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A large part of the theory of extreme value index estimation is developed
for positive extreme value indices. The best-known estimator of a positive
extreme value index is probably the Hill estimator. This estimator belongs to
the category of moment estimators, but can also be interpreted as a quasi-
maximum likelihood estimator. It has been generalized to a kernel-type
estimator, but this kernel-type estimator can, similarly to the Hill estimator,
only be used for the estimation of positive extreme value indices. In the
present paper, we introduce kernel-type estimators which can be used for
estimating the extreme value index over the whole (positive and negative)
range. We present a number of results on their distributional behavior and
compare their performance with the performance of other estimators, such
as moment-type estimators for the whole range and the quasi-maximum
likelihood estimator, based on the generalized Pareto distribution. We also
discuss an automatic bandwidth selection method and introduce a kernel
estimator for a second-order parameter, controlling the speed of convergence.

1. Introduction. Let X1, . . . ,Xn denote a sample from a distribution func-
tion F , which is assumed to be in the domain of attraction of an extreme value
distribution with extreme value index γ , denoted by F ∈ D(Gγ ). In the situation
of estimating a positive extreme value index, one of the best-known estimators
is the Hill estimator [Hill (1975)]. This estimator is consistent for all γ > 0, as-
suming only F ∈ D(Gγ ). In the case that the tail of the underlying distribution
function is Pareto shaped, that is, 1 − F(x) = Cx−1/γ for all x ≥ u with γ > 0,
C > 0 and u > 0, the Hill estimator can be interpreted as a maximum likelihood
estimator. This “quasi” likelihood approach was extended in Smith (1987), where
a generalized Pareto distribution was assumed to hold for the tail of the underlying
distribution function. The resulting estimator is consistent for γ > −1. Pickands
(1975) proposed an estimator that is invariant under shift and scale transformations
and that is consistent for all γ ∈ R. However, it has poor efficiency.

Dekkers, Einmahl and de Haan (1989) extended the Hill estimator to an
estimator that is consistent for all γ ∈ R. The resulting estimator, also called the
moment estimator, consists of two terms. The first term is the Hill estimator, which
converges to γ ∨0. In order to have a consistent estimator for γ < 0, a second term
was added that converges to γ ∧ 0. More recently, Beirlant, Vynckier and Teugels
(1996) proposed an adaptive Hill estimator, which is also consistent for all γ ∈ R.
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Drees (1995) investigated a multistage procedure that results in a refinement of the
Pickands estimator, which is consistent for all γ ∈ R and improves the efficiency.

All the estimators mentioned above are based on the k largest observations.
A major drawback of the estimators is the discrete character of the behavior of
these estimators: adding a single large-order statistic in the calculation of the
estimator, that is, increasing k by 1, can change the actual value of the estimate
considerably. Plotting these estimators as a function of the order statistics used
therefore often results in a zig-zag figure. In Csörgő, Deheuvels and Mason (1985),
the Hill estimator is smoothed by a kernel. We call this estimator the CDM
estimator. Incidentally, Hill’s estimator reappears when substituting the uniform
kernel in the CDM estimator. In the same paper, it was shown that it is possible
to improve on the (asymptotic) variance of the estimator by choosing appropriate
kernels. In this kernel-type estimator, the bandwidth h plays a similar role as the
number of order statistics k in the aforementioned estimators: approximately nh

order statistics will be used to calculate the estimate. Consequently, the estimator
now depends in a continuous way on the fraction of order statistics used. Hence,
plotting the estimator as a function of the bandwidth h then yields a smooth figure.
Other attempts to construct smoothed versions of the Hill estimator can be found in
Schultze and Steinebach (1996), Kratz and Resnick (1996) and Csörgő and Viharos
(1997), which consider classical least squares estimators for the slope γ > 0 in a
Pareto quantile plot.

Unfortunately, the least squares estimators and the CDM kernel estimator are
only valid for γ > 0. In the present paper, we introduce a new class of kernel-
type estimators that is consistent for all γ ∈ R. It should be emphasized that our
estimator is not a smoothed version of the moment estimator, but is based on the
von Mises conditions

lim
t↑x◦

F

(
d

dt

1 − F(t)

F ′(t)

)
= γ,(1.1)

where x◦
F = sup{x :F(x) < 1} ≤ ∞ is the upper endpoint of F . These conditions

are sufficient but not necessary for F ∈ D(Gγ ). Although this approach is different
from the one that leads to the moment estimator, it will result in an estimator that
also consists of two terms. We define the following estimator for γ ∈ R:

γ̂ K
n,h = γ̂

(pos)
n,h − 1 + q̂

(2)
n,h

q̂
(1)
n,h

,(1.2)

where

γ̂
(pos)
n,h =

n−1∑
i=1

i

n
Kh

(
i

n

)(
logX(n−i+1) − logX(n−i)

)
,

q̂
(1)
n,h =

n−1∑
i=1

(
i

n

)α

Kh

(
i

n

)(
logX(n−i+1) − logX(n−i)

)
,
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q̂
(2)
n,h =

n−1∑
i=1

d

du
[uα+1Kh(u)]u=i/n

(
logX(n−i+1) − logX(n−i)

)
,

with Kh(u) = K(u/h)/h and α > 0. Note that all three quantities have an integral
representation involving the empirical quantile function. This is explained in
Section 2 [see (2.4), (2.6) and (2.8)], where we also give the motivation for this
estimator and specify the conditions for the kernel K . An example of a suitable
kernel is the biweight K(x) = 15

8 (1 − x2)2. The parameter α is needed to prevent
singularities near 0 and must be greater than 1/2 in order to have asymptotic
normality. In our simulations, we took α = 0.6. The first term in (1.2) is the kernel-
type estimator of Csörgő, Deheuvels and Mason (1985) and is shown to converge
to γ ∨ 0. Similarly to the moment estimator, the second term will compensate the
behavior of the CDM kernel-type estimator for γ < 0 and is shown to converge
to γ ∧ 0. The resulting estimator will inherit the smooth behavior of the CDM
kernel-type estimator as well as the general applicability of the moment estimator.

The content of the paper is organized as follows. In Section 2, we explain how
estimator (1.2) is motivated by (1.1). In Section 3, consistency of the estimator
will be derived under the single condition that the underlying distribution function
is in the domain of attraction of an extreme value distribution. Under additional
assumptions on the underlying distribution, asymptotic normality will be derived
in Section 4, and sufficient conditions are provided in Section 5, under which
the asymptotic bias vanishes. In Section 6, we compare our estimator with other
estimators, such as the moment estimator and the maximum likelihood estimator,
and the more recent proposals by Beirlant, Vynckier and Teugels (1996) and Drees
(1995). Finally, in Section 7, we discuss automatic bandwidth selection methods,
in the course of which we also introduce a kernel estimate for an important second-
order parameter.

2. Defining the estimator. Let X1, . . . ,Xn denote a sample from a distribu-
tion function F , with support on (0,∞). Suppose that F is in the domain of attrac-
tion of an extreme value distribution Gγ for some γ ∈ R, denoted by F ∈ D(Gγ );
that is, there exist {an} and {bn}, n ∈ N, with an > 0 and bn ∈ R, such that

lim
n→∞Fn(anx + bn) = Gγ (x) = exp

(−(1 + γ x)−1/γ
)

for all x with 1 + γ x > 0. We will use the convention that G0(x) = exp(−e−x) for
x ∈ R. Let Q denote the quantile function corresponding to F . By replacing t by
Q(1 − s) in (1.1), the von Mises condition can be written as

lim
s↓0

(
−1 − sF ′′(Q(1 − s))

(F ′(Q(1 − s)))2

)
= γ.

If logQ is well defined and differentiable, we can define the function φ by

φ(s) = −s
d

ds
logQ(1 − s).(2.1)
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In this case, the limit relation (1.1) can be translated into

lim
s↓0

(
−1 + φ(s) − s(d2/ds2) logQ(1 − s)

(d/ds) logQ(1 − s)

)
= γ.(2.2)

The construction of our estimator is based on this relation. Basically, we have to
estimate the value of φ, the numerator and denominator in (2.2) at 0. To get some
intuition on how to construct the estimator, it is useful to consider the generalized
Pareto distribution (GPD). For the GPD, the function φ is given by

φGPD(s) =


γ

1 − sγ
, γ �= 0,

1

log 1/s
, γ = 0.

Clearly, for the GPD one has that

lim
s↓0

φ(s) = γ ∨ 0.(2.3)

Suppose for the moment that φ in (2.1) exists and also satisfies (2.3). Let the
empirical quantile function be defined by Qn(u) = inf{x :Fn(x) ≥ u} and denote
by X(1) ≤ X(2) ≤ · · · ≤ X(n) the order statistics corresponding to the sample
X1,X2, . . . ,Xn. First, we estimate lims↓0 φ(s) by a kernel estimator

γ̂
(pos)
n,h = −

∫ h

0
uKh(u) d logQn(1 − u)

(2.4)

=
n−1∑
i=1

i

n
Kh

(
i

n

)(
log X(n−i+1) − log X(n−i)

)
,

where Kh(u) = K(u/h)/h. Intuitively, using (2.3) and assuming that K integrates
to 1, for h ↓ 0 this will behave as

−
∫ h

0
uKh(u) d logQ(1 − u) =

∫ 1

0
φ(hu)K(u)du → (γ ∨ 0).

This is made rigorous for any F ∈ D(Gγ ) in Lemma 3.3, without assuming the
differentiability of logQ. The numerator and the denominator on the left-hand side
of (2.2) will be estimated separately at 0, using kernel-type estimators as well. In
defining these estimators, we note that both numerator and denominator can be
multiplied by any power of s, without changing the limit. Simulations show that
this will lead to more stable estimators. For any α > 0, we have that

lim
s↓0

−s(d2/ds2) logQ(1 − s)

(d/ds) logQ(1 − s)
= lim

s↓0

sα+1(d2/ds2) logQ(1 − s)

−sα(d/ds) logQ(1 − s)
.(2.5)
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Note that, if (2.2) and (2.3) hold, the limit in (2.5) equals 1 + (γ ∧ 0). For the
denominator on the right-hand side of (2.5), we estimate lims↓0 −sα(d/ds) ×
log Q(1 − s) by a kernel estimator

q̂
(1)
n,h = −

∫ h

0
uαKh(u) d logQn(1 − u)

(2.6)

=
n−1∑
i=1

(
i

n

)α

Kh

(
i

n

)(
logX(n−i+1) − logX(n−i)

)
.

If we were to treat the numerator on the right-hand side of (2.5) similarly and
treat Qn as if it were differentiable, we could estimate lims↓0 sα+1(d2/ds2) ×
log Q(1 − s) by ∫ h

0
uα+1Kh(u)

d2

du2 log Qn(1 − u).(2.7)

To overcome the difficulty that Qn is not differentiable, we use, as is customary
in the literature on kernel estimation of derivatives of densities and regression
functions, the derivative of the kernel instead of the derivative of a direct estimate
of the unknown function. Hence, after using integration by parts in (2.7), we
estimate lims↓0 sα+1(d2/ds2) logQ(1 − s) by

q̂
(2)
n,h = −

∫ h

0

d

du
[uα+1Kh(u)]d logQn(1 − u)

(2.8)

=
n−1∑
i=1

d

du
[uα+1Kh(u)]u=i/n

(
logX(n−i+1) − log X(n−i)

)
.

Intuitively, using (2.3), for h ↓ 0, the term q̂
(1)
n,h as defined in (2.6) will behave as

−
∫ h

0
uαKh(u) d log Q(1 − u) = hα−1

∫ 1

0
φ(hu)uα−1K(u)du

∼ hα−1(γ ∨ 0)

∫ 1

0
uα−1K(u)du.

Similarly, q̂
(2)
n,h as defined in (2.8) will behave as

−
∫ h

0

d

du
[uα+1Kh(u)]d log Q(1 − u)

∼ hα−1
∫ 1

0
φ(hu)u−1 d

du
[uα+1K(u)]du

= hα−1(γ ∨ 0)

∫ 1

0
u−1 d

du
[uα+1K(u)]du

= hα−1(γ ∨ 0)

∫ 1

0
uα−1K(u)du.
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In the case γ > 0, this would immediately suggest that q̂
(2)
n,h/q̂

(1)
n,h tends to 1.

Without assuming differentiability, it is shown in Lemma 3.4, for any γ ∈ R and

for any F ∈ D(Gγ ), that q̂
(2)
n,h/q̂

(1)
n,h → 1 + (γ ∧ 0).

The above discussion motivates the expression given in (1.2) as an estimator for
γ ∈ R. For the kernel K , we impose the following conditions. Let K : [0,1] → R+
be a fixed kernel function satisfying the following conditions:

(CK1) K(x) = 0, whenever x /∈ [0,1) and K(x) ≥ 0, whenever x ∈ [0,1);
(CK2) K(1) = K ′(1) = 0;
(CK3)

∫ 1
0 K(x)dx = 1;

(CK4) K , K ′ and K ′′ are bounded.

In the definition of γ̂ K
n,h, the continuous parameter h is used. This bandwidth

determines the number of order statistics that is used in the computation of the
estimator. The continuous nature of the bandwidth ensures that the estimator is a
smooth function of the fraction of order statistics used, as opposed to the more
discrete nature of, for example, the moment estimator.

3. Consistency. By rearranging terms and using that Qn(1 − u) = Xn−k for
k/n ≤ u < (k + 1)/n, we can also write

γ̂
(pos)
n,h =

∫ 1

0
logQn(1 − hu)d

(
uK(u)

)
,

q̂
(1)
n,h = hα−1

∫ 1

0
log Qn(1 − hu)d

(
uαK(u)

)
,

q̂
(2)
n,h = hα−1

∫ 1

0
log Qn(1 − hu)d

(
d

du
[u1+αK(u)]

)
.

Note that

Qn(s)
D= Q

(
�n(s)

)
and �n(1 − s)

D= 1 − �n(s),(3.1)

where �n is the empirical quantile function of a uniform (0,1) sample U1, . . . ,Un.
Since conditions (CK2) and (CK4) yield that

∫
d(uK(u)) = 0, we have that

γ̂
(pos)
n,h

D=
∫ 1

0

(
logQ

(
1 − �n(hu)

) − logQ
(
1 − U(k+1)

))
d
(
uK(u)

)
,

where �n is the empirical quantile function of a uniform (0,1) sample U1, . . . ,Un

and k = �nh�. To avoid differentiability of the quantile function, we use the
following lemma.
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LEMMA 3.1. Suppose F ∈ D(Gγ ) with x◦
F > 0. Denote the corresponding

quantile function by Q(s) = F−1(s). Then, for some positive function a(·),

lim
s↓0

log Q(1 − sy) − logQ(1 − s)

a(s)/Q(1 − s)
=


− log y, γ ≥ 0,

y−γ − 1

γ
, γ < 0,

(3.2)

for all y > 0. Moreover, for each ε > 0, there exists s0 such that for 0 < s ≤ s0 and
0 < y ≤ 1,

(1 − ε)
1 − yε

ε
− ε <

logQ(1 − sy) − log Q(1 − s)

a(s)/Q(1 − s)
(3.3)

< (1 + ε)
y−ε − 1

ε
+ ε

provided γ ≥ 0, and

1 − (1 + ε)y−γ−ε <
logQ(1 − sy) − log Q(1 − s)

log Q(1) − logQ(1 − s)
< 1 − (1 − ε)y−γ+ε(3.4)

provided γ < 0.

PROOF. Rewrite Lemma 2.5 from Dekkers, Einmahl and de Haan (1989),
using that Q(1 − s) = U(1/s), where U is the inverse of 1/(1 − F). Essentially,
the inequalities are properties of regularly varying functions for γ < 0 and of
�-varying functions for γ ≥ 0. �

REMARK 3.1. From the properties of regularly varying functions, it follows
that, in the case γ > 0, we can take a(s)/Q(1 − s) = γ in Lemma 3.1, whereas,
in the case γ < 0, we can take a(s)/Q(1 − s) = −γ (logQ(1) − logQ(1 − s)).
Moreover, as a consequence of Lemma 3.1 and the properties of �-varying
functions, we have that, in the case γ = 0, a(s) = o(Q(1 − s)).

The idea now is to use (3.3) and (3.4) from Lemma 3.1 with y = �n(hu)/U(k+1),
where k = �nh�. Unfortunately, Lemma 3.1 cannot be applied directly. However,
the next lemma shows that we may as well apply Lemma 3.1 with y equal to u

instead of �n(hu)/U(k+1).

LEMMA 3.2. Let �n(·) denote the empirical quantile function of U1, . . . ,Un

with Ui i.i.d. U(0,1), h be a sequence of positive numbers with h = hn → 0
and nhn → ∞, as n → ∞, and let L(·) be an integrable, bounded and positive
function on (0,1). Define k = �nh� and λ̄ = (λ ∧ 0) for λ > −1. Then, for each
β > (−1 − λ̄),∫ 1

0

[(
�n(hu)

U(k+1)

)β

− uβ

]
uλL(u)du

P→0 as n → ∞.(3.5)
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PROOF. The case β = 0 is trivial; hence, we consider the case β �= 0. Write
the left-hand side of (3.5) as∫ 1

0

[(
�n(hu)

U(k+1)

)β

−
(

�n(ku/n)

U(k+1)

)β]
uλL(u)du(3.6)

+
∫ 1

0

[(
�n(ku/n)

U(k+1)

)β

− uβ

]
uλL(u)du.(3.7)

For (3.6), note that, for j = 1, . . . , k, by definition,

(
�n(hu)

)β − (
�n(ku/n)

)β =


0,

j − 1

k
< u ≤ j

nh
,

U
β
(j+1) − U

β
(j),

j

nh
< u ≤ j

k
.

Hence, (3.6) equals

U
−β
(k+1)

k∑
j=1

∫ j/k

j/nh

(
U

β
(j+1) − U

β
(j)

)
uλL(u)du.

Let ‖L‖ = sups∈(0,1) |L(s)| and λ̄ = λ ∧ 0. Using that |xλ+1 − yλ+1| ≤ (λ + 1) ×
(x − y)yλ̄ for all 0 ≤ y ≤ x ≤ 1, and nh − k < 1, we get∣∣∣∣∣U−β

(k+1)

k∑
j=1

∫ j/k

j/nh

(
U

β
(j+1) − U

β
(j)

)
uλL(u)du

∣∣∣∣∣
≤ ‖L‖

λ + 1
U

−β
(k+1)

k∑
j=1

∣∣Uβ
(j+1) − U

β
(j)

∣∣∣∣∣∣(j

k

)λ+1

−
(

j

nh

)λ+1∣∣∣∣
< ‖L‖U−β

(k+1)

k∑
j=1

∣∣Uβ
(j+1) − U

β
(j)

∣∣ j

knh

(
1

nh

)λ̄

.

Note that the terms U
β
(j+1) − U

β
(j) are either all positive (in the case β > 0) or all

negative (in the case β < 0), which implies that the right-hand side is equal to

‖L‖
k(nh)1+λ̄

U
−β
(k+1)

∣∣∣∣∣
k∑

j=1

j
(
U

β
(j+1) − U

β
(j)

)∣∣∣∣∣
= ‖L‖

k(nh)1+λ̄
U

−β
(k+1)

∣∣∣∣∣(k + 1)U
β
(k+1) − U

β
(1) −

k∑
j=1

U
β
(j+1)

∣∣∣∣∣
= ‖L‖

k(nh)1+λ̄

∣∣∣∣∣
k+1∑
j=1

(
1 −

(
Uj

U(k+1)

)β)∣∣∣∣∣.
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Note that, for j = 1, . . . , k+1, U(k+1) ≥ U
β
(j) ≥ U

β
(1) if β > 0, and U(k+1) ≤ U

β
(j) ≤

U
β
(1) if β < 0. This implies that, for all β �= 0, the last expression is bounded by

‖L‖(k + 1)

k(nh)1+λ̄

∣∣∣∣1 −
(

U1

U(k+1)

)β ∣∣∣∣ ≤ 2‖L‖
(nh)1+λ̄

∣∣∣∣1 −
(

U1

U(k+1)

)β ∣∣∣∣.(3.8)

In the case β > 0, we know that, with probability 1, 1− (U(1)/U(k+1))
β is bounded

between 0 and 1, hence, (3.8) tends to 0 as n → ∞. In the case β < 0, first observe
that, for any integer 1 ≤ k ≤ n − 1, we have that(

U(1)

U(k+1)

, . . . ,
U(k)

U(k+1)

)
D= (

V(1), . . . , V(k)

)
,(3.9)

where V(1), . . . , V(k) are the order statistics of k i.i.d. U(0,1) variables. Therefore,

we have that U(1)/U(k+1)
D= V(1), so that, for any δ > 0,

P

([(
U(1)

U(k+1)

)β

− 1
]

> δ(nh)1+λ̄

)
= 1 − (

1 − (
δ(nh)1+λ̄ + 1

)1/β)k
.(3.10)

However, since λ̄ > −1 and β < 0, we have that

k log
(
1 − (

δ(nh)1+λ̄ + 1
)1/β) = −k

(
δ(nh)1+λ̄ + 1

)1/β(
1 + o(1)

)
as n → ∞.

Using that k ∼ nh, we find that (3.10) tends to 0, whenever 1 + (1 + λ̄)/β < 0.
Hence, (3.8) tends to 0 in probability as n → ∞, whenever −1 − λ̄ < β < 0.

Finally, consider the second term (3.7). Note that property (3.9) yields that all
finite-dimensional projections of the process u �→ �n(hu)/U(k+1) are equal in
distribution to the finite-dimensional projections of the process u �→ �k(u), where
�k(u) is the empirical quantile function of a U(0,1) sample V1, . . . , Vk . Hence,
(3.7) is equal in distribution to∫ 1

0

(
�k(u)β − uβ

)
uλL(u)du.(3.11)

Moreover, for 0 < ν1 < 1 + λ and 0 < ν2 < 1, we have∣∣∣∣ ∫ 1

0

(
�k(u)β − uβ

)
uλL(u)du

∣∣∣∣
≤ sup

0<u<1

[
uν1(1 − u)ν2|�k(u)β − uβ |]‖L‖

∫ 1

0
uλ−ν1(1 − u)−ν2 du.

For β > 0, according to (3.1), the right-hand side has the same distribution as

sup
0<u<1

[
uν1(1 − u)ν2|F−1

β,k(u) − F−1
β (u)|]‖L‖

∫ 1

0
uλ−ν1(1 − u)−ν2 du,(3.12)
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where F−1
β is the quantile function corresponding to the distribution function

Fβ(x) = x1/β for 0 < x < 1 and F−1
β,k denotes the empirical quantile function of

a sample Y1, . . . , Yk drawn from Fβ . Note that, since 0 < |Y1| < 1, one has that
E|Y1 ∧ 0|1/ν1 = 0 and E(Y1 ∨ 0)1/ν2 < ∞ for ν2 > 0 and β > 0. Theorem 3 in
Mason (1982) then yields that the supremum in (3.12) tends to 0 with probability 1
as k → ∞. Since ν1 < (1 + λ) and ν2 < 1, the integral in (3.12) is finite. We
conclude that, in the case β > 0, (3.11) tends to 0 with probability 1 as k → ∞. In
the case β < 0, again using (3.1), note that

sup
0<u<1

uν1(1 − u)ν2|�k(u)β − uβ | D= sup
0<u<1

(1 − u)ν1uν2
∣∣G−1

β,k(u) − G−1
β (u)

∣∣,
with G−1

β the quantile function corresponding to the distribution function Gβ(x) =
1 − x1/β for x ≥ 1 and G−1

β,k denoting the empirical quantile function of a
sample Z1, . . . ,Zk drawn from Gβ . Again, use Theorem 3 in Mason (1982), with
E |Z1 ∧ 0|1/ν2 = 0, whenever ν2 > 0 and β < 0, and

E(Z1 ∨ 0)1/ν1 = − 1

β

∫ ∞
1

z1/ν1+1/β−1 dz < ∞,

whenever ν1 > −β . Hence, (3.11) tends to 0 almost surely as k tends to ∞, taking
−β < ν1 < (1 + λ) and 0 < ν2 < 1. �

LEMMA 3.3. Assume that F ∈ D(Gγ ) for some γ ∈ R. Let K be a kernel
satisfying conditions (CK1)–(CK4) and let γ̂ K

n,h be defined by (1.2). If h = hn is

such that h ↓ 0 and nh → ∞ as n → ∞, then γ̂
(pos)
n,h → (γ ∨ 0) in probability.

PROOF. First, observe that, according to (3.1) and conditions (CK2) and
(CK4), we can write

γ̂
(pos)
n,h

D=
∫ 1

0

(
logQ

(
1 − �n(hu)

) − logQ
(
1 − U(k+1)

))
d
(
uK(u)

)
,

where �n is the empirical quantile function of a uniform (0,1) sample U1, . . . ,Un

and k = �nh�. Consider the case γ > 0. By definition, U(k+1) ≥ �n(hu) with
probability 1 for all u ∈ (0,1), and U(k+1) → 0 with probability 1 as h ↓ 0.
We can therefore apply Lemma 3.1, with y = �n(hu)/U(k+1), s = U(k+1) and
a(s)/Q(1 − s) = γ (see Remark 3.1), to get that, with probability 1, for each
ε > 0 there exists an n0 such that, for all n ≥ n0,

(1 − ε)
1 − (�n(hu)/U(k+1))

ε

ε
− ε <

logQ(1 − �n(hu)) − logQ(1 − U(k+1))

γ

< (1 + ε)
(�n(hu)/U(k+1))

−ε − 1

ε
+ ε
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for all u ∈ (0,1). Defining L(u) = d(uK(u))/du, we get, by the boundedness
of both K and K ′, that L(u) = L+(u) − L−(u), where L±(u) are positive and
bounded functions. Hence, for γ > 0,

γ̂
(pos)
n,h < γ

∫ 1

0

[
(1 + ε)

(�n(hu)/U(k+1))
−ε − 1

ε
+ ε

]
L+(u) du

− γ

∫ 1

0

[
(1 − ε)

1 − (�n(hu)/U(k+1))
ε

ε
− ε

]
L−(u) du.

Applying Lemma 3.2 twice (once with β = −ε, λ = 0 and L+ and once with
β = ε, λ = 0 and L−) yields that, for any 0 < ε < 1, this upper bound tends to

γ

∫ 1

0

[
(1 + ε)

u−ε − 1

ε
+ ε

]
L+(u) du − γ

∫ 1

0

[
(1 − ε)

1 − uε

ε
− ε

]
L−(u) du

in probability as n → ∞. Letting ε ↓ 0, by dominated convergence this tends to

γ

∫ 1

0
(− logu)L+(u) du − γ

∫ 1

0
(− logu)L−(u) du

= γ

∫ 1

0
(− log u)d

(
(uK(u)

) = γ.

Similar arguments lead to a lower bound for γ̂
(pos)
n,h that tends to γ in probability

as well. This proves the lemma for the case γ > 0.
In the case γ = 0, first note that, as a consequence of Lemma 3.1 together

with the properties of �-varying functions, one has that a(s) = o(Q(1 − s))

for s ↓ 0. Since U(k+1) → 0 with probability 1, this means that a(U(k+1))/

Q(1 −U(k+1)) → 0 with probability 1. Similar to the case γ > 0, we can apply the
inequalities of Lemma 3.1 to

logQ(1 − �n(hu)) − log Q(1 − U(k+1))

a(U(k+1))/Q(1 − U(k+1))
.

By similar arguments as above, we conclude that γ̂
(pos)
n,h → 0 in probability.

Finally, consider the case γ < 0. Lemma 3.1 now yields the inequalities

1 − (1 + ε)

(
�n(hu)

U(k+1)

)−γ−ε

<
logQ(1 − �n(hu)) − log Q(1 − U(k+1))

log Q(1) − logQ(1 − U(k+1))

< 1 − (1 − ε)

(
�n(hu)

U(k+1)

)−γ+ε

.

Thus, with L± as before,

γ̂
(pos)
n,h

logQ(1) − log Q(1 − U(k+1))
<

∫ 1

0

[
1 − (1 − ε)

(
�n(hu)

U(k+1)

)−γ+ε]
L+(u) du

−
∫ 1

0

[
1 − (1 + ε)

(
�n(hu)

U(k+1)

)−γ−ε]
L−(u) du.



KERNEL ESTIMATORS FOR γ ∈ R 1967

Again, by two applications of Lemma 3.2 (once with β = −γ + ε, λ = 0 and L+
and once with β = −γ − ε, λ = 0 and L−), we get that, for any 0 < ε < 1 − γ , the
upper bound tends to∫ 1

0

[
1 − (1 − ε)u−γ+ε

]
L+(u) du −

∫ 1

0

[
1 − (1 + ε)u−γ−ε

]
L−(u) du.

Since both integrals are bounded for 0 < ε < 1 − γ and log Q(1) − log Q(1 −
U(k+1)) → 0 with probability 1, we get (with a similar lower bound) that

γ̂
(pos)
n,h → 0. �

LEMMA 3.4. Assume that F ∈ D(Gγ ) for some γ ∈ R. Let K be a kernel
satisfying conditions (CK1)–(CK4) and, for arbitrary α > 0, let γ̂ K

n,h be defined

by (1.2). If h = hn is such that h ↓ 0 and nh → ∞ as n → ∞, then q̂
(2)
n,h/q̂

(1)
n,h →

1 + (γ ∧ 0) in probability.

PROOF. Since we will consider q̂
(2)
n,h/q̂

(1)
n,h, we can scale both numerator

and denominator by the same factor, without changing the ratio. Moreover, by
conditions (CK2) and (CK4), we have that, for any α > 0,∫ 1

0
d
(
uαK(u)

) = [uαK(u)]1
0 = 0

and ∫ 1

0
d

[
d

du
uα+1K(u)

]
= [

(α + 1)uαK(u) + uα+1K ′(u)
]1
0 = 0.

First, consider γ ≥ 0. If we write d(uαK(u)) = uα−1L1(u) du, then, by the
previous remarks, we have that

h1−αq̂
(1)
n,h

a(U(k+1))/Q(1 − U(k+1))

D=
∫ 1

0

logQ(1 − �n(hu)) − logQ(1 − U(k+1))

a(U(k+1))/Q(1 − U(k+1))
uα−1L1(u) du.

Similarly to the argument used in the proof of Lemma 3.3, we can first apply
the inequalities from Lemma 3.1. Then, with ε > 0 fixed, let n → ∞ and apply
Lemma 3.2 with λ = α − 1, and finally let ε ↓ 0. We conclude that

h1−αq̂
(1)
n,h

a(U(k+1))/Q(1 − U(k+1))
(3.13)

→
∫ 1

0
(− logu)d

(
uαK(u)

) =
∫ 1

0
uα−1K(u)du
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in probability. On the other hand, if we write

d

(
d

du
[uα+1K(u)]

)
= uα−1L2(u) du,

we have

h1−αq̂
(2)
n,h

a(U(k+1))/Q(1 − U(k+1))

D=
∫ 1

0

logQ(1 − �n(hu)) − log Q(1 − U(k+1))

a(U(k+1))/Q(1 − U(k+1))
uα−1L2(u) du.

Similarly, by an application of Lemmas 3.1 and 3.2, this tends in probability to∫ 1

0
(− log u)d

(
d

du
uα+1K(u)

)
=

∫ 1

0

d

du

(
uα+1K(u)

)
u−1 du =

∫ 1

0
uα−1K(u)du.

Combining this with (3.13), we obtain that q̂
(2)
n,h/q̂

(1)
n,h

P→1, whenever γ ≥ 0.
In the case γ < 0, similar arguments yield that

h1−αq̂
(1)
n,h

logQ(1) − log Q(1 − U(k+1))

→
∫ 1

0
(1 − u−γ ) d

(
uαK(u)

) = −γ

∫ 1

0
uα−γ−1K(u)du

in probability, and that

h1−αq̂
(2)
n,h

logQ(1) − log Q(1 − U(k+1))
→

∫ 1

0
(1 − u−γ ) d

(
d

du
uα+1K(u)

)

= −γ (1 + γ )

∫ 1

0
uα−γ−1K(u)du

in probability. Hence, q̂
(2)
n,h/q̂

(1)
n,h

P→1 + γ as n → ∞. �

The following theorem is now a direct corollary of Lemmas 3.3 and 3.4.

THEOREM 3.1 (Consistency). Assume that F ∈ D(Gγ ) for some γ ∈ R.
Let K be a kernel satisfying conditions (CK1)–(CK4) and, for arbitrary α > 0,
let γ̂ K

n,h be defined by (1.2). If h = hn is such that h ↓ 0 and nh → ∞ as n → ∞,
then γ̂ K

n,h → γ in probability as n → ∞.
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4. Asymptotic normality. In order to obtain asymptotic normality, we need
additional assumptions on F . Suppose that F ∈ D(Gγ ) for some γ ∈ R and
assume that φ from (2.1) exists and is well defined. Moreover, we assume that
F satisfies the following conditions:

(CP1) In the case γ ≥ 0, assume that φ(s) → γ , as s ↓ 0.
(CP2) In the case γ < 0, assume that, for some constant c > 0, sγ φ(s) → −cγ ,

as s ↓ 0.
(CP3) In the case γ = 0, for all s > 0 assume that φ(hs)/φ(h) → 1, as h ↓ 0.

Consider the deterministic equivalent of γ̂ K
n,h:

γh = γ
(pos)
h + q

(2)
h

q
(1)
h

− 1,(4.1)

with

γ
(pos)
h =

∫ 1

0
log Q(1 − hu)d

(
uK(u)

)
,(4.2)

q
(i)
h = hα−1

∫ 1

0
log Q(1 − hu)dK(i)(u), i = 1,2,(4.3)

where K(1)(u) = uαK(u) and K(2)(u) = d(uα+1K(u))/du for a kernel K . Also
write

K
(1)
h (u) = uαKh(u),(4.4)

K
(2)
h (u) = d

du

(
uα+1Kh(u)

)
.(4.5)

LEMMA 4.1. Let X1, . . . ,Xn be a sample from F ∈ D(Gγ ) and suppose
that F satisfies conditions (CP1)–(CP3). Let K be a kernel satisfying conditions
(CK1)–(CK4) and let γ̂ K

n,h be defined as in (1.2). Then, for any α > 1
2 and h = hn,

with h ↓ 0 and (nh)−α log n = O((nh)−1/2), as n → ∞, we have, for i = 1,2,
√

nhh1−α(
q̂

(i)
n,h − q

(i)
h

) D=
∫ 1

0

W(u)

u
φ(hu)dK(i)(u) + oP (1)(4.6)

as n → ∞, where W denotes standard Brownian motion.

PROOF. We will only present the proof for q̂
(1)
n,h, since the proof for q̂

(2)
n,h is

similar. The left-hand side of (4.6) can be decomposed into four parts:

q̂
(1)
n,h − q

(1)
h

=
∫ 1/n

0
log Qn(1 − u)dK

(1)
h (u) −

∫ 1/n

0
log Q(1 − u)dK

(1)
h (u)(4.7)

+
∫ bn

1/n
log

(
Qn(1 − u)

Q(1 − u)

)
dK

(1)
h (u) +

∫ h

bn

log
(

Qn(1 − u)

Q(1 − u)

)
dK

(1)
h (u),
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where (bn) is a sequence of positive real numbers that satisfies 1/n < bn < h.
For the first term of (4.7), note that Qn(1 − u) is constant for 0 ≤ u < 1/n.

Together with property (3.1), we get that

h1−α
∫ 1/n

0
logQn(1 − u)dK

(1)
h (u)

D= logQ(1 − U(1))

∫ 1/nh

0
dK(1)(u),

where U(1) is the first order statistic from a sample U1, . . . ,Un from a uniform
(0,1) distribution. Note that, from the properties of slowly varying functions, it
follows that

log Q(1 − s)

− log s
→ 0(4.8)

[see de Wolf (1999) for a formal proof]. Therefore, since U(1) → 0 almost surely,
we have that

h1−α
∫ 1/n

0
logQn(1 − u)dK

(1)
h (u)

D= oP

(− log U(1)

(nh)α

)
= oP

(
(nh)−1/2).(4.9)

The last equality follows from the fact that, for any ε > 0,

P
(−(nh)1/2−α logU(1) ≥ ε

)
= 1 − (

1 − exp
(−(nh)α−1/2ε

))n ≤ n exp
(−(nh)α−1/2ε

)
,

which tends to 0 according to the conditions on h. For the second part of (4.7),
observe that, by integration by parts and application of (4.8),

h1−α
∫ 1/n

0
logQ(1 − u)dK

(1)
h (u)

= h1−α logQ

(
1 − 1

n

)
K

(1)
h

(
1

n

)
+

∫ 1/nh

0
φ(hu)K(1)(u) du,

where φ is defined in (2.1). Conditions (CP1)–(CP3) yield that φ(s) → (γ ∨ 0)

as s ↓ 0. From the conditions on h, together with another application of (4.8), we
conclude

h1−α
∫ 1/n

0
logQ(1 − u)dK

(1)
h (u)

(4.10)

= o

(
logn

(nh)α

)
+ O

(
(nh)−1) = o

(
(nh)−1/2).

For the third part of (4.7), first observe that∫ bn

1/n
log

(
Qn(1 − u)

Q(1 − u)

)
dK

(1)
h (u)

D=
∫ bn

1/n

[
log Q

(
1 − �n(u)

) − logQ(1 − u)
]
dK

(1)
h (u),
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where �n is the empirical quantile function of a uniform (0,1) sample of size n.
By the mean value theorem, we then get that∫ bn

1/n
log

(
Qn(1 − u)

Q(1 − u)

)
dK

(1)
h (u)

D=
∫ bn

1/n

φ(u + ξn,u)

u + ξn,u

(
u − �n(u)

)
dK

(1)
h (u),

with |ξn,u| ≤ |�n(u) − u|. We have that sup0<u<1 |�n(u) − u| → 0 with probabil-
ity 1 as n → ∞, and from Wellner (1978),

sup
1/n≤u≤1

∣∣∣∣�n(u)

u

∣∣∣∣ = OP (1) and sup
1/n≤u≤1

∣∣∣∣ u

�n(u)

∣∣∣∣ = OP (1).(4.11)

From the conditions on F , it follows that φ is uniformly bounded in a
neighborhood of 0. Furthermore, note that u/(u + ξn,u) lies between u/�n(u)

and 1. Hence,

sup
1/n≤u≤bn

∣∣∣∣φ(u + ξn,u)
u

u + ξn,u

�n(u) − u

u

∣∣∣∣ = OP (1).

Writing dK(1)(u)/du = uα−1L1(u), we therefore obtain that∣∣∣∣ ∫ bn

1/n
log

(
Qn(1 − u)

Q(1 − u)

)
dK

(1)
h (u)

∣∣∣∣ ≤ OP (1)

∫ bn

1/n

∣∣∣∣dK
(1)
h (u)

du

∣∣∣∣du

= hα−1OP (1)

∫ bn/h

1/nh
uα−1|L1(u)|du

= hα−1OP

(
(bn/h)α

)
.

Taking bn = h(nh)−(1/2+λ)/α for some 0 < λ < α − 1/2, we get that

h1−α
∫ bn

1/n
log

(
Qn(1 − u)

Q(1 − u)

)
dK

(1)
h (u) = oP

(
(nh)−1/2).(4.12)

Finally, consider the fourth part of the decomposition (4.7). Following the same
arguments as for the third part, we arrive at∫ h

bn

log
(

Qn(1 − u)

Q(1 − u)

)
dK

(1)
h (u)

D=
∫ h

bn

φ(u + ξn,u)

u + ξn,u

(
�n(u) − u

)
dK

(1)
h (u)

for some |ξn,u| ≤ |�n(u) − u|. Since now bn ≤ u ≤ h, we have that

sup
bn≤u≤1

∣∣∣∣�n(u) − u

u

∣∣∣∣ = oP (1)(4.13)

for any sequence (bn) of positive numbers satisfying nbn → ∞ as n → ∞ [see
Wellner (1978)]. Condition (CP3) states that φ is slowly varying. This implies that
φ(hs)/φ(h) → 1 as h ↓ 0 uniformly for s ∈ [a, b] for any 0 < a < b < ∞. By
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means of (4.13), we have that, for n sufficiently large, 1/2 < 1 + ξn,u/u < 3/2,
which implies that

φ(u + ξn,u)

φ(u)
= φ(u(1 + ξn,u/u))

φ(u)
→ 1

uniformly for bn ≤ u ≤ h. It follows that, for all γ ∈ R,

sup
bn≤u≤h

∣∣∣∣φ(u + ξn,u)

φ(u)

u

u + ξn,u

∣∣∣∣ = 1 + oP (1).

This implies that∫ h

bn

log
(

Qn(1 − u)

Q(1 − u)

)
dK

(1)
h (u) = (

1 + oP (1)
) ∫ h

bn

φ(u)
�n(u) − u

u
dK

(1)
h (u).

Note that, from Theorem 2.1 in Csörgő, Csörgő, Horváth and Mason (1986), there
exists a sequence (Bn) of Brownian bridges such that, for 0 ≤ ν < 1/2,

sup
1/n≤u≤1−1/n

|√n(�n(u) − u) − Bn(u)|
u1/2−ν

= OP (n−ν)(4.14)

as n → ∞, where �n is the quantile function of U1, . . . ,Un. Applying (4.14), we
get that∫ h

bn

φ(u)
�n(u) − u

u
dK

(1)
h (u) = n−1/2

∫ h

bn

φ(u)
Bn(u)

u
dK

(1)
h (u) + Rn,h,

where, for arbitrary 0 ≤ ν < 1/2,

|Rn,h| ≤ OP (n−1/2−ν)

∫ h

bn

u−1/2−ν|φ(u)|
∣∣∣∣dK

(1)
h (u)

du

∣∣∣∣du

≤ hα−1OP

(
(nh)−1/2−ν

) ∫ 1

bn/h
u−1/2−ν|φ(hu)|

∣∣∣∣dK(1)(u)

du

∣∣∣∣du

= hα−1OP

(
(nh)−1/2−ν

)
.

Using that Bn(u)
D= Wn(u) + ζnu, where Wn is distributed as standard Brownian

motion and ζn is a standard normal variable, independent of Wn, we obtain, for
h ↓ 0 and nh → ∞,∫ h

bn

φ(u)
Bn(u)

u
dK

(1)
h (u)

D=
∫ h

bn

φ(u)
Wn(u)

u
dK

(1)
h (u) + ζn

∫ h

bn

φ(u) dK
(1)
h (u)

=
∫ h

bn

φ(u)
Wn(u)

u
dK

(1)
h (u) + hα−1ζn

∫ 1

bn/h
φ(hu)dK(1)(u)

D= hα−1h−1/2
∫ 1

bn/h
φ(hu)

Wn(u)

u
dK(1)(u) + hα−1OP (1),
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where in the last equality we used that Wn(hu)
D= √

hWn(u). Finally, since
E |Wn(u)| ≤ √

EWn(u)2 = √
u, we find that∫ bn/h

0
φ(hu)

W(u)

u
dK(1)(u) = OP

(
(bn/h)α−1/2) = oP (1).

Therefore, by taking bn = h(nh)−(1/2+λ)/α for some 0 < λ < α − 1/2, we obtain
that

h1−α
∫ h

bn

log
(

Qn(1 − u)

Q(1 − u)

)
dK

(1)
h (u)

D= (nh)−1/2(1 + oP (1)
) ∫ 1

0
φ(hu)

W(u)

u
dK(1)(u) + oP

(
(nh)−1/2)

= (nh)−1/2
∫ 1

0
φ(hu)

W(u)

u
dK(1)(u) + oP

(
(nh)−1/2).

Together with decomposition (4.7), (4.9), (4.10) and (4.12), we obtain the assertion
of the lemma for q

(1)
n,h. The argument for q

(2)
n,h runs similarly. �

THEOREM 4.1 (Asymptotic normality). Let X1, . . . ,Xn be a sample from F

with F satisfying (CP1)–(CP3). Let K be a kernel satisfying conditions
(CK1)–(CK4) and let γ̂ K

n,h be defined as in (1.2). Then, for any α > 1/2 and

h = hn with h ↓ 0 and (nh)−α logn = O((nh)−1/2) as n → ∞,
√

nh(γ̂ K
n,h − γh)

D→N (0, σ 2
K),

where γh is defined in (4.1) and

σ 2
K =

∫ 1

0

(
a0K̃(u) + a1K̃

(2)(u) − a2K̃
(1)(u)

)2
du,

with

K̃(u) =
∫ 1

u
x−1 d

(
xK(x)

)
, u ∈ (0,1],

K̃(i)(u) =
∫ 1

u
x−1−(γ∧0) dK(i)(x), u ∈ (0,1],

and

a0 = γ ∨ 0,

a1 = 1
/∫ 1

0
x−1−(γ∧0)K(1)(x) dx,

a2 = (
1 + (γ ∧ 0)

)
a1.
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PROOF. First, note that by partial integration and application of (4.8), we have,
for i = 1,2,

h1−αq
(i)
h =

∫ 1

0

φ(hu)

u
K(i)(u) du.

Note that, from the conditions on F , it follows that, in the case γ �= 0, we have

sup
0<u<1

∣∣∣∣φ(hu)

φ(h)
− u−γ̄

∣∣∣∣ → 0(4.15)

as h ↓ 0, where γ̄ = γ ∧ 0. This implies that∣∣∣∣ ∫ 1

0

(
φ(hu)

φ(h)
− u−γ̄

)
K(i)(u)

u
du

∣∣∣∣ = o(1).(4.16)

In the case γ = 0, the function φ is slowly varying. This means we can apply the
following inequality, taken from the proof of the proposition in the Appendix of
de Haan and Pereira (1999): for each ε, ε1 > 0, there exists an h0 such that, for all
h ≤ h0 and all hu ≤ h0,∣∣∣∣φ(hu)

φ(h)
− 1

∣∣∣∣ ≤ εeε1| logu| = εu−ε1,(4.17)

where in the last equality we used that u ∈ (0,1). This implies that (4.16) also
holds in the case γ = 0. Hence, for all γ ∈ R, we have, for i = 1,2,

h1−αq
(i)
h = φ(h)

[∫ 1

0
u−1−γ̄ K(i)(u) du + o(1)

]
.(4.18)

Since this is O(1), we have from Lemma 4.1 that

q̂
(2)
n,h

q̂
(1)
n,h

= q
(2)
h

q
(1)
h

+ (nh)−1/2A
(2)
n

h1−αq
(1)
h

− (nh)−1/2A
(1)
n h1−αq

(2)
h

(h1−αq
(1)
h )2

+ oP

(
(nh)−1/2),(4.19)

where, for i = 1,2,

A(i)
n =

∫ 1

0
φ(hu)

W(u)

u
dK(i)(u).(4.20)

Because γ̂
(pos)
n,h − γ

(pos)
h is a special case of q̂

(1)
n,h − q

(1)
h for α = 1, another

consequence of Lemma 4.1 is that

√
nh

(
γ̂

(pos)
n,h − γ

(pos)
h

) = (γ ∨ 0)

∫ 1

0

W(u)

u
d
(
uK(u)

) + oP (1)

= −a0

∫ 1

0
W(u)dK̃(u) + oP (1).
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We find that

√
nh(γ̂ K

n,h − γh) = √
nh

(
γ̂

(pos)
n,h − γ

(pos)
h

) + √
nh

(
q̂

(2)
n,h

q̂
(1)
n,h

− q
(2)
h

q
(1)
h

)

= −a0

∫ 1

0
W(u)dK̃(u) + A

(2)
n

h1−αq
(1)
h

− A
(1)
n h1−αq

(2)
h

(h1−αq
(1)
h )2

+ oP (1).

To deal with the A
(i)
n , i = 1,2, we again make use of (4.15) and (4.17). Together

with E |W(u)| ≤ √
EW(u)2 = √

u, Markov’s inequality, the conditions on K and
the fact that α > 1/2, this implies that, for γ ∈ R, we have, for i = 1,2,∣∣∣∣ ∫ 1

0

(
φ(hu)

φ(h)
− uγ̄

)
W(u)

u
dK(i)(u)

∣∣∣∣ = oP (1).

Hence, for all γ ∈ R, we have, for i = 1,2,

A(i)
n = φ(h)

[∫ 1

0
u−1−γ̄ W(u) dK(i)(u) + oP (1)

]
.(4.21)

By using (4.18) and (4.21), it follows that, for h ↓ 0,

A
(2)
n

h1−αq
(1)
h

=
∫ 1

0 u−1−γ̄ W(u) dK(2)(u)∫ 1
0 u−1−γ̄ K(1)(u) du

+ oP (1)

= −a1

∫ 1

0
W(u)dK̃(2)(u) + oP (1)

and

A
(1)
n h1−αq

(2)
h

(h1−αq
(1)
h )2

=
∫ 1

0 u−1−γ̄ W(u) dK(1)(u)∫ 1
0 u−1−γ̄ K(1)(u) du

∫ 1
0 u−1−γ̄ K(2)(u) du∫ 1
0 u−1−γ̄ K(1)(u) du

+ oP (1)

= a2

∫ 1

0
W(u)dK̃(1)(u) + oP (1),

because

a2 = a2
1

∫ 1

0
u−1−γ̄ K(2)(u) du = (

1 + (γ ∧ 0)
)
a1.

Hence, by integration by parts,

√
nh(γ̂ K

n,h − γh)
D→

∫ 1

0

[
a0K̃(u) + a1K̃

(2)(u) − a2K̃
(1)(u)

]
dW(u).(4.22)

The assertion of the theorem follows. �

The asymptotic variance depends on γ and the choice of the kernel K . We
tried the following three different kernels: the biweight K(x) = 15

8 (1 − x2)2,
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FIG. 1. Asymptotic variances as a function of γ for three different kernels.

the triweight K(x) = 35
16 (1 − x2)3 and the quadweight K(x) = 315

128(1 − x2)4.
The asymptotic variances of the corresponding estimators as a function of γ are
displayed in Figure 1. It can be seen that one can reduce the variance for γ > 0
by taking higher powers of (1 − x2), but then the variance for γ < 0 increases.
It seems that, among the above three estimators, the one constructed with the
biweight kernel K(x) = 15

8 (1 − x2)2 has the best overall performance.

5. Exploring the bias. The formulation of Theorem 4.1 implies that γ̂ K
n,h

might have asymptotic bias of the form
√

nh(γh − γ ). In Dekkers and de Haan
(1993), conditions are stated that cover all possible second-order behavior of
quantile functions corresponding to distribution functions that are in the domain of
attraction of an extreme value distribution. Under these additional conditions, we
will derive asymptotic expressions for the bias. The conditions can be formulated
in the following way:

(RV1) In the case γ > 0, let U1(s) = log Q(1 − s) + γ log s − log c. Suppose
that either U1 or −U1 eventually remains positive, as s ↓ 0, and there exist
ρ > 0 and c > 0 such that, for all x > 0,

lim
s↓0

U1(sx)

U1(s)
= xγρ.(5.1)

(RV2) In the case γ < 0, let U2(s) = sγ (log Q(1) − logQ(1 − s)) − c/Q(1).
Suppose that either U2 or −U2 eventually remains positive, as s ↓ 0, and
there exist ρ > 0 and c > 0 such that, for all x > 0,

lim
s↓0

U2(sx)

U2(s)
= x−γρ.(5.2)
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Note that condition (RV1) states that either U1 or −U1 is regularly varying
at 0 with index γρ, whereas condition (RV2) states that either U2 or −U2 is
regularly varying at 0 with index −γρ. The generalized Pareto distribution satisfies
conditions (RV1) and (RV2) for suitable choices of the parameters, and similarly
this holds for the generalized extreme value distribution and the model considered
in Hall and Welsh (1984). Other examples are the Cauchy distribution, which
satisfies (RV1), and the uniform distribution, which satisfies (RV2).

The second set of conditions concerns the second-order �-varying behavior of
the quantile function.

(PV1) In the case γ > 0, suppose there exists a positive function b1(·) such that,
for all x > 0,

lim
s↓0

V1(sx) − V1(s)

a1(s)
= − logx,(5.3)

where V1(s) = ±(log Q(1 − s)+ γ log s) and a1(s) = s−γ b1(s)/Q(1 − s).
(PV2) In the case γ = 0, suppose there exist positive functions b2(·) and b3(·),

with b2(s) → 0, as s ↓ 0, such that for all x > 0,

lim
s↓0

V2(sx) − V2(s) + b2(s) logx

b3(s)
= −(log x)2

2
,

where V2(s) = logQ(1 − s).
(PV3) In the case γ < 0, suppose there exists a positive function b4(·) such that

for all x > 0,

lim
s↓0

V3(sx) − V3(s)

a3(s)
= − logx,(5.4)

where V3(s) = ±sγ (logQ(1) − logQ(1 − s)) and a3(s) = b4(s)/Q(1).

Note that condition (PV1) states that either logQ(1 − s)+ γ log s or −(logQ(1 −
s) + γ log s) is �-varying at 0 with auxiliary function s−γ b1(s)/Q(1 − s) and
that condition (PV3) states either sγ (logQ(1)− log Q(1 − s)) or −sγ (log Q(1)−
logQ(1 − s)) is �-varying at 0 with auxiliary function b4(s)/Q(1). The
generalized Pareto distribution and the generalized extreme value distribution, both
with γ = 0, are examples that satisfy condition (PV2).

The following lemmas are analogous to Lemma 3.1 and will be needed to apply
dominated convergence to integrals such as

∫
Ui(su)/Ui(s) dK(j)(u) as s ↓ 0 for

i = 1,2 and j = 1,2.

LEMMA 5.1. Assume that conditions (RV1) and (RV2) hold. Then, for any
ε > 0, there exists s0 > 0 such that for all 0 < s < s0 and 0 < y < 1, for γ > 0,

(1 − ε)yγρ+ε <
U1(sy)

U1(s)
< (1 + ε)yγρ−ε
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and, for γ < 0,

(1 − ε)y−γρ+ε <
U2(sy)

U2(s)
< (1 + ε)y−γρ−ε,

where U1 and U2 are defined in conditions (RV1) and (RV2).

PROOF. The inequalities are the well-known inequalities of regularly varying
functions [see, e.g., Geluk and de Haan (1987)]. �

Similar inequalities can be derived in the case of second-order �-variation.
They are stated in the next lemma, which is a reformulation of Lemma 3.5 in
Dekkers, Einmahl and de Haan (1989) in terms of the quantile function.

LEMMA 5.2. In the case γ > 0, assume that (5.3) holds for V1. Then, for any
ε > 0, there exists s0 > 0 such that for all 0 < s < s0 and 0 < y < 1,

(1 − ε)
1 − yε

ε
− ε <

V1(sy) − V1(y)

a1(s)
< (1 + ε)

y−ε − 1

ε
+ ε.

In the case γ = 0, for any ε > 0, there exists s0 > 0 such that for all 0 < s < s0
and 0 < y < 1,

(1 − ε)2yε(logy)2

2
+ 2ε log y − ε <

V2(sy) − V2(s) + b2(s) logy

b3(s)

<
(1 + ε)2y−ε(logy)2

2
− 2ε logy + ε.

In the case γ < 0, assume that (5.4) holds for V3. Then, for any ε > 0, there exists
s0 > 0 such that for all 0 < s < s0 and 0 < y < 1,

(1 − ε)
1 − yε

ε
− ε <

V3(sy) − V3(s)

a3(s)
< (1 + ε)

y−ε − 1

ε
+ ε.

PROOF. In the case γ �= 0, the inequalities are just the well-known inequalities
for �-varying functions [see, e.g., Geluk and de Haan (1987), page 27]. In the
case γ = 0, the inequalities follow using Omey and Willekens (1987) to obtain
an asymptotic expression for b2(·) and applying the inequalities for �-varying
functions to that expression [see the proof of Lemma 3.5 in Dekkers, Einmahl and
de Haan (1989)]. �

Defining

λst =
∫ 1

0
us(log u)tK(u) du, s, t ≥ 0,(5.5)

the results concerning the asymptotic bias can be formulated in the following way.
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THEOREM 5.1. Let γh be given by (4.1) for some α > 0. Assume that
K satisfies conditions (CK1)–(CK4). Suppose that Q satisfies conditions (RV1)
and (RV2) and that h = hn is such that hn ↓ 0 as n → ∞. Then, as n → ∞, in the
case γ > 0,

γh − γ = µ1U1(h) + µ2U1(h) + o(U1(h))

µ3 + µ4U1(h) + o(U1(h))
+ o

(
U1(h)

)
,

and, in the case γ < 0,

γh − γ = µ5h
−γ U2(h) + µ6h

−γ + µ7U2(h) + o(U2(h))

µ8 + µ9U2(h) + o(U2(h))
+ o

(
h−γ U2(h)

)
,

where the functions U1 and U2 are defined in (RV1) and (RV2) where, using the
notation for the coefficients λst introduced in (5.5),

µ1 = −γρλγρ,0, µ5 = −γ (1 + ρ)λ−γ (1+ρ),0,

µ2 = γρ2λγρ+α−1,0, µ6 = −γ cλ−γ,0/Q(1),

µ3 = λα−1,0, µ7 = γρ(1 + ρ)λα−γ (1+ρ)−1,0,

µ4 = −ρλγρ+α−1,0, µ8 = cλα−γ−1,0/Q(1),

µ9 = (1 + ρ)λα−γ (1+ρ)−1,0.

Here c and ρ are defined as in (RV1) and (RV2).

PROOF. It is sufficient to consider only the case where U1 eventually remains
positive and satisfies (5.1). For i = 1,2, consider

h1−αq
(i)
h =

∫ 1

0
logQ(1 − hu)dK(i)(u)

= U1(h)

∫ 1

0

U1(hu)

U1(h)
dK(i)(u) −

∫ 1

0

(
γ log(hu) − log c

)
dK(i)(u),

where the function U(1) is defined in condition (RV1). For any α > 0 and i = 1,2,
we have that

K(i)(0) = K(i)(1) = 0,(5.6)

and, for any s, t ≥ 0 and i = 1,2, we have that∫ 1

0
us(logu)t dK(i)(u)

= −sλs+α−1,t − tλs+α−1,t−1(5.7)

+ (i − 1)
{
s2λs+α−1,t + 2stλs+α−1,t−1 + t (t − 1)λs+α−1,t−2

}
.

For i = 1,2, write Li(u) = d(K(i)(u))/du. From condition (CK4), it follows that
Li(u) = L+

i (u) − L−
i (u), where L±

i are positive and bounded. Hence, similar
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to the proof of Lemma 3.3, using the inequalities of Lemma 5.1 and dominated
convergence, condition (RV1) yields that∫ 1

0

U1(hu)

U1(h)
dK(i)(u) →

∫ 1

0
uγρ dK(i)(u) for i = 1,2.(5.8)

From (5.6)–(5.8), it follows that, for i = 1,2,

h1−αq
(i)
h = γ λα−1,0 + U1(h)

∫ 1

0
uγρ dK(i)(u) + o

(
U1(h)

)
.

The integral on the right-hand side can be evaluated by means of (5.7). Note that
γ

(pos)
h equals q

(1)
h with α = 1. Putting things together proves the theorem for the

case γ > 0.
For the case γ < 0, it is sufficient to consider only the case where U2 eventually

remains positive and satisfies (5.2). Similarly, using (RV2) and (5.6), for i = 1,2
we can write

h1−αq
(i)
h = −h−γ U2(h)

∫ 1

0
u−γ U2(hu)

U2(h)
dK(i)(u) − h−γ c

Q(1)

∫ 1

0
u−γ dK(i)(u)

= −h−γ U2(h)

∫ 1

0
u−γ (1+ρ) dK(i)(u) − h−γ c

Q(1)

∫ 1

0
u−γ dK(i)(u)

+ o
(
h−γ U2(h)

)
,

where the function U2 is defined in condition (RV2) and where we have
used the inequalities of Lemma 5.1, together with dominated convergence and
condition (RV2). Again, the integrals on the right-hand side can be evaluated
with (5.7). Hence, by putting things together this proves the theorem for the case
γ < 0. �

REMARK 5.1. According to condition (RV1), |U1| is regularly varying with
index γρ > 0, so that, by Proposition 1.7.1 in Geluk and de Haan (1987), it follows
that U1(s) → 0 and, similarly, U2(s) → 0. This means that, for the case γ > 0, one
can write

γh − γ = c1U1(h) + o
(
U1(h)

)
,

where c1 = (µ1µ3 + µ2)/µ3, and for the case γ < 0,

γh − γ = c2U2(h) + µ6h
−γ + O

(
h−γ U2(h)

) + o
(
U2(h)

)
,

where c2 = µ7/µ8.

COROLLARY 5.1. Assume the conditions of Theorem 4.1 and suppose that
conditions (RV1) and (RV2) are satisfied. Suppose that h = hn is such that, as
n → ∞, h ↓ 0 and:
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(i) in the case γ > 0, nhU1(h)2 → 0;
(ii) in the case γ < 0, nhU2(h)2 → 0 and nh1−2γ → 0.

Then, as n → ∞,
√

nh(γ̂ K
n,h − γ )

D→N (0, σ 2
K),

with σ 2
K as defined in Theorem 4.1.

In the derivation of the asymptotic expansion of the bias under condition (PV1),
we have to distinguish between the case that either V1(s) = logQ(1 − s) + log s

or V1(s) = −(logQ(1 − s) + log s) satisfies (5.3), and similarly for asymptotic
expansion of the bias under condition (PV3).

THEOREM 5.2. Let γh be given by (4.1) for some α > 0. Assume that K sat-
isfies conditions (CK1) and (CK2) and that Q satisfies conditions (PV1)–(PV3).
Suppose that h = hn is such that, when n → ∞, h ↓ 0. Then, in the case γ > 0,

γh − γ = ±a1(h) + o(a1(h))

ν1(γ ± a1(h)) + o(a1(h))
+ o

(
a1(h)

)
,

where one should read a1 (or −a1) whenever V1(s) = logQ(1 − s) + log s [or
V1(s) = −(log Q(1 − s) + log s)] satisfies (5.3). In the case γ = 0,

γh = b2(h) + ν2b3(h) + ν3b3(h) + o(b3(h))

ν4b3(h) + ν1b2(h) + o(b3(h))
+ o

(
b3(h)

)
.

In the case γ < 0,

γh − γ = ±ν5h
−γ a3(h) + ν6h

−γ V3(h)

+ ±ν7a3(h) + o(a3(h))

±ν8a3(h) + ν7V3(h) + o(a3(h))
+ o

(
h−γ a3(h)

)
,

where one should read a3 (or −a3) whenever V3(s) = sγ (log Q(1) −
logQ(1 − s)) [or V3(s) = −sγ (log Q(1)− logQ(1 − s))] satisfies (5.4). The func-
tions a1, b2, b3, a3 and V3 are defined in (PV1)–(PV3) and, using the notation for
the coefficients λst introduced in (5.5),

ν1 = λα−1,0, ν5 = γ λ−γ,1 − λ−γ,0,

ν2 = λ0,1, ν6 = −γ λ−γ,0,

ν3 = −λα−1,0, ν7 = −γ λα−γ−1,0,

ν4 = λα−1,1, ν8 = γ λα−γ−1,1 − λα−γ−1,0.

PROOF. For the case γ > 0, we only consider the case where V1(s) =
logQ(1 − s) + log s satisfies (5.3). The case V1(s) = −(logQ(1 − s) + log s)
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can be handled by a similar argument. The proof is similar to that of Theorem 5.1.
Using (5.6) and (5.7), we have, for i = 1,2,

h1−αq
(i)
h = a1(h)

∫ 1

0

V1(hu) − V1(h)

a1(h)
dK(i)(u) + γ λα−1,0,

where the function a1 is defined in condition (PV1). Again, writing d(K(i)(u))/

du = Li(u) = L+
i (u) − L−

i (u), with L±
i positive and bounded, we use similar

arguments as in the proofs of Lemma 3.3 and Theorem 5.1. Using the inequalities
of Lemma 5.2 and dominated convergence, from condition (PV1) it follows that,
for i = 1,2,∫ 1

0

V1(hu) − V1(h)

a1(h)
dK(i)(u) →

∫ 1

0
(− log u)dK(i)(u) = λα−1,0

as h ↓ 0, where we again used (5.7). Combining things proves the theorem for
γ > 0.

In the case γ = 0, using (5.6), for i = 1,2 we can write

h1−αq
(i)
h = b3(h)

∫ 1

0

V2(hu) − V2(h) + b2(h) logu

b3(h)
dK(i)(u)

− b2(h)

∫ 1

0
log udK(i)(u),

where the functions V2, b2 and b3 are defined in condition (PV2). By a similar
argument, using the inequalities of Lemma 5.2 and dominated convergence, we
have from condition (PV2) that, for i = 1,2,∫ 1

0

V2(hu) − V2(h) + b2(h) logu

b3(h)
dK(i)(u) → −1

2

∫ 1

0
(log u)2 dK(i)(u).

By means of (5.7), we find that, for i = 1,2,

h1−αq
(i)
h = b3(h)

{
λα−1,1 − (i − 1)λα−1,0

} + b2(h)λα−1,0 + o
(
b3(h)

)
.

Putting things together proves the theorem for γ = 0.
For the case γ < 0, we only consider the case where V3(s) = sγ (logQ(1) −

log Q(1 − s)) satisfies (5.4). The case V3(s) = −sγ (log Q(1) − logQ(1 − s)) can
be handled by a similar argument. Using (5.6), for i = 1,2, write

h1−αq
(i)
h = −h−γ a3(h)

∫ 1

0
u−γ V3(hu) − V3(h)

a3(h)
dK(i)(u)

− h−γ V3(h)

∫ 1

0
u−γ dK(i)(u),

where the function a3 is defined in condition (PV3). As before, using the inequal-
ities of Lemma 5.2 together with dominated convergence, from condition (PV3)
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we obtain∫ 1

0
u−γ V3(hu) − V3(h)

a3(h)
dK(i)(u) → −

∫ 1

0
u−γ logudK(i)(u)

as h ↓ 0. If we evaluate the integrals by means of (5.7), we find that, for i = 1,2,

h1−αq
(i)
h = h−γ a3(h)

{
γ λα−γ−1,1 − λα−γ−1,0

+ (i − 1)(γ 2λα−γ−1,1 − 2γ λα−γ−1,0)
}

− h−γ V3(h)
{
γ λα−γ−1,0 + (i − 1)γ 2λα−γ−1,0

} + o
(
h−γ a3(h)

)
.

Putting things together proves the theorem for γ < 0. �

COROLLARY 5.2. Assume the conditions of Theorem 5.2 and suppose that
(PV1)–(PV3) are satisfied. Suppose that h = hn is such that, as n → ∞, h ↓ 0 and
in the case γ > 0,

nha1(h)2 → 0,

in the case γ = 0,

nhb2(h)2 → 0 and nh

(
b3(h)

b2(h)

)2

→ 0,

and in the case γ < 0,

nh1−2γ V3(h)2 → 0 and nh

(
a3(h)

V3(h)

)2

→ 0.

Then
√

nh(γh − γ ) → 0 as n → ∞.

Note that the condition for the case γ > 0 and the second condition for the
case γ < 0 resemble the conditions on the parameter k in the case of the moment
estimator as defined in Dekkers, Einmahl and de Haan (1989).

6. Comparison with other estimators. To illustrate the finite-sample behav-
ior of our estimator, we present some results from a small simulation study. We will
compare our estimator to the moment estimator of Dekkers, Einmahl and de Haan
(1989), the (quasi) MLE of Smith (1987) and the more recent proposals of Beirlant,
Vynckier and Teugels (1996) and Drees (1995). For easy reference, we restate their
definitions. The moment estimator is given by

γ̂ M
n,k = M

(1)
n,k + 1 − 1

2

(
1 − (M

(1)
n,k)

2

M
(2)
n,k

)−1

,
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where, for r = 1,2,

M
(r)
n,k = 1

k

k∑
i=1

(
log X(n−i+1) − log X(n−k)

)r
.

Note that k is the number of largest order statistics from the sample used to
calculate the moment estimator. The (quasi) maximum likelihood estimator γ̂ ML

n,k

is defined using the excesses Yi = Xj − un, where Xj is the ith exceedance over
the threshold un tending the upper endpoint of the distribution that generated the
sample. Assuming that these excesses are distributed as a sample of a generalized
Pareto distribution with parameters γ and σ(un), the estimator is defined by
maximizing the likelihood of Y1, . . . , YN , where N is the number of excesses over
the threshold un. In our simulations, we took un = X(n−k). Note that, again, k is
the number of upper order statistics used to calculate the estimator. The adjusted
Hill estimator from Beirlant, Vynckier and Teugels (1996) is defined as

γ̂ AH
n,h = 1

k

k∑
i=1

log UHi,k − log UHk+1,n,

where

UHl,n = X(n−l)

(
1

l

l∑
j=1

logX(n−j+1) − log X(n−l)

)
.

For the multistage procedure that leads to the refined Pickands estimator γ̂ RP
n,h,

we refer to Drees (1995). For our kernel estimator, we took α = 0.6 (to ensure
asymptotic normality) and the biweight kernel K defined by K(x) = 15

8 (1 − x2)2

for 0 ≤ x ≤ 1.
We start by presenting a plot of the above methods used to estimate the extreme

value index of a real-life data set. The data concerned were obtained from Lobith,
the village where the first inhabitants of the Netherlands (the “Bataviers”) are
supposed to have entered on rafts along the Rhine River. They represent the peaks
in the water discharges at that particular place along the Rhine. During the period
1901–1991, the maximum water discharge was measured on a daily basis. These
maxima were plotted against time and only those maxima above a certain threshold
and at least a fortnight apart were recorded. Whenever several values appeared
above the threshold but within a fortnight of each other, the maximum of these
values was recorded. This resulted in a data set of 155 measurements. To be able
to compare the estimators, we will plot each estimator as a function of the fraction
of order statistics used to calculate the estimator. That is, we will use k = �nh�
and plot each estimator as a function of h ∈ (0,1). The plots are given in Figure 2.
All estimators have a kind of dip near 0.15. This is caused by a gap between the
largest order statistics and the other sample values. The refined Pickands estimator
γ̂ RP
n,k reduces the jumpy behavior of the original Pickands estimator, but is still
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FIG. 2. Estimates of the extreme value index for the Lobith data.

less stable than all other methods. One striking feature of the kernel estimator is
its smoothness: whereas the other estimators behave rather erratically as a function
of h, the kernel estimator behaves very smoothly. A major advantage of this feature
is that the exact choice of the bandwidth h to be used is not as crucial as the
exact choice of the k in the other estimators: increasing k by 1 can seriously
change the value of the estimator. Changing h by 1/n, however, does not change
the kernel estimator too much. Indeed, only an approximately optimal bandwidth
would produce an estimate almost as good as the estimate using the exact optimal
bandwidth.

We also compared the stability of the estimators as a function of h for a single
sample of size n = 100 from three distributions corresponding to γ negative,
zero and positive: a uniform distribution on the interval (2,5), the exponential
distribution with mean 1 and a distribution derived from the Hall model with
extreme value index γ = 1/3 [see, e.g., Hall and Welsh (1984)]. The Hall model
that we use corresponds to the distribution function

F(x) = 1 − 2

x3

(
1 − 1

2x3

)
, x ≥ 1.

The results are shown in Figure 3. First of all, each estimator is quite close to
the true value of the extreme value index, considering the small sample size. The
behavior of the estimators is similar to that in Figure 2.

Finally, we compared the simulated mean squared error of the γ̂ AH
n,k , γ̂ M

n,k

and γ̂ ML
n,k with our kernel estimator, for a sample of size n = 100 from the

same three distributions mentioned above. The results of 1000 samples of size
n = 100 are displayed in Figure 4. The kernel estimator and the adjusted Hill
estimator outperform the other estimators for γ < 0. For γ > 0, all estimators,
except the refined Pickands estimator, behave similarly. For γ = 0, the kernel
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FIG. 3. Estimates of γ for a sample of size n = 100.

FIG. 4. Simulated mean squared error for n = 100.
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estimator behaves similarly to γ̂ ML
n,k . Apart from γ̂ RP

n,k , all estimators reach the
similar minimum values for the mean squared error.

We conclude that the kernel estimator behaves more smoothly as a function of
the bandwidth than the moment-type estimators and quasi-maximum likelihood
estimator as a function of the fraction of order statistics and that its mean squared
error attains values of the same order as the mean squared error of the other
estimators.

7. Automatic bandwidth choice. One of the things that remains to be
discussed is the (automatic) choice of the bandwidth. This topic is the subject of
a manuscript in preparation. But because of the importance of this issue, we still
want to discuss the matter here.

A bootstrap-based approach to the choice of number of largest order statistics
in moment-type estimators is presented in, for example, Draisma, de Haan, Peng
and Pereira (1999) and Danielsson, de Haan, Peng and de Vries (2001). The
basic difficulty in a bootstrap-based approach is the fact that in the empirical
(nonparametric) bootstrap the bias is not adequately estimated in the evaluation
of the bootstrap mean squared error, unless one performs bootstrapping with
vanishing sample fractions. This fact has been clearly pointed out in, for example,
Hall (1990), where the idea of bootstrapping with vanishing sample fractions was
introduced.

Now, with our kernel-type estimators, we can follow a similar approach as in
Draisma, de Haan, Peng and Pereira (1999) and Danielsson, de Haan, Peng and
de Vries (2001). In these papers, the difference of two moment-type estimators is
used for dealing with the difficulty of estimating the bias. Instead, we can use two
estimators γ̂

K1
n,h and γ̂

K2
n,h based on two different kernels, say the biweight kernel

K1(u) = 15
8 (1 − u2)21[0,1](u),

and the triweight kernel

K2(u) = 35
16(1 − u2)31[0,1](u).

We first present the method, outlined in Draisma, de Haan, Peng and Pereira
[(1999, page 368], as it would apply to our kernel-type estimators. Let X1, . . . ,Xn

be a sample from a distribution for which we want to estimate the extreme value
index.

STEP 1. For a sample size n1 � n, select a bootstrap sample X∗
1 , . . . ,X∗

n1

from the original sample and compute the estimates (γ̂
K1
n1,h

)∗ and (γ̂
K2
n1,h

)∗ defined
as in (1.2), with the order statistics X(i) replaced by the order statistics X∗

(i) of the
bootstrap sample. Next, compute

δ∗
n1,h

= (
γ̂

K1
n1,h

)∗ − (
γ̂

K2
n1,h

)∗
.(7.1)
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STEP 2. Repeat this procedure r times independently, yielding a sequence
δ∗
n1,h,1, . . . , δ∗

n1,h,r . Then compute

M̂SE
∗(

δ∗
n1,h

) = 1

r

r∑
i=1

(
δ∗
n1,h,i

)2
,

which is an estimate of the bootstrap mean squared error of δ∗
n1,h

.

STEP 3. Compute

h∗(n1)
def= arg min

h

M̂SE
∗(

δ∗
n1,h

)
.(7.2)

In practice, one would compute M̂SE
∗
(δ∗

n1,h
) on a grid of values of hi , say, with

distance 0.01 between successive values (the exact distance might be chosen to be
dependent on the sample size n1), and then take for h∗(n1) the minimizer of the

values M̂SE
∗
(δ∗

n1,hi
).

STEP 4. Repeat steps 1 to 3 independently with n1 replaced by n2 = �n2
1/n�.

This yields a value h∗(n2), defined by

h∗(n2)
def= arg min

h

M̂SE
∗(

δ∗
n2,h

)
.

STEP 5. Estimate the optimal bandwidth ĥn,opt by

ĥn,opt = c
(
h∗(n1), h

∗(n2)
)h∗(n1)

2

h∗(n2)
,(7.3)

where c(h1, h2) is a function of h1 and h2, depending on the kernels K1 and K2
and the sample sizes n1 and n2.

Next, we discuss why this procedure would “work” for our kernel-type
estimator, for example, under the second-order condition used in Danielsson,
de Haan, Peng and de Vries (2001). Note that this is our (RV1) condition of
Section 5. If n1 = O(n1−ε), for some ε ∈ (0,1), then, using Theorem 4.1, we
have

γ̂
K1
n1,h

− γ̂
K2
n1,h

= γ
K1
h − γ

K2
h + Dn1,h√

n1h
,(7.4)

where Dn1,h has a limiting normal distribution with mean 0, and where, according
to (4.1)–(4.3), for i = 1,2,

γ
Ki

h =
∫ 1

0
log Q(1 − hu)d

(
uKi(u)

) +
∫ 1

0 logQ(1 − hu)dK
(2)
i (u)∫ 1

0 logQ(1 − hu)dK
(1)
i (u)

− 1.
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This means that the random variable δ∗
n1,h

, defined by (7.1), has an expansion of
the form

δ∗
n1,h

= γ̂
K1
n,h − γ̂

K2
n,h + D∗

n1,h√
n1h

+ Op

(
1√
nh

)
,(7.5)

where the conditional distribution of D∗
n1,h

, given the original sample X1, . . . ,Xn,

is again asymptotically normal as n1 → ∞ under the conditions on n1 and h given
in Theorem 4.1 (with n replaced by n1).

Now, as an example, consider the model in Hall and Welsh (1984) with γ > 0.
This corresponds to a function φ, as defined in (2.1), with expansion

φ(s) = γ + csτ + o(sτ ), s ↓ 0,(7.6)

for some τ > 0. Then we get

γ
K1
h − γ

K2
h = cK1,K2h

τ + o(hτ ),(7.7)

where cK1,K2 only depends on the kernels K1 and K2, the constant c in (7.6) and
possibly the parameters γ and τ . So we get the following expansion for δ∗

n1,h

in (7.5):

δ∗
n1,h

= cK1,K2h
τ + D∗

n1,h√
n1h

+ o(hτ ) + Op

(
1/

√
nh

)
(7.8)

= cK1,K2h
τ + D∗

n1,h√
n1h

+ o(hτ ) + op

(
1/

√
n1h

)
,

using n1/n → 0 in the last step. Comparing (7.8) with (7.4) and (7.7) means
that the bootstrap mean squared error of δ∗

n1,h
has the same asymptotic behavior

as the real mean squared error MSE(γ̂
K1
n1,h

− γ̂
K2
n1,h

), implying that the minimizer
h∗(n1), as defined in (7.2), will (in probability) be asymptotically equivalent to the
minimizer h

K1−K2
n1,opt of MSE(γ̂

K1
n1,h

− γ̂
K2
n1,h

).
To illustrate the procedure for finding the optimal h in the model (7.6), we

present only the computations for the positive part γ̂
(pos)
n,h of our estimator which

is the CDM estimator proposed in Csörgő, Deheuvels and Mason (1985). The
procedure for the full estimator is similar, but just involves more constants. It turns
out that in the model (7.6) we only have to perform the bootstrap samples of size
n1 and we do not need to perform the second experiment with the smaller sample
size n2 = �n2

1/n�.
If we write τ = γρ, then, for the model (7.6), similar to the expressions obtained

in Theorems 4.1 and 5.1, the asymptotic bias of γ̂
(pos)
n,h is given by µ1(τ )chτ , where

µ1(τ ) = −τλτ,0 = −τ

∫ 1

0
uτK(u)du,
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and the limiting variance of γ̂
(pos)
n,h is given by

σ 2
K̃

= γ 2
∫ 1

0
K̃(u)2 du,

using the notation introduced in Theorems 4.1 and 5.1. Minimizing the expression

MSE(γ̂ K
n,h) = σ 2

K̃

nh
+ µ1(τ )2c2h2τ

as a function of h yields the theoretically (asymptotically) optimal h for sample
size n,

hK
n,opt =

{
σ 2

K̃

2c2τ µ1(τ )2n

}1/(1+2τ)

.(7.9)

For the biweight kernel K1, we get σ 2
K̃1

= 10γ 2/7 and µ1(τ ) = −15τ/((1+τ )(3+
τ )(5 + τ )), so that (7.9) becomes

h
K1
n,opt =

{
γ 2(1 + τ )2(3 + τ )2(5 + τ )2

315c2τ 3n

}1/(1+2τ)

.(7.10)

Now, if we do the same computation for the difference of two kernels K1 and K2,

minimizing MSE(γ̂
K1
n1,h

− γ̂
K2
n1,h

) as a function of h, we get, for the asymptotically

optimal h
K1−K2
n,opt ,

h
K1−K2
n,opt =

{ σ 2
K̃1−K̃2

2c2τµ1(τ )2n

}1/(1+2τ)

,

where

σ 2
K̃1−K̃2

= γ 2
∫ 1

0

{
K̃1(u) − K̃2(u)

}2
du

and

µ1(τ ) = −τ

∫ 1

0
uτ {K1(u) − K2(u)}du.

For the biweight kernel K1 and the triweight kernel K2, we get σ 2
K̃1−K̃2

=
30γ 2/1001 and µ1(τ ) = −15τ 2/((1 + τ )(3 + τ )(5 + τ )(7 + τ )), implying

h
K1−K2
n,opt =

{
γ 2(1 + τ )2(3 + τ )2(5 + τ )2(7 + τ )2

15015c2τ 5n

}1/(1+2τ)

.(7.11)
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Combining (7.10) and (7.11) yields

h
K1
n,opt =

{
143τ 2

3(7 + τ )2

}1/(1+2τ)

h
K1−K2
n,opt .(7.12)

Applying (7.11) to sample sizes n and n1 gives

h
K1−K2
n,opt =

(
n1

n

)1/(1+2τ)

h
K1−K2
n1,opt .(7.13)

Combining this with (7.12), we find

h
K1
n,opt =

{
143n1τ

2

3n(7 + τ )2

}1/(1+2τ)

h
K1−K2
n1,opt .(7.14)

Hence, if we have a bootstrap estimate of h
K1−K2
n1,opt , the last step is the estimation

of τ . Draisma, de Haan, Peng and Pereira (1999) propose the following estimator
(here interpreted for our situation):

τ̂ = − logn1 + logh∗(n1)

2 logh∗(n1)
,(7.15)

where h∗(n1) is the bootstrap estimate of h
K1−K2
n1,opt , as defined in (7.2). Since,

indeed,

logn1 + log h∗(n1)

−2 logh∗(n1)
= logn1 − {1 + 2τ }−1 log n1 + Op(1)

2{1 + 2τ }−1 logn1 + Op(1)

= τ + Op

(
1

logn1

)
,

this is also a consistent estimate of τ in our situation.
According to (7.14), in the model (7.6) we only need a bootstrap estimate for

h
K1−K2
n1,opt . Nevertheless, if we apply (7.11) to sample sizes n1 and n2 = n2

1/n, similar
to (7.13) we find that(

n1

n

)1/(1+2τ)

=
(

n2

n1

)1/(1+2τ)

= h
K1−K2
n1,opt

h
K1−K2
n2,opt

,

so that from (7.14) we find

h
K1
n,opt =

{
143τ 2

3(7 + τ )2

}1/(1+2τ) {hK1−K2
n1,opt }2

h
K1−K2
n2,opt

.
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Plugging in (7.15) results in the following expression for the bootstrap estimate

for h
K1
n,opt: {

143{logn1 + log h∗(n1)}2

3{logn1 − 13 logh∗(n1)}2

}− logh∗(n1)/ logn1 (h∗(n1))
2

h∗(n2)
,(7.16)

which is of the form (7.3) and is similar to the expressions in Draisma, de Haan,
Peng and Pereira (1999) and Danielsson, de Haan, Peng and de Vries (2001).

Note, however, that if we assume the model (7.6), we do not have to do the
second bootstrap experiment with bootstrap sample size n2, and that, using (7.14),
we can estimate the asymptotically optimal bandwidth by

{
143n1{logn1 + log h∗(n1)}2

3n{logn1 − 13 logh∗(n1)}2

}− logh∗(n1)/ logn1

h∗(n1),(7.17)

only involving the bandwidth h∗(n1).
Our simulation experiments showed that the bootstrap method worked rather

well for determining the asymptotically optimal bandwidth h
K1−K2
n1,opt and that the

bottleneck of the whole procedure is the estimation of τ (which is also the case for
the approach using moment estimators, although our impression is that there the
bootstrap method seems to work somewhat less well, possibly as a result of the
nonsmooth dependence on the sample fraction). The estimator (7.15) may have a
large bias, because the estimate can be rather far from its target value, even when
evaluated at the theoretically optimal bandwidth. Moreover, it only converges at
logarithmic speed.

We therefore propose another estimate, which is more in line with the methods
of the present paper. An estimate of the parameter τ can be based on the following
relation which holds, at least in a (Schwarz) distributional sense, in the model (7.6):

τ = 1 + lim
s↓0

s1+αφ′′(s)
sαφ′(s)

, α ≥ 0.(7.18)

Here we introduce only the differentiability of φ for the motivation of our
estimator; the proof of its consistency does not require the differentiability of φ,
just as in our estimate of γ . So we can estimate τ in a similar way as we estimated
the possibly negative γ in the general case, that is, by a ratio of kernel estimators.
The proposed estimator for τ is

τ̂n,h = 1 + p̂
(2)
n,h

p̂
(1)
n,h

,(7.19)
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where p̂
(i)
n,h, i = 1,2, are defined for some α > 0 by

p̂
(1)
n,h =

∫ h

0
u

d

du

(
uαKh(u)

)
d logQn(1 − u)

(7.20)

= −
n−1∑
i=1

[
u

d

du

(
uαKh(u)

)]
u=i/n

{
log X(n−i+1) − logX(n−i)

}
and

p̂
(2)
n,h = −

∫ h

0
u

d2

du2

(
u1+αKh(u)

)
d logQn(1 − u)

(7.21)

=
n−1∑
i=1

[
u

d2

du2

(
u1+αKh(u)

)]
u=i/n

{
logX(n−i+1) − logX(n−i)

}
,

respectively. Note the similarity to the definitions of q̂
(1)
n,h and q̂

(2)
n,h by (2.6) and

(2.8), but also note that we have to take one extra derivative to get hold of the
second-order parameter τ . As in the definition of q̂

(i)
n,h, we have some freedom in

the choice of the parameter α in these expressions.
Estimator (7.19) will be asymptotically normal and will have polynomial rate

of convergence under conditions that are similar to conditions proposed in the
recent literature on moment estimators of τ in, for example, Gomes, de Haan and
Peng (2003) and Fraga Alves, de Haan and Lin (2003) (our τ is −ρ in their
notation), in contrast with the estimator (7.15), which only has a logarithmic
speed of convergence. Simulations show that the difference in smoothness of
the dependence on the bandwidth of the estimator (7.19) with respect to the
dependence on the sample fraction of the moment estimators, proposed in these
papers, is even more striking than the corresponding difference in smoothness
in the estimation of γ between moment estimators and the kernel estimators,
discussed above. Since the estimator (7.19) in a sense deals with a third derivative
of the logarithm of the quantile function (although, as noted above, we do not need
to assume differentiability), it comes as no surprise that the optimal bandwidths
for τ̂n,h are larger than those for γ̂n,h. This is in accordance with the findings
reported in Gomes, de Haan and Peng (2003) and Fraga Alves, de Haan and Lin
(2003) for their moment estimators of τ .

As mentioned in the beginning of this section, a more detailed treatment of the
automatic bandwidth choice for the full kernel estimators, introduced in the present
paper, will be given in a sequel to the present paper. The research on automatic
selection of sample fractions for moment-type estimators is rather intensive at
present. We have followed the bootstrap approach for our kernel estimators, but
we should mention that for moment-type estimators other (more or less) automatic
methods have also been suggested [see, e.g., Drees and Kaufmann (1998) and
Matthys and Beirlant (2000)].
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