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PARAMETRIC RATES OF NONPARAMETRIC ESTIMATORS
AND PREDICTORS FOR CONTINUOUS TIME PROCESSES

By Denis Bosq
University of Paris 6

We show that local irregularity of observed sample paths provides
additional information which allows nonparametric estimators and predic-
tors for continuous time processes to reach parametric rates in mean
square as well as in a.s. uniform convergence. For example, we prove that
under suitable conditions the kernel density estimator f associated with
the observed sample path (X,, 0 < ¢ < T') satisfies

InT\'2
SuplfT(x)_f(x)|=0(1nkT(T) ) as.,k>1
xeR

where f denotes the unknown marginal density of the stationary process
(X,) and where In, denotes the kth iterated logarithm.

The proof uses a special Borel-Cantelli lemma for continuous time
processes together with a sharp large deviation inequality. Furthermore
the parametric rate obtained in (1) is preserved by using a suitable
sampling scheme.

1. Introduction. Let (X,, ¢t € S) be a family of R%valued random vari-
ables with a common unknown density f.

If (X,) is a discrete time process (S = Z), the problem of estimating f given
a sample X;,..., X, has been considered by many authors (see, e.g., [4], [7],
[9],[18], [21], [22], [23], [24], [25]). They have proved that, under some mixing
conditions, it is possible to construct a kernel estimator, say f,, which
achieves the same rates as in the i.i.d. case.

Thus, under classical regularity conditions concerning f, the mean
square error (MSE) of f, is O(n */“*%) and its supnorm rate is
o(In;, n(In n/n)?>/“*®) for all integers k, where In, denotes the kth iterated
logarithm, defined recursively by In, x = max(1,In,_; x), £ > 2, x > 0.

Now if (X,) is a continuous time process (S = R) observed over the time
interval [0, T'], the MSE of the corresponding kernel estimator turns out to be
O(T~*/4*9D) and its supnorm rate o(In, T(nT/T)***9), k > 1. For details
we refer to [7] (see also [1] and [12]).

However these rates can be sharpened provided that (X,, ¢t € R) should
satisfy a local irregularity condition which will be specified and dis-
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cussed below. In that case the MSE is O(1/T) and the supnorm rate is
o(ln, TAnT/T)"?), k > 1. In the following, these rates will be called para-
metric rates since they correspond to the rate of the MLE in classical
parametric continuous time models such as diffusion processes (see, e.g.,
[16]). It should be noticed that diffusion processes satisfy the local irregular-
ity condition considered in this paper (see Section 2).

In the following, we will show that parametric rates are achieved by
density estimators, regression estimators and nonparametric predictors.

The results are easily obtained for the MSE. On the contrary in the context
of an a.s. uniform convergence, proofs use a special Borel-Cantelli lemma for
continuous time processes together with a sharp exponential type inequality.

Finally we prove that a suitable sampling allows preserving parametric
rates. This paradoxical result is obviously theoretical and must be clarified in
a numerical context. Some comments about sampling appear at the end of
Section 7.

The first parametric rate was pointed out by Castellana and Leadbetter
[10] in 1986. They noticed that the variance of a density estimator is O(1/T')
for a real “locally irregular” process observed over the time interval [0, T'].

For other results of this kind, we refer to [5,6], [14], [15] and [11].
Kutoyants [14] has recently shown that, if (X,) is a diffusion process, the rate
O(1/T) is minimax and asymptotically efficient estimators can be con-
structed. Leblanc [15] has obtained parametric rates in L? norm for the
wavelets density estimator. Cheze [11] has obtained parametric rates for the
kernel regression estimator. As far as we know, there are no results of this
kind about almost sure uniform convergence until now.

The rest of the present paper is organized as follows. Section 2 contains
some assumptions and notation. The main mathematical tools are introduced
in Section 3. Sections 4, 5 and 6 are devoted, respectively, to density estima-
tion, regression estimation and prediction. Section 7 deals with sampling and
proofs are given in Section 8.

2. Notation and assumptions. Let Z, = (X,,Y,), t € R be a R? x R?-
valued measurable strictly stationary process defined on a probability space
(Q, ., P). Let M be a locally bounded Borelian real function, defined on R?,
and such that (w, t) = M(Y,(»)) belong to L*(P ® A;) for every positive T,
where A, denotes Lebesgue measure over [0, T'].

Let us assume that (Z,, Z,) has a density f,, , , for each strictly positive
u and consider the following functional parameters:

(2.1) ) = [ fafx,9)dy, xR

and

(2.2) o(x) = [ M(9)fr(x, ) dy, xeR
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We may use f and ¢ for defining a version of the regression function
E(M(Y,)|X, = ) by setting

e(x)/f(x), if f(x) >0,
(2:3) r(*) =\ EM(Y,), i f(x) =o.

We wish to estimate f and r given the data (Z,, 0 <t < T). For this
purpose we shall use a kernel K = K$9, where K, is a one-dimensional
bounded symmetric density with continuous derivative. Furthermore, we
assume that K is strictly positive over (—a, a), where a # 0, and vanishes
elsewhere.

In all the following, the smoothing parameter is T !/*; this choice is
optimal for our purpose. Thus we set

(2.4) Kr(u) = T*K(uTV*), u € R<.

and our Parzen—Rosenblatt type estimators (cf. [17] and [20]) are defined by
1 7

(2.5) fr(x) = :7fo Ky(x—X;)dt, xeR?

and

op(x)/fr(x), if fr(x) >0,

=0 O LMy @, () = 0
with
@D o) = g MO (x - X)dr, e,

where the integrals in (2.5) and (2.7) are taken in the usual sense.
Regarding the functional parameters, we suppose that f,, f and ¢ are
twice continuously differentiable and bounded as well as all their second
partial derivatives.
In order to express the irregularity of sample paths we shall use the
following functions:

(2.8) 8,(%, %) = fix, x) (6, 2) = f(x)f(x),  x,2 €R% u>0,
G,(x, %) = [ M(y)M(y)

(2.9) X[ fizg, 20(%, ¥5 %', 5') = f7,(%, ¥) 2%, )] dy dy',
x,x € R% u>0.
Now we will employ the following assumptions.

A. The expression h(x, x') = [, ,.)|g,(x, x')| du does exist for all x, x' €
R, is bounded and is continuous over the diagonal of R
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B. H(x,x') = [io, 1 |G,(x, x')| du does exist for all x, x' € R?, is bounded
and is continuous over the diagonal of R<.
C. The function g, is continuous over the diagonal for all u # 0 and || g,|l-.
is integrable over (0, + ).
D. The function f is ultimately decreasing with respect to [x| and
supOStSIIIXtIIb e LX(P) for some b > 0.
E. (X)) is geometrically strongly mixing (GSM); that is,
a(v) = sup |P(ANB)-P(A)P(B)| <y, v>0,
Aco(X,,t<0),
Beo(X,,t=v)
where y > 0, 0 < p < 1 are constant.
F. (Z,) is GSM.
G. (Z,) is geometrically ¢-reverse mixing; that is,

sup| P(B|A) — P(B)| <ap’, v>0,

where the supremum is taken over A € o(¢,, t > v) with P(A) > 0 and
B e o(§,t <0) and where a > 0, p € (0,1) are constant.

H. The term g, is continuous over the diagonal of R¢ and |lg,Il.. < ()
where (1 + w)II(x) is integrable over (0, +~) and uII(x) is bounded and
ultimately decreasing.

I

sup
(y,z)eR??

[ gy, 2)du~ ¥ 8,815 (y,2)| 0.
0 k=1 86,—0

Comments on assumptions. Assumption A contains an asymptotic inde-
pendence condition (take u large) and a local irregularity condition (take u
small). This local condition means that the information respectively provided
by (X,, X,, ;) and X, differ significantly even if § is small. It also means that
sample paths are not smooth (see Section 4). Finally, local irregularity of the
observed sample paths provides more information than discrete data. This
partly explains parametric rates which appear below.

Assumption B is similar to assumption A and assumption C is slightly
stronger than A.

Assumption D is a technical condition related to the extreme values of
(X).

Assumptions E and F are classical mixing conditions which are satisfied by
stationary diffusion processes (see [26]). Assumption G is stronger and is
satisfied by some Markov processes (see [13]).

Assumption H is slightly stronger than C and I is a mild regularity
condition. Assumptions H and I are valid if, for instance, (X,) is an
Ornstein—Uhlenbeck process.

3. Preliminary results. In the present section we state two lemmas
which will be used below. Note that these propositions are interesting by
themselves.
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The first result is a Borel-Cantelli type lemma for continuous time pro-
cesses.

LEmMA 3.1. Let (U, ¢t > 0) be a real continuous time process such that we
have the following.

(a) For all n > 0, there exists a real decreasing function ¢, integrable over
[0, +) and satisfying

(3.1) P(IUl = m) < ¢, (1), t>0;

(b) The sample paths of (U,) are uniformly continuous with probability 1;
then
(3.2) lim U, =0 a.s.

T— + o

The following lemma provides a large deviation inequality for bounded
dependent random variables.

LEMMA 3.2. Let (&, i € 7) be a real-valued zero-mean strictly stationary
sequence such that sup,_;_,ll&ll. <b. Then for all integer q such that
1<q<(n/2)andall ¢> 0,

P& + - +&,| > ne)

2

(3.3) .
8v%(q)

sl 2l [3])

9 2 2 bS
(34) v (Q):?E(§1+"'+§[p]+(P_[p])§[p+1]) + -

< 4exp(—

where

2 K
p=n/2q and
n
a([—}) = sup |[P(ANB) —P(A)P(B)]|.
26] Aeco(§,i<0),
peofeniz[5;)

This lemma is an improvement of an inequality in [3]. Some ideas in the
proof are taken from [19] and [24]. It should be noticed that (3.3) is an explicit
inequality which is valid even if the sequence (¢,) is not strongly mixing.

4. Density estimation. This section deals with estimation of the finite
dimensional distributions of (X,, ¢ € R). In fact we will only consider estima-
tion of the marginal density since estimation of the density f; X X)) of
(X,,-.., X,) reduces to estimation of the di-dimensional marginal density
of the process (X, ,,..., X, ..), s € R
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The first result concerning f, is an extension of a Castellana—Leadbetter
([10)) result.

PrOPOSITION 4.1. If A holds, then
1
(4.1) B(fr(x) - (0) =0 ). xere.

It can be shown (cf. [7]) that A is necessary for the full rate 1/7. In
particular if (X,) is a Gaussian process we have the following alternative.

PROPOSITION 4.2. Let (X,) be a real stationary Gaussian process, continu-
ous in mean square and such that

(4.2) |Cov(X,, X,)| < VX,, u>0,
and
“+ o
(4.3) | 1Cov(Xy, X,)|du <=, uy> 0.
Ug

(1) If there exists u; > 0 such that

1/

(4.4) foul[E(Xu ~x)Y  du <o

then
TE(fp(x) —f(x))" > 1<=, xcR
(i1) If there exists u, > 0 such that

(4.5) foul[E(Xu ~x)Y P du =+

then

TE(fr(x) - f(x))" > +=.

An easy consequence of Proposition 4.2 is the following: if (X,) has differen-
tiable sample paths, then (4.5) holds. In fact, under some regularity condi-
tions, it can be shown that E(f;(x) — f(x))> =InT/T (see [2]). On the
contrary (4.4) is satisfied by regular diffusion processes and in particular by
the Ornstein—Uhlenbeck process.

An extreme example should be a Gaussian process with an autocorrelation
p(u) such that

1-p(u)=nuw)’', wu-0(+),0<p<1.

Then sample paths are not continuous; however (4.4) holds provided (4.2) and
(4.3) are satisfied.
Concerning the supnorm we have the following.
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ProprosiTiON 4.3. Ifd = 1 and if C, D, E hold then
InT\?
(4.6) sup | fr(x) —f(x)|=o(1nk T(T) ) a.s.
xeR

for all positive integers k.

A similar result may be obtained for d > 1 but with stronger assumptions
(see [7].

5. Regression estimation. The asymptotic quadratic error of r, is
given by the following proposition.

PROPOSITION 5.1. Suppose that A and B hold and that f(x) > 0. Then we
have the following:

() if M is bounded we have

1
(5.1 B(ri(x) = r(x))" = 0 7 :
(i) if explsupy ., |M(Y)I’] € L} P) for some s > 0, we have
) (InT)**
(5.2) E(rp(x) —r(x)) = O(T)

We now turn to uniform convergence. Note that uniform convergence of r;
may be obtained over compact sets but, in general, not over the whole space
since the behavior of r for || x|l large may be very irregular. Now if d = 1 and
if A is a compact interval such that inf, ., f(x) > 0, we obtain the following
rate.

ProPOSITION 5.2. If A and B hold, (Z,) is GSM and M is bounded, then

5.3 =0|ln, T In 7%
(5.3) Jfl;lghT(x)—r(x)|—o n, (T) a.s.

for all positive integers k.

6. Prediction. Let (£, t € R) be a strictly stationary measurable pro-
cess. Given the data (£,, 0 < ¢ < T'), we would like to predict the nonobserved
square integrable real random variable {;,, = M(&;, ;) where the horizon [
satisfies 0 <! < T and where M is measurable and bounded on compact sets.

In order to simplify the exposition, we suppose that (£,) is a real Markov
process with sample paths which are continuous on the left. We now define
the kernel predictor by

(6-1) 5T+l = @Tfl(gT)/fT( fT),

where

(6.2) ori(£7) = fOT‘lM( & ) Kp(ér - &) dt,
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and
(6.3) Foltr) = fOTKT(fT —¢)dt.

Note that the special form of K together with left continuity of paths
entail that /(&) is strictly positive. .
We now study the asymptotic behavior of {,,;, as T tends to infinity, [

remaining fixed. As usual {;,; is considered to be an approximation of

(6.4) r(ér) =E(irilé,8<T)=E({rylér)-

Let us first indicate an almost sure convergence rate

PropPOSITION 6.1. If the conditions in Proposition 5.2 hold with Z, =
(M(¢,, ), &) then

N InT\'2
(6.5) opey = r(Ep)|Lg, cn = o(ka(T) ) a.s, k> 1.

In order to to study convergence in mean square we need for technical
reasons the stronger mixing assumption G.
On the other hand, we slightly modify our predictor by setting

(6.6) (v =ro(dr),
where 7" = T — [ — (In T)ln, T. Then we have the following result.

ProposiTION 6.2. If A, B and G hold, then

1
2
(6.7) B(¢#0 = r(60) L] = 0 )
where A is any compact interval such that inf, _, f(x) > 0.

7. Sampling. In continuous time, data are often collected by using a
sampling scheme. We consider a process (Z,, ¢ € R) with “irregular” paths
observed at sampling instants.

In order to model the fact that observations are frequent during a long
time, we assume that these sampling instants are §,, 26§,,...,n68, where
8, >0and T, = nd, » »as n - ». (T) is a given sequence of positive real
numbers and one must select (5,) so that the rate of kernel estimators should
be “parametric.”

Here the kernel estimators are defined by

=

1
(7.1) f¥(x) = ~ Kp(x—X;), «xeR?

J

1
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and
wi(x)/f*(x) if £ (x) >0,
(7.2) T NSy, i) =0,
J 1
where
1 n
(7.3) er(x) = Py ; ( ), x € Re,

We then have the following propositions.

ProposITION 7.1. () If A, G and H hold then

9 1
(74) B(f: (%) ~ (%))’ = 0(;)

provided f(x) > 0 and 8, = T, ¢/*.
(i) If in addition B holds and M is bounded then

9 1
(7.5) E(ri(x) —r(x)) :O(Fn).

PROPOSITION 7.2. (i) Under conditions of Proposition 4.3 and if 8, = T, /4,

then
In. T In, T, 1z
nk n T

n

a.s.,k>1.

(7.6) sup |f,j‘<(x) —f(x)|=0

xeR?

(ii) Under conditions of Proposition 5.2 and if §, = T, '/*, then
In, T, )1/ ?

a.s., k>1.

(17 sup|ri(x) = f(x)] = o|In, Tn(

n

Note that the choice of 8, in Proposition (7.1) implies T, = n*/(¢*%;
consequently, although the obtained rates are parametric with respect to 7,
they are, in fact, nonparametric with respect to n. However, it is interesting
to note that the n discrete observations are sampled over an interval of
length T, < n. On the other hand, it is easy to see that the sequence (§,)
is optimal in the following sense: if (§,) is such that the MSE of (f,) is
O(1/T,), then §, = O(8,). Thus n = T{***/* is asymptotically the smallest
sample size which ensures the rate 1/7, over [0,T,]. Moreover, this rate
cannot be improved.

8. Proofs.

ProorF oF LEMMA 3.1. First let (T,) be a sequence of real numbers which
satisfies T, ; — T, = a > 0 where a is some constant.
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Since ¢, is decreasing we have

[endtz T (T~ T)eT) 2a & g(T0),

n>N n>N

thus X,¢(T,) < + and the classical Borel-Cantelli lemma yields
P(lim,, sup{IUTnl > n}) = 0, n > 0 which in turn implies Up — 0as.
Let now (7},) be any sequence of real numbers satisfying 7, 1 + .

To each positive integer & we may associate a subsequence (T;k)) of (T)
defined as follows:

T =T, wheren, =1,

1
T = T,, whereT, - T, >—,T, -T,, 1< L’
T® =T here T, — T, . T, -T, 1< .
- — > — 'R
» ny whnere n, n, . = 3 > Ln, n,—1 A ’

The first part of the current proof shows that UT#) -, 0 as. for each k.
Now let us set

Q, = {w: t = U,( ) is uniformly continuous, Uys(w) = 0, k > 1};

clearly P(Q,) = 1.

Now if w € Q, and n > 0, there exists & = k(n, o) such that [t — s| < 1/k
implies [U(w) — U(w)| < n/2. Consider the sequence T*): for each p and
each n such that n, <n <n, ,, wehave |T, — T, | <1/k, and consequently

|Up (0)| < n for n large enough. This is valid for each n > 0 and each w € Q;
thus Up — 0 as. O

Proor orF LEMMA 3.2. We shall use the following lemma essentially due to
Bradley [8].

LEMMA 8.1. Let (X,Y) be an R? X R-valued random vector such that
Y € L?(P) for somep € [1, +=]. Let ¢ be a real number such that ||Y + cll, >
0 and £ € (0,llY + cll,]. Then there exists a random variable Y* such that:

(i) Py+ = Py and Y* is independent of X,
(8.1) (i) P(IY* —Y|> &) < 11(& 1Y +cll, )"/ "
x [a(a(X), o (V)]0

In the original statement of this lemma, 11 is replaced by 18 and ¢ = 0 but
the proof is not different.
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Now in order to prove Lemma 3.2, we consider the auxiliary continuous
time process n, = &, 1), ¢ € R. We clearly have Y7 ; §; = [¢'n, du.
Let us now define “blocks” as follows:

p , 2p
Vv, =f0 1, du, V)= n, du,
p

2q-1Dp 2qp
V. = n, du, V! = n, du,
! /;(qfl)p ! '/(-ZQ*DP
where p = n/2q.
Using Lemma 8.1 recursively we may define independent random vari-
ables Wy,..., W, such that

1/2

a([r]),

IV, + cll
¢

where ¢ = 6bp, { = min(ne/4q,(8 — 1)bp) for some p > 1 which will be
specified below.
Note that, for each j,

IV, +ell. 2 ¢ — IVll. = (8~ 1)bp > 0

(8.2) P(IW,-VI>¢)<11

sothat 0 < ¢ < IIVj + c|l» as required in Lemma 8.1.
Now according to the choice of ¢ and ¢, (8.2) may be written as
(86 +1)bp 1z
min(ne/4q,(8 — 1)bp) a«(lpD)-

P(IW, - V]>¢) < 11(

If 5=1+ ¢/2b then

1/2
(8.3) p(|vvj—vj|>g)s11(1+7) ([ p).

On the other hand we may apply Bernstein’s inequality (7D to X{W,. We
obtain

q

LW,

1

ne 0
> — | <
1 exp

n%?/16 )

8.4 P
(8:4) ( 4% EW? + 2bpne/4

Now since P, = P, we have
WJ VJ

2
(8.5) EW?=EV? = E(f‘””%u du) .
Jp
By (8.4) and (8.5) it follows that

q
LW,
1

where v2(q) is given by (3.4).

ne
> —
4

e2q
< 2exp(— ,

(8.6) P( 50%q)
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On the other hand, elementary computations show that

g ne 9 , &
and that
q ne
(8.8) P( ZVJ >?) (ZW >T —|—ZP(|V W|>§)
1

Finally collecting the bounds in (8.7), (8.3), (8.6), (8.8) and the analogous
bound for the V/’s, we obtain (3.3). The proof of Lemma 3.2 is therefore
complete. O

Proofs of Propositions 4.1 and 4.2 follow from standard argument and are
therefore omitted.

PRrROOF OF PROPOSITION 4.3. (i) Let us consider the process
1 T 1/2
Uy = — - E
T lnkT(lnT) (fT(x) fT(x))’

where k£ and x are fixed.
We first show that

(89) P(|UT| > n) < chfc/,,(lnkT)z’ n>0,

where ¢, and c; are strictly positive and do not depend on x. For this
purpose, we shall use Lemma 3.2. Let us set

, 1 Jé .
En =< Ky (x—X,)dt; j=1,...,n,
0 (-1
where 8§ = n~ T and n = [T]. Thus we have
1 n
=1 =1

We now evaluate v2(q). First
1 .5
SVi— | K -X,)dt
p ( o fo r(x 0) )

=2péd 1——)duf Ki(x—y)Kp(x—2)g,(y,2)dydz

(o,pa)( T

<2/ lig,ll. du
0

by B.
Then using (3.4) it is easy to see that

4 o0
2 < — o du + | K|l.eTY*.
v(q)_pafongun u+K|.e
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We now choose g = [(neT'*)/2] + 1, hence p = 1/(¢T"* + ) where 0 <
0 < 2 and v%(q) < aeT'* where a is constant.
Substituting in (3.3), we obtain

P|| XY &, |>ne| <4exp(—ceqT '/*)
j=1
(8'10) 8T1/4||Kv||oo 1/2
+ 22 1+f ga([p])
<up+vugp,

where c is a strictly positive constant.
We now choose & = (InT/T)"?In, Tn so that

(8.11) wp < AT 0T

where ¢, is constant.
On the other hand

vp < 22

8TV4K|. \"*
1+ |——7 qvp?,

&

which is clearly O(T <11+ T)*): hence (8.9).
(i) We now prove that (U;) satisfies condition (b) in Lemma 3.1. Let us
consider

1 T \V21
V.= — —I
T lnkT(lnT) T
where

I = ["K(TV*(x - X)) dt
0

then U, = V, — EV,.

We are going to prove that
(8.12) sup  |Vp(x, ) — Vg(x,0)| < AIT - S|,

xeR?, we

T>1,8 > 1, where A is constant.

Note that (8.12) implies a similar result for (Uj) since

|EV, — EVg| < E|V; — Vgl < sup|V, — Vgl
Now we set
InV,=A; + By,
where
A 1 T 11 d InT
r= —In, +§n(ﬁ — In

and
BT = ln IT,

where I is supposed to be strictly positive.
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The derivative of A, is clearly O(T1).
Concerning B; we first have

' T IK 1/4 1/4
1T=f0ﬁ(T (x = X,))dt + K(TV*(x — Xy)).

On the other hand
JK,
9T

for each component x; — X, ;

lul > @ we infer that
‘ﬁ_KO(Tl/zt(x_ — ))‘ < all K5l l
oT / LT 4 T

1
(TY*(x;, - X, ;)) = e i X, VKo(TY*(x; - X, ;)

of the vector x — X,. Then since Kj(u) = 0 if

therefore
‘ K T4 X ‘ 0] !
and finally |I7| = O(1). Hence,
(InVy) | <eiT71 + ey Iz,
where ¢, and c, are positive constants.
Using the relation V} = V,(In V,), it is then easy to see that
(8.13) Vil<eT Y2, T>1,

where c is constant. By continuity the bound in (8.13) remains valid if I = 0.
Finally V7 is bounded, hence (8.12).
(iii)) We are now in a position to apply Lemma 3.1: using (8.9) and (8.12),
we obtain

T /2
lnkT(ﬁ) (fr(x) — Efp(x)) >0 as.

and since the bias is O(T~1/2), we find

1 T \'?
— - 0 aus.
lnkT(lnT) | Fr(x) = f(a)| = a8

(iv) Using a covering of % = {x: ||x]| < T}, with y > 0, and the fact that
K is Lipschitz, it is easy to show that the convergence is uniform over %;.
Finally condition C allows establishing uniform convergence over R? For
details we refer to [7].

PrROOF OF PROPOSITION 5.1. (i) Since f(x) > 0, the following decomposi-
tion, where x is omitted, is valid for 7' large enough:

- _E€0T:r EfT_fT+€0T_E€0T
" Efy " Efr Efy

(8.14)
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hence

2 2
E*DT) e G )

E _
(rT Ef, IEf 2

By Proposition 4.1 Vf; = O(T'). Similarly it can be checked that Vo, =
oM.

Now
. Eo¢y =rEfT_f+ ¢ — Eop
Efy Efy Efp 7
thus
Eer )\ 2(Iml2 + 1) , ,
(r— B = (mpy |(E D (e Eer).

Again by Proposition 4.1 (Ef; — f)* = O(T') and similarly, E(¢ — E¢;)* =
O(T 1), hence (5.1).
(i1) In order to establish (5.2) we need the following lemma.

LEMMA 8.2. Let (&,,t € R,) be a stochastic process such that sup, _, ||
is measurable for each positive T and which satisfies the condition

(8.15) ¢ = supE(exp alnl’) <
Jj=0
for some a > 0, some s > 0 and where n; = sup,_, _ ;11|
Then
Inc([T] + 1)\
(8.16) E( sup |§t|") (===} ps0,T>0.
0<t<T a
Proor. Consider the strictly concave function
I(x) =a?/*(Inx)"°, x>0
and set
{= sup [§IP = max np;

0<t<[T]+1 0<j<[T]

then Jensen’s inequality entails
E( sup |&17) < B¢ < E[1(17}(0))]
0<t<T
<IE[17'(0)]

ZE[ max exp an;

IA

0<j<I[T]

<lIE

[T]
j=0

<a P/ [In([T] + 1)c]?". O
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We now apply Lemma 8.2 to ¢, = M(Y,), ¢ > 0. We have, for every p > 0,

T Zp
E(r) = E(fo P, dt) ,

where

T .

Kp(x— Xt)// K(x—X,)dt,  if fp(x) >0,
0
ptT = 1
Thus
B(r3) < B[ sup |¢*]
0<t<T

and by Lemma 8.2 it follows that

1/p

(8.17) (E(r37))"" < {ne([T] + 1)]*")
On the other hand, setting ¢ = 1 + &; where (1/p) + (1/q) = 1 we obtain
(Elfy — Bf %) < (KN T2 /4vE,)
and since Vf; < kT~ ! where k is constant, we get
(Elfy - Efy1*)"" < (2UKI2k) /T /2070,

Now we choose ¢ = _,., 1 and more precisely
1- (&p/2) ) 1

1+ e,  InT’
Therefore since T T = O(1), we have
1/q 1
1 Elf; — Ef,I*)"" =0|=|.
(8.18) (B1fy = B) " = 0 7
Now using Holder’s inequality together with (8.17) and (8.18), we obtain
(InT)*”*
E(r2(fp — Ef;)?) = 0| —2—|.
(’"T( fr fr) ) ( T

On the other hand, it is easy to prove using A that
E(¢r - Eep)" = O0(T™Y),
hence (5.2). O

The proof of Proposition 5.2 is similar to the proof of Proposition 4.3 and
therefore omitted.

PrOOF OF PROPOSITION 6.1. It suffices to notice that
|¢T4(§T) — o fT)UlgTeA =< SUIZ|<PT71(x) - ‘P(x)l
xe
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and that
|fT(§T) _f(gT)“lgTeA =< Su§|fT(x) _f(x)l

and then apply Proposition 5.2. Details are omitted.

PROOF OF PROPOSITION 6.2.
2
Dy = E(’"T'(fT) —r( fT)) ]1§T€A

- fAE(rT,(x) —r(x))’f(x) dx,

where f is the density of &;.
By a Cai-Roussas lemma ([9]) for ¢, -mixing processes, it follows that for
P, -almost every x in A,

E(rp(x) = r(2))"| & = %)
=< E(rT’(x) - T'(X))Z + 8suprA|M(x)|(Prev(T - T,)
Using this bound in (8.19), we get
D+ < supE(rp(x) — r(x))* + 8sup|M(x)|apT .

x€A x€A

Then B’ entails

(8.19)

D, = O(i,) +0(pT ™)
T
1
-olz)
which proves (6.7). O
PRrROOF OF PROPOSITION 7.1. (i) First it is easy to prove that
(8.20) lim||H, — G,|l. =0,

n—w

where H,(y,2) = X7_18,8;;(y,2) and
n—1

G(y,z)= Y (1 - %)Sngian(y,Z)-

i=1
Now the variance of f;* has the classical decomposition
Vf#(x) =V, + C,,

where V, is the sum of variances and where
2
C, = n_anKT"(x - y)KTn’(x -2)G,(y,2)dydz.

For V, we have the well known
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Concerning C,, note that

<|IH, — G,

no,
5 Co = [Kr(x =) Kp(x —2)H,(y,2) dydz

and

JKr(x = 9)Kp(x = 2)[H(y,2) = G(y,2)] dydz

where G(y, z) = [ “g,(y, 2) du.
By (8.20) it follows that

2

Since G is continuous at (x, x) we find

C, — [Kp(x —y)Kp(x —2)G(y,2) dydz| - 0.

—+ oo
ns,C, — 2/ g.(x,x)du.
0

Finally, we have

1 1

, 1
821)  E(fF(x) - f(x)) :O(WU_ME

since the bias is as usual O(T}, '/?).
Now since 6, = T, /* and nT, ?/* = T, the result follows.
(i) The proof of (7.5) is similar and therefore omitted.

The proof of Proposition 7.2 uses Lemma 3.2 essentially as in Proposition
4.3 and 5.1. Details are omitted.
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