x,u,F )
)/

ε

≥ inf
u∈u(x,τ)

(−g
(
x,u,F (ε, δy)

) + g(x,u,F )
)/

ε.
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Thus for sufficiently small ε > 0 and any given τ > 0,

inf
u∈u(x)C

(−g(x,u,Ft ) + O(x,F )
)/

ε

= inf
u∈u(x)C∩u(x,τ)

(−g
(
x,u,F (ε, δy)

) + O(x,F )
)/

ε

≥ inf
u∈u(x,τ)

(−g
(
x,u,F (ε, δy)

) + g(x,u,F )
)/

ε.

Hence, we have, for any given τ > 0,

inf
u∈u(x,τ)

(−g
(
x,u,F (ε, δy)

) + g(x,u,F )
)/

ε

≤ −(
O

(
x,F (ε, δy)

) − O(x,F )
)/

ε

≤ inf
u∈u(x)

(−g
(
x,u,F (ε, δy)

) + g(x,u,F )
)/

ε.

It follows that

inf
u∈u(x,τ)

g(x,u,F )IF(u′y;σ,Fu) + IF(u′y;µ,Fu)/σ (Fu)

≤ lim
ε→0+ −(

O
(
x,F (ε, δy)

) − O(x,F )
)/

ε

≤ inf
u∈u(x)

(
g(x,u,F )IF(u′y;σ,Fu) + IF(u′y;µ,Fu)

)/
σ(Fu).

Let τ → 0+. By the given conditions 2 and 3, we obtain

lim
ε→0+ −(

O
(
x,F (ε, δy)

) − O(x,F )
)/

ε

= inf
u∈u(x)

(
O(x,F )IF(u′y;σ,Fu) + IF(u′y;µ,Fu)

)/
σ(Fu).

Therefore, for point x with u(x) a singleton, the desired result follows. �

PROOF OF THEOREM 3.3. By equivariance, assume, without loss of general-
ity, that PWM(F ) = 0. By the given conditions and following the proof of The-
orem 2.2 of Zuo (2003), it follows that PD(x,F (ε, δy)) → PD(x,F ) as ε → 0.
Lebesgue’s dominated convergence theorem leads to∫

w
(
PD

(
x,F (ε, δy)

))
F(ε, δy)(dx) →

∫
w

(
PD(x,F )

)
F(dx) as ε → 0.

The mean value theorem gives∫
xw

(
PD

(
x,F (ε, δy)

))
dF

(
x;F(ε, δy)

)

= (1 − ε)

∫
xw(1)(ξ)

(
PD(x,F (ε, δy)) − PD(x,F )

)
dF (x)

+ εyw
(
PD

(
y,F (ε, δy)

))
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= (1 − ε)

∫
xw(1)(ξ)

O(x,F (x,F )) − O(x,F (ε, δy))

(1 + O(x,F ))(1 + O(x,F (ε, δy)))
dF (x)

+ εyw
(
PD

(
y,F (ε, δy)

))
,

where ξ is a point between PD(x,F (ε, δy)) and PD(x,F ). By the given conditions
and applying again Lebesgue’s dominated convergence theorem, we have

1

ε

∫
xw

(
PD

(
x,F (ε, δy)

))
F(ε, δy)(dx)

→ −
∫

xw(1)
(
PD(x,F )

)
IF

(
y,O(x,F ),F

)/(
1 + O(x,F )

)2
dF (x)

+ yw
(
PD(y,F )

)
as ε → 0.

By Lemma A.1, the desired result now follows. �

PROOF OF THEOREM 3.4. (i) For the given elliptically symmetric F , it
follows [see Example 2.1 of Zuo (2003)] that

O(x,F ) = ‖�−1/2x‖, u(x) = �−1x/‖�−1x‖ (x �= 0)

and

PD(x,F ) = 1/
(
1 + ‖�−1/2x‖)

.

From Cui and Tian (1994) it follows that

IF
(
u(x)′y,Med,Fu(x)

) = ‖�−1/2x‖/(
2h(0)‖�−1x‖)

sign(x′�−1y)

and

IF
(
u(x)′y,MAD,Fu(x)

)
= ‖�−1/2x‖/(

4h(1)‖�−1x‖)
sign

(|x′�−1y| − ‖�−1/2x‖)
.

Note that the conditions in Theorem 3.3 are satisfied and P (S(y)) = 0 for y ∈ R
d .

Thus we obtain the corresponding influence function. Since MAD(Fu(x)) =
‖�−1/2x‖/‖�−1x‖ is even in x, we have∫

xw(1)
(
PD(x,F )

)
O(x,F )

× IF
(
u(x)′y; MAD,Fu(x)

)/(
MAD

(
Fu(x)

)(
1 + O(x,F )

)2)
dF (x) = 0.

On the other hand,∫
xw(1)(PD(x,F )

)
IF

(
u(x)′y; Med,Fu(x)

)/(
MAD

(
Fu(x)

)(
1 + O(x,F )

)2)
dF (x)

= 1/h(0)

∫
xw(1) ((1 + ‖�−1/2x‖)−1)(1/2 − I {x′�−1y ≤ 0})

(1 + ‖�−1/2x‖)2 dF (x)
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= �1/2/h(0)

∫
xw(1) ((1 + ‖x‖)−1)(1/2 − I {x′�−1/2y ≤ 0})

(1 + ‖x‖)2 dF0(x)

= y
/(

2h(0)‖�−1/2y‖) ∫
|x1|w(1)((1 + ‖x‖)−1)

/(1 + ‖x‖)2 dF0(x).

By Theorem 3.3, the desired result follows.
(ii) It follows from part (i) that

γ ∗(PWM,F )

= sup
y∈Rd

‖(k0�
1/2 + �1/2‖�−1/2y‖w(1/(1 + ‖�−1/2y‖))�−1/2y/‖�−1/2y‖‖∫

w(1/(1 + ‖x‖)) dF0(x)

= sup
r≥0,

‖u‖=1

|k0 + rw(1/(1 + r))|‖�1/2u‖∫
w(1/(1 + ‖x‖)) dF0(x)

=
√

λ1 supr≥0 |k0 + rw(1/(1 + r))|∫
w(1/(1 + ‖x‖)) dF0(x)

.

This completes the proof. �

Proof of Theorem 3.5.

LEMMA A.2. Suppose that a = F−1( 1−2ε
2(1−ε)

) and b = F−1( 1
2(1−ε)

) ex-

ist for some F in R
1 and 0 ≤ ε < 1. Then for any distribution G and

point x in R
1, (i) a ≤ Med(F (ε,G)) ≤ b, (ii) Med(F (ε, δx)) = Med{a, b, x},

(iii) m1(Med(F (ε,G)), ε) ≤ MAD(F (ε,G)) ≤ m2(Med(F (ε,G)), ε) and
(iv) MAD(F (ε, δx)) = Med{m1(Med(F (ε, δx)), ε), |x − Med(F (ε, δx))|,
m2(Med(F (ε, δx)), ε)}.

LEMMA A.3. Suppose that X ∼ F is d-version symmetric about the ori-
gin. Then (i) Med(Fu(ε, δx)) = Med{−a(u)d1, u

′x, a(u)d1} and (ii) MAD(Fu(ε,

δx)) = Med{a(u)m1(Med(Fu(ε, δx))/a(u), ε), |u′x − Med(Fu(ε, δx))|, a(u) ×
m2(Med(Fu(ε, δx))/a(u), ε)}.

LEMMA A.4. Let τ (> 0) be sufficiently small, |s − t| ≤ τ and r ≥ 0.
Then (i) |Med{a1, c, b1} − Med{a2, c, b2}| ≤ |a2 − a1| + |b2 − b1| for any c and
ai ≤ bi , i = 1,2, (ii) |Med{−a, sr, a}−Med{−b, tr, b}| ≤ |a−b|+2(a+b)(

√
τ +

I {|s| ≤ √
τ }) for a, b > 0 and (iii) |Med{a, |sr − c1|, b} − Med{a, |tr − c2|, b}| ≤

2m(I {|s| ≤ √
τ } + I {|sr − c0| ≤ c

√
τ } + I {|sr + c0| ≤ c

√
τ }) for c0 > 0 a fixed

constant, c = 2c0 + 1, a ≤ c0 ≤ b, m = max{|a − c0|, |b − c0|} ≤ τ and |ci| ≤ τ ,
i = 1,2. Here I {·} stands for the indicator function.

LEMMA A.5. If the density h of Z is continuous in a small neighborhood of 1
[= MAD(Z)], then for small ε > 0, 0 ≤ d1(ε) ≤ A1ε, |mi(0, ε) − 1| ≤ A2ε and
sup0≤|c|≤A3ε

|mi(c, ε) − mi(0, ε)| = o(ε) for some positive constants A1,A2,A3

and i = 1,2.
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LEMMA A.6. Let (µ,σ ) = (Med,MAD), let X ∼ F in R
d be elliptically

symmetric about the origin with associated � and let the density h of Z be
continuous and h(0)h(1) > 0. Then

E

[
sup

‖u−u(X)‖≤τ

1

ε

(∣∣∣∣µ̃(Fu, ε, y)

σ (Fu)
− µ̃(Fu(X), ε, y)

σ (Fu(x))

∣∣∣∣
+

∣∣∣∣ σ̃ (Fu, ε, y)

σ (Fu)
− σ̃ (Fu(X), ε, y)

σ (Fu(x))

∣∣∣∣
)]

→ 0

uniformly in y ∈ R
d as ε → 0, where u(x) = �−1x/‖�−1x‖, τ = τ (ε) (≥ ε >

0) → 0 as ε → 0 and µ̃(Fv, ε, y) = µ(Fv(ε, δy)) − µ(Fv) and σ̃ (Fv, ε, y) =
σ(Fv(ε, δy)) − σ(Fv) for a unit vector v.

PROOF OF THEOREM 3.5. (i) By Lemma A.3, for any y ∈ R
d , we have that

µ(Fu(ε, δy))

a(u)
= Med{−a(u)d1, u

′y, a(u)d1}
a(u)

= Med
{
−d1, (�

1/2u)′�
−1/2y

a(u)
, d1

}
,

σ (Fu(ε, δy))

a(u)
= Med

{
m1

(
µ(Fu(ε, δy))

a(u)
, ε

)
,

∣∣∣∣ (�
1/2u)′

a(u)
�−1/2y − µ(Fu(ε, δy))

a(u)

∣∣∣∣,m2

(
µ(Fu(ε, δy))

a(u)
, ε

)}
.

Let v = �1/2u/a(u), ỹ = �−1/2y and x̃ = �−1/2x. Then all the mappings are
one-to-one and ‖v‖ = 1. Denote f5(u, x, d1) = Med{−d1, u

′x, d1}. Then

O
(
x,F (ε, δy)

)
= sup

‖v‖=1

v′x̃ − f5(v, ỹ, d1)

Med{m1(f5(v, ỹ, d1), ε), |v′ỹ − f5(v, ỹ, d1)|,m2(f5(v, ỹ, d1), ε)} .

Let U be an orthogonal matrix with ỹ/‖ỹ‖ as its first column and let U ′v = ṽ.
Then f5(v, ỹ, d1) = Med{−d1, ṽ1‖ỹ‖, d1} = f4(ṽ1,‖ỹ‖, d1) and O(x,F (ε, δy))

becomes

sup
‖ṽ‖=1

[(
ṽ′U ′x̃ − f4(ṽ1,‖ỹ‖, d1)

)

×
(
Med

{
m1

(
f4(ṽ1,‖ỹ‖, d1), ε

)
,

|ṽ1‖ỹ‖ − f4(ṽ1,‖ỹ‖, d1)|,m2
(
f4(ṽ1,‖ỹ‖, d1), ε

)})−1]

= sup
‖ṽ‖=1

ṽ′U ′x̃ − f4(ṽ1,‖ỹ‖, d1)

f3(ṽ1,‖ỹ‖, d1)
.
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It follows that∫
xw

(
PD

(
x,F (ε, δy)

))
dF

=
∫

�1/2x̃w

(
1 + sup

‖ṽ‖=1
ṽ′U ′x̃ − f4(ṽ1,‖ỹ‖, d1)/f3(ṽ1,‖ỹ‖, d1)

)−1

dF

=
∫

�1/2Uxw

(
1 + sup

‖u‖=1
u′x − f4(u1,‖ỹ‖, d1)/f3(u1,‖ỹ‖, d1)

)−1

dF0.

Observe that

sup
‖u‖=1

u′x − f4(u1,‖ỹ‖, d1)

f3(u1,‖ỹ‖, d1)

= sup
−1≤u1≤1

sup
‖u2‖=

√
1−u2

1

u′
2x2 + u1x1 − f4(u1,‖ỹ‖, d1)

f3(u1,‖ỹ‖, d1)

= sup
0≤u1≤1

√
1 − u2

1‖x2‖ + |u1x1 − f4(u1,‖ỹ‖, d1)|
f3(u1,‖ỹ‖, d1)

= f1(x,‖ỹ‖, ε),

an even function of x2. Hence
∫

xw(PD(x,F (ε, δy))) dF = ∫
y/‖ỹ‖x1w(1 +

f1(x,‖ỹ‖, ε))−1 dF0. Therefore

B(ε; PWM,F )

= sup
y∈Rd

[{∣∣∣∣(1 − ε)

∫
(y/‖ỹ‖)x1w

(
1 + f1(x,‖ỹ‖, ε))−1

dF0

+ εyw
(
1 + f2(‖ỹ‖, ε))−1

∣∣∣∣
}

×
{
(1 − ε)

∫
w

(
1 + f1(x,‖ỹ‖, ε))−1

dF0

+εw
(
1 + f2(‖ỹ‖, ε))−1

}−1]

= sup
r≥0,

‖u‖=1

[
‖�1/2u‖

× |(1 − ε)
∫

x1w(1 + f1(x, r, ε))−1 dF0 + εrw(1 + f2(r, ε))
−1|

(1 − ε)
∫

w(1 + f1(x, r, ε))−1 dF0 + εw(1 + f2(r, ε))
−1

]

= √
λ1 sup

r≥0

|(1 − ε)
∫

x1w(1 + f1(x, r, ε))−1 dF0 + εrw(1 + f2(r, ε))
−1|

(1 − ε)
∫

w(1 + f1(x, r, ε))−1 dF0 + εw(1 + f2(r, ε))−1
.
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(ii) Since γ (PWM,F ) ≥ γ ∗(PWM,F ), we now show that γ (PWM,F ) ≤
γ ∗(PWM,F ). For any fixed constant M > 0, by Lemma 4.1 of Zuo, Cui and
He (2004), there is a function of ε, τ = τ (ε) (≥ ε > 0), such that τ → 0 and
inf‖u−u(x)‖≥τ,1/M≤‖x‖≤M (O(x,F ) − g(x,u,F ))/ε → ∞ as ε → 0. By the uni-
form boundedness of the influence functions of Med and MAD, assume that there
is a constant C1 > 0 such that for small ε > 0, supy∈Rd ,‖u‖=1 max{|µ(Fu(ε, δy))−
µ(Fu)|, |σ(Fu(ε, δy)) − σ(Fu)|} ≤ C1ε. Denote µ̃(Fv, ε, y) = µ(Fv(ε, δy)) −
µ(Fv) and σ̃ (Fv, ε, y) = σ(Fv(ε, δy))−σ(Fv) for any unit vector v. Then there is
a constant C2 such that

sup
y∈Rd

∣∣PD
(
x,F (ε, δy)

) − PD(x,F )
∣∣

= ∣∣O(x,F ) − O
(
x,F (ε, δy)

)∣∣/((
1 + O

(
x,F (ε, δy)

))(
1 + O(x,F )

))
(∗)

≤ C2 sup
y∈Rd ,‖u‖=1

max
{|µ̃(Fu, ε, y|, |σ̃ (Fu, ε, y)|} = O(ε).

Define S(x,M) = {x : 1/M ≤ ‖�−1/2x‖ ≤ M}. From the proof of Lemma A.1, it
follows that, for x ∈ S(x,M) and small ε,

∣∣∣{(O(x,F ) − O
(
x,F (ε, δy)

)) − (
g
(
x,u(x),F

) − g
(
x,u(x),F (ε, δy)

))}∣∣∣/ε

≤ sup
‖u−u(x)‖≤τ

∣∣∣(g(
x,u(x),F

) − g
(
x,u(x),F (ε, δy)

))

− (
g(x,u,F ) − g

(
x,u,F (ε, δy)

))∣∣∣/ε

= sup
‖u−u(x)‖≤τ

∣∣∣((
u(x)′x − µ

(
Fu(x)

))
σ̃

(
Fu(x), ε, y

)

+ σ
(
Fu(x)

)
µ̃

(
Fu(x), ε, y

))/(
εσ

(
Fu(x)(ε, δy)

)
σ

(
Fu(x)

))
−

((
u′x − µ(Fu)

)
σ̃ (Fu, ε, y)

+ σ(Fu)µ̃(Fu, ε, y)
)/(

εσ
(
Fu(ε, δy)

)
σ(Fu)

)∣∣∣
≤ C3 sup

‖u−u(x)‖≤τ

1/ε
(|µ̃(

Fu(x), ε, y
) − µ̃

(
Fu, ε, y

)|
+ ∣∣σ̃ (

Fu(x), ε, y
) − σ̃ (Fu, ε, y)

∣∣) + o(1),

where C3 = C3(M) > 0 is a constant and o(·) is uniform in y. Call the first term
on the right-hand side of the last inequality I4 = I4(x, y, ε). By Lemma A.6,
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for (µ,σ ) = (Med, MAD), we have, for any bounded function K(x) ≥ 0,

E

[
K(X) sup

y∈Rd ,‖u−u(X)‖≤τ

1/ε
(∣∣µ̃(

Fu(X), ε, y
) − µ̃(Fu, ε, y)

∣∣

+ ∣∣σ̃ (
Fu(X), ε, y

) − σ̃ (Fu, ε, y)
∣∣)]

→ 0

as ε → 0, which, in conjunction with (∗) and Lebesgue’s dominated convergence
theorem, leads to

PWM(F (ε, δy))

ε

=
[

1 − ε

ε

∫
xw(1)(ξ)

O(x,F ) − O(x,F (ε, δy))

(1 + O(x,F (ε, δy)))(1 + O(x,F ))
dF (x)

+ yw
(
PD

(
y,F (ε, δy)

))]

×
[∫

w
(
PD

(
x,F (ε, δy)

))
dF (x; ε, δy)

]−1

=
[∫

xw(1)
(
PD(x,F )

)O(x,F ) − O(x,F (ε, δy))

ε(1 + O(x,F ))2 dF (x) + yw
(
PD(y,F )

)]

×
[∫

w
(
PD(x,F )

)
dF (x)

]−1

+ o(1)

=
[∫

S(x,M)
xw(1)

(
PD(x,F )

)O(x,F ) − O(x,F (ε, δy))

ε(1 + O(x,F ))2 dF (x)

+ yw
(
PD(y,F )

)]

×
[∫

w
(
PD(x,F )

)
dF (x)

]−1

+ I5(M,y, ε) + o(1)

=
[∫

S(x,M)
xw(1)(PD(x,F )

)g(x,u(x),F ) − g(x,u(x),F (ε, δy))

ε(1 + O(x,F ))2
dF (x)

+ yw
(
PD(y,F )

)]

×
[∫

w
(
PD(x,F )

)
dF (x)

]−1

+ I5(M,y, ε) + o(1),

where supy∈Rd , ε<0.5 ‖I5(M,y, ε)‖ → 0 as M → ∞ and o(·) is uniform
in y ∈ R

d . Note that u(x) = �−1x/‖�−1x‖ for x �= 0, µ(Fu(x)) = 0 and
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σ(Fu(x)) = ‖�−1/2x‖/‖�−1x‖. Hence((
u(x)′x − µ

(
Fu(x)

))(
σ

(
Fu(x)(ε, δy)

) − σ
(
Fu(x)

)))/(
εσ

(
Fu(x)(ε, δy)

)
σ

(
Fu(x)

))
is an even function of x. Thus

PWM(F (ε, δy))

ε

=
[∫

S(x,M)
xw(1)

(
PD(x,F )

) µ(Fu(x)(ε, δy))

εσ (Fu(x))(1 + O(x,F ))2 dF (x)

+ yw
(
PD(y,F )

)]

×
[∫

w
(
PD(x,F )

)
dF (x)

]−1

+ I5(M,y, ε) + o(1)

=
[∫

S(x,M)

xw(1)(PD(x,F ))

ε(1 + O(x,F ))2
Med

{
−d1,

x′�−1y

‖�−1/2x‖ , d1

}
dF (x)

+ yw
(
PD(y,F )

)]

×
[∫

w
(
PD(x,F )

)
dF (x)

]−1

+ I5(M,y, ε) + o(1)

by Lemma A.3. Call the first term on the right-hand side of the last equality
I6 = I6(M,y, ε). Then

PWM
(
F(ε, δy)

)
/ε = I6(M,y, ε) + I5(M,y, ε) + o(1).

By changing variables (�−1/2x → x) and then taking an orthogonal transforma-
tion (using an orthogonal matrix U with �−1/2y/‖�−1/2y‖ as its first column),
we have

I6 =
[
�1/2

∫
1/M≤‖x‖≤M

xw(1)(1/(1 + ‖x‖))
ε(1 + ‖x‖)2

× Med
{
−d1(ε),

x′�−1/2y

‖x‖ , d1(ε)

}
dF0(x) + yw

(
1

1 + ‖�−1/2y‖
)]

×
[∫

w
(
PD(x,F )

)
dF (x)

]−1

=
[∫

1/M≤‖x‖≤M

yx1w
(1)(1/(1 + ‖x‖))

‖�−1/2y‖ε(1 + ‖x‖)2

× Med
{
−d1(ε),

x1‖�−1/2y‖
‖x‖ , d1(ε)

}
dF0(x) + yw

(
1

1 + ‖�−1/2y‖
)]

×
[∫

w
(
PD(x,F )

)
dF (x)

]−1

.
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Since

0 ≤ x1Med
{−d1(ε), x1‖�−1/2y‖/‖x‖, d1(ε)

} ≤ |x1|d1(ε),

we have

sup
y∈Rd

‖I6(M,y, ε)‖

≤
(

sup
‖u‖=1, r≥0

[
‖�1/2u‖

×
∣∣∣∣
∫

1/M≤‖x‖≤M

|x1|w(1)(1/(1 + ‖x‖))
(1 + ‖x‖)2

d1(ε)

ε
dF0(x)

+ rw

(
1

1 + r

)∣∣∣∣
])

×
[∫

w
(
PD(x,F )

)
dF (x)

]−1

.

By Lebesgue’s dominated convergence theorem, it follows that

lim
ε→0

sup
y∈Rd

‖I6(M,y, ε)‖

≤
[√

λ1 sup
r≥0

∣∣∣∣
∫

1/M≤‖x‖≤M

|x1|w(1)(1/(1 + ‖x‖))
2h(0)(1 + ‖x‖)2 dF0(x) + rw

(
1

1 + r

)∣∣∣∣
]

×
[∫

w
(
1/(1 + ‖x‖)) dF0(x)

]−1

.

Since

sup
y∈Rd

∥∥PWM
(
F

(
ε, δy

))∥∥/ε
≤ sup

y∈Rd

‖I6(M,y, ε)‖ + sup
y∈Rd

‖I5(M,y, ε)‖ + o(1),

letting ε → 0 and then letting M → ∞, we get

γ (PWM,F ) = lim
ε→0

sup
y∈Rd

‖PWM(F (ε, δy))‖
ε

≤
√

λ1 supr≥0 |k0 + rw(1/(1 + r))|∫
w(1/(1 + ‖x‖)) dF0(x)

= γ ∗(PWM,F ).

The desired result now follows. �
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Proof of Theorems 4.3 and 4.4.

LEMMA A.7. Let X ∼ F be d-version symmetric about the origin. Let
ε > 0, x ∈ R

d and sx = sup‖u‖=1 u′xu. Then for 0 ≤ j ≤ 3, O(tj x,F (ε, δx)) =
min−∞<t<∞ O(tx,F (ε, δx)) = d0(1 − tj ), x ∈ Sj , where S0 = {x : 0 ≤ sx < d1},
S1 = {x :d1 ≤ sx < d1 + d3}, S2 = {x :d1 + d3 ≤ sx < d1 + d2}, S3 = {x : sx ≥
d1 + d2} and t0 = 1, t1 = (d1 + d0d3)/(sx + d0d3), t2 = (d1 + d0(sx − d1))/(sx +
d0(sx − d1)), t3 = (d1 + d0d2)/(sx + d0d2).

LEMMA A.8. Let X ∼ F be d-version symmetric about the origin with
a(u)/a(u0) ≥ u′u0. Then PM(F (ε, δx)) = t3x for x = κu0, where κ ≥ a(u0) ×
max{d1 + d2, d1a(u0)/a(u0)} and u0 = arg min‖u‖=1 a(u).

By Lemmas A.7 and A.8, we have the following lemmas.

LEMMA A.9. Let X ∼ F be d-version symmetric about 0 and let the density
h of Z be continuous and positive in a small neighborhood of 1. Then for small
ε > 0, d0 = sup0≤c≤d1

(c(m1(c, ε))) = d1/d3.

LEMMA A.10. Let X ∼ F be elliptically symmetric about the origin with �

associated. Then PM(F (ε, δx)) = tix I (sx ∈ Si), 0 ≤ i ≤ 3, for Si in Lemma A.8,
where t0 = 1 and sx = √

x′�−1x.

PROOF OF THEOREM 4.3. (i) First we show that B(ε; PM,F ) ≤ a(u0)(d1+
d0d2). By Lemmas A.2 and A.3, it is readily seen that |Med(Fu(ε,G))| ≤
a(u)d1 for any ‖u‖ = 1. The nonincreasingness of h(x) in |x| implies that
mi(x, ε), i = 1,2, are nondecreasing in ‖x‖. Hence m1(Med(Fu(ε,G)), ε) ≤
MAD(Fu(ε,G)) ≤ m2(Med(Fu(ε,G)), ε) ≤ a(u)d2 by Lemmas A.2 and A.3. By
(4.1) in Theorem 4.1 and Lemmas A.2 and A.3, it is seen that

B(ε; PM,F ) ≤ sup
G,‖u‖=1

µ
(
Fu(ε,G)

)
+ sup

G,‖u‖=1
σ

(
Fu(ε,G)

)
sup

G,‖u‖=1
µ

(
Fu(ε,G)

)/
σ

(
Fu(ε,G)

)

≤ a(u0)

(
d1 + d2 sup

G,‖u‖=1
µ

(
Fu(ε,G)

)/
σ

(
Fu(ε,G)

))

≤ a(u0)

(
d1 + d2 sup

G,‖u‖=1
µ

(
Fu(ε,G)

)/
m1

(
Med

(
Fu(ε,G)

)
, ε

))

≤ a(u0)(d1 + d2d0).
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Now we show that B(ε; PM,F ) ≥ a(u0)(d1 + d0d2). By Lemma A.8, we have

B
(
ε; PM,F

) ≥ sup
x=κu0

κ>k2

t3‖x‖ = sup
κ>k2

(d1 + d0d2)κ
/(

κ/a(u0) + d0d2
)

= a(u0)(d1 + d0d2),

where k2 = a(u0)max{d1 + d2, d1a(u0)/a(u0)}.
(ii) By Lemma A.9, for small ε > 0, d0 = d1/d3. On the other hand,

d1(ε)/ε → 1/(2h(0)) and d2/d3 → 1 as ε → 0. Thus we have γ (PM,F ) =
limε→0 B(ε; PM,F )/ε = a(u0)/h(0). �

PROOF OF THEOREM 4.4. (i) We need only consider the nontrivial case
x �= 0. The result follows directly from Lemmas A.7 and A.10, and the facts
that sx ≥ d1 and d0 = d1/d3 for small ε > 0 and d1 → 0, d2/d3 → 1 and
d1/ε → 1/(2h(0)) as ε → 0.

(ii) This follows in a straightforward fashion from part (i). �

APPENDIX B

Behavior of a(u) in Theorem 3.3 corresponding to α-symmetric F . In
Figure 3(a), an elliptically symmetric F with � = diag(1, l) and 0 ≤ l ≤ 1 is
considered. Here α = 2, u0 = (1,0)′ and a(u0) = 1. The innermost solid curve
(two circles) corresponds to l = 0, representing the extreme case a(u)/a(u0) =
u′u0. For other l’s, the curve of a(u) is inscribed by the innermost solid curve.
Hence a(u)/a(u0) ≥ u′u0 holds true for any ‖u‖ = 1. In Figure 3(b), the innermost

(a) (b)

FIG. 3. (a) The behavior of a(u) =
√

u2
1 + lu2

2 corresponding to elliptical symmetry with

different l’s. (b) The behavior of a(u) = (|u1|α + |u2|α)1/α corresponding to α-symmetry with
different α’s, α = 1.0,1.5.
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solid curve (formed by four half circles), corresponding to the extreme case
a(u)/a(u0) = u′u0, represents the shape of the a(u) with α = 1, where u0 =
(1/

√
2,1

√
2 )′. For other α’s, the curve of a(u) is inscribed by the innermost

solid curve [the outermost dashed curve in Figure 3(b) corresponds to a(u) with
α = 1.5]. Again a(u)/a(u0) ≥ u′u0 holds true for any ‖u‖ = 1.
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