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ADAPTIVE DEMIXING IN POISSON MIXTURE MODELS

By Nicoras W. HENGARTNER

Yale University

Let X;,X,,..., X, be an iid. sample from the Poisson mixture
distribution p(x) = (1/x))[5 s“e”*f(s) ds. Rates of convergence in mean
integrated squared error (MISE) of orthogonal series estimators for the
mixing density f supported on [a, b] are studied. For the Holder class of
densities whose rth derivative is Lipschitz «, the MISE converges at the
rate (log n/loglog n) 2("* %) For Sobolev classes of densities whose rth
derivative is square integrable, the MISE converges at the rate
(log n./loglog n)~2". The estimator is adaptive over both these classes.

For the Sobolev class, a lower bound on the minimax rate of conver-
gence is (log 7 /loglog n)~2", and so the orthogonal polynomial estimator
is rate optimal.

1. Introduction. Consider the following problem: given an i.i.d. sample
from a Poisson mixture distribution

1 =
(1) PIX = k] =m(f) = 37 ) ' f(3) dy,

estimate the mixing density f. As shown in Teicher (1961), the mixing
distribution F(¢) = [} f(s)ds in (1) is identifiable, a modern proof of which is
found in Lindsay and Roeder (1993). Many estimators of the mixing density
have been proposed. Tucker (1963) smoothed the empirical frequencies
k!#{Xj = k}/n to solve a moment problem for e 'f(¢). Simar (1976) and
Lambert and Tierney (1984) studied the non-parametric maximum likelihood
estimator. Walter (1985) and Walter and Hamedani (1991) considered esti-
mators based on Laguerre polynomials. All these estimators were shown to be
consistent without analyzing the rate of convergence.

More recently, Zhang (1992) considered smoothing kernel estimators for
demixing mixtures of exponential family for discrete variables. These include,
as a special case, the Poisson mixture distribution. Subsequently with Loh
[Loh and Zhang (1993)], he derived upper and lower bounds for the inte-
grated mean squared error (MISE), for densities f whose rth derivative is
Lipschitz a, of order (log n /loglog n) 2"*® and (log n) 2"* %), respectively.
Note that these bounds do not match.

In this paper we consider estimators of the mixing density obtained by
estimating the first m coefficients of the expansion of the density into a series
of orthonormal polynomials. We show that by estimating the first m, =
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log n/ loglog n coefficients, the estimator converges in MISE at rate (log n/
loglog n) 2", assuming the mixing density f has r square integrable deriva-
tives and converges at rate (log n/loglog n) 2" "% when the true mixing
density f belongs to the Hélder classes of functions whose rth derivatives are
Lipschitz «. Since the number of estimated coefficients does not depend on
the assumed smoothness, we say that our estimator is automatically adap-
tive, or universal, over the above function classes.

The orthogonal polynomial and the kernel estimator achieving the same
rate is suggestive that Zhang’s lower bound may be too small. Applying the
technique of Farrell (1967, 1972) and Bickel and Ritov (1988), of finding pairs
of mixing densities far apart in the .%, distance and whose Poisson mixture
distributions are contiguous, a lower bound of order (log n /loglog n) 2" for
the minimax MISE over a Sobolev ball is obtained. Hence for this class, the
orthonormal polynomial and kernel density estimators achieve the optimal
rate. For Lipschitz classes of densities, it is conjectured that Zhang’s lower
bound can be improved to show rate optimality of kernel and orthonormal
polynomial demixing estimators.

2. Orthonormal function estimator. Throughout this paper, assume
the probability density f to be square integrable and supported on the
interval [a, b] with known end points 0 < a < b < «. Then, for any complete
orthonormal basis {q,}7_, of Z[a,b], f can be represented by the Fourier
series f(¢) = X7 _, a,q,(¢). Cencov (1962) first considered density estimators
obtained by estimating the coefficients of the approximation

fult) = X (0

of the density f. Slowly increasing the number of terms m, with the sample
size n, makes the estimator consistent for the density f in the %, sense.

2.1. Estimating the Fourier coefficients. For the Poisson demixing prob-
lem, one needs to estimate the Fourier coefficients of the mixing density from
Poisson mixture observations. For this, assume that the basis functions gq,
are analytic (with radius of convergence at least b) and define the kernel
K, (¢,8) = X7 o 4,(5)q.(¢). The approximation f,,(¢) is then written as

(2) Fu(t) = [ K, (t,8)f(s) ds.

For each fixed ¢, the latter is a linear functional of the mixing density f.
Following Hengartner (1994), if there exists a linear functional of the form

(3) o) = T &t B)m(f)
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of the Poisson mixture probabilities that agrees with (2) for every f, then
formally

D) = T 600 [ e A (5) ds
> k
/[Eg(t : }e%)ds

= fxesKm(t, s)e °f(s) ds.
0

A power series expansion of e°K, (¢, s) identifies &, (¢, k) as

k

(4) &Lt k) = a—esKm(t s)

dk
Z{ 2 CU()|

}qj(t)'

Substituting the empirical frequencies 7, = (1/n)X7_,I(X; = k) for the Pois-
son mixture probabilities in (3) yields the estimator

|
s

fm,n(t) - gm(t’k)%k

k=0

o m dk
T 5 Seen)

=0

}qj(t)ﬁk

m A
= Z Z _kesqj'(s) T ‘Ij(t)'
k=1 ds s=0

Thus f:n is an orthonormal function demixing estimator with

o

estimating the kth Fourier coefficient from Poisson mixture observations. By
the law of large numbers, if E[[¢, (¢, X)|] <o for all m, then f, , is
consistent for f, provided m increases slowly enough. Not every orthonormal
basis satisfies this requirement, and even fewer will lead to estimators of «;,
having finite variance. However, if ¢, is a polynomial, then the estimator (5)
has finite moments of all order. This motivates our interest in orthonormal
polynomial bases

Let q,(¢) = J_Ock JtJ be the orthonormal polynomial of degree k2 on
[a, b]. For this basis, the coefficient «, is estimated by

s_o}

, n

1 » (d%
(5) = ; Z{ S.x, € "9, (8)

. 1 dXi . k '
T .,Zl dine‘ Z Cr, ;S
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k 1 n
=cot Lo - LX(X -1 (X, —j+1)
Jj=1 -1
k
=Cpo T Eck,j,aj,
j=1

where i, = (1/n)X,_,X(X;, — 1D - (X; — k + 1) estimates the £Zth moment
of the mixing distribution. By Lemma A.1 in the Appendix, {, is unbiased
and has finite variance for compactly supported mixing distributions. It can
further be shown that it has finite moments of all orders.

2.2. Order of convergence in mean integrated squared error. The difficulty
of estimating the mixing density using the orthonormal polynomial estimator
is assessed via the rate the integrated mean squared error (MISE) converges
to zero. By the usual argument, the MISE is decomposed into integrated
variance and integrated squared bias terms. The former is bounded by a
function of the sample size n and the number of terms m, while the latter
only depends on how well f, approximates f, which depends on the smooth-
ness class to which the density f belongs. Typical smoothness classes are
balls in Sobolev spaces

2
(6) Zow = {1 [l10) [ ar < ),
with integer v, and balls in Holder spaces

(7 G = {1 FO@) = FO(s)| < M|t — 5|7},

where v = r + «a, r integer and 0 < a < 1. Here, upper bounds on the rate of
convergence of the maximal MISE over (6) and (7) are considered, while lower
bounds on the minimax MISE over Sobolev balls will be derived in Section 3.

The following theorem, whose proof is relegated to the Appendix, upper-
bounds the integrated variance.

THEOREM 2.1. The integrated variance of the orthonormal polynomial
estimator of the mixing density is bounded by

(2m + 1)m?

(8) nfa”varf[f;,m(t)] ds < ~————[(m + b)pb]",
where

bta b-a 2 ?
(9) pz[z(b—a+b+a)(1+b+a)

Jackson-type theorems from approximation theory are used to bound the
integrated squared bias. For example, specializing Theorem 6.3 of DeVore
and Lorentz (1993) gives the following bounds.
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THEOREM 2.2. Let &, be the collection of polynomials of degree at most m

on [a, b]. The maximal integrated squared bias is bounded by

. b 2
su nf () — () dt <c;m™?”

and

. b 2
su inf fo.(t) —f(2)) dt <com™?",
erI?M fn€Fm '[a ( (®) ( )) ?

where ¢, and c, are positive constants depending on M and v.

Combining these theorems results in the following theorem.

THEOREM 2.3. For mixing densities f € 7, yy or f € Z, ), the orthonormal

demixing estimator with m(n) = log n /loglog n, has MISE converging to zero
at rate (log n/loglog n) 2".

REMARKS.

. For densities f €., ,,, these rates are the same as those of the kernel
demixing estimator in Loh and Zhang (1993), and thus the orthogonal
polynomial demixing estimator is almost rate optimal. These two different
demixing methods’ converging at the same rate suggests that it may be
possible to improve upon the (log n) 2" lower bound.

. In the next section, MISE minimax lower bounds for densities in &, ;, are
shown to be of order (log n /loglog n) 2", and therefore, the orthonormal
polynomial demixing estimator is rate optimal.

. The number of terms m(n) does not depend on the smoothness class to
which the density f belongs. Because the estimator, with a single choice
for m = m(n), achieves (or almost achieves) the optimal rate for the
considered smoothness class of densities justifies naming these ortho-
normal polynomial demixing estimators as automatically adaptive or
universal.

. Estimating only « log n /loglog n coefficients, with « < 1, does not affect
the rate of convergence but may change the constant. The choice of the «
leading to the best constant is expected to depend on the assumed class of
densities.

ProoF. Combining Theorems 2.1 and 2.2 yields for either f€.7, , or

ngV,M

[PE (Fon(0) = £OY] = [*Vary(F (D) de + [*(1(6) = ()Y at

mm

<C,— +Cym™?",
n



922 N. W. HENGARTNER

for positive constants C,; and C,. The optimal rate is obtained by choosing
m = m(n) to equate the integrated variance to the integrated squared bias.
Taking m(n) = k log n/loglog n, with 0 < k < 1, the MISE converges at the
rate (log n /loglog n)~%". O

3. Optimal rate of convergence. For densities lying in the Sobolev ball
%, u» the following theorem holds.

THEOREM 3.1. Assume that v > 1. Then for every sequence of estimators

fn(t), based on an i.i.d. sample X, X,,...,X, from a Poisson mixtures
distribution,

b 2 logn \7?"
(10)  lim inf EsquMPf[a (F(t) = f(t)) dt>c Toglogn >0

holds for some constant ¢ > 0.

REMARKS.

1. The orthogonal polynomial estimator achieves this rate, and hence
(log n/loglog n) 2" is the optimal rate of convergence as defined by Stone
(1980).

2. Recall that in the definition of &, ,,, v is an integer.

Theorem 3.1 is proved by finding pairs of mixing densities £, ;, f, 2 €, i
with large %, distance and contiguous Poisson mixture distributions. This
idea is implicit in Farrell (1967, 1972) and Bickel and Ritov (1988) and is
exploited in Zhang (1995), whose Lemma 1 is key.

LEMMA 3.2. Let F be a collection of probability distributions and let 6(F)
be a mapping from 7 to a metric space with metric d(-,-). Let f, , and f, , be
the joint density of X1, X,,..., X, under F, ; €7, j = 1,2, respectively. Set
d, =d(0(F, ), 6(F, ,))/2. If for a A > 0,

(11) lim inf P, l[fn,1 <Al =p,
then any estimator of T, based on X, X,,..., X, satisfies

(12) liminf sup P;[d(T,,0(F)) > d,| > —
n-v peg 1+

PrROOF OF THEOREM 3.1. Let f, ; be the uniform density on [a, b] and
fo.2 =fn.1 T p, a perturbation thereof. In particular, let p,(¢) = v, T, () =
YmLi=o @, ; cos(jt) be an appropriately scaled trigonometric polynomial of
degree m = m(n), whose coefficients « are uniquely determined by the

m, j
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requirements

(13) ['T,(¢)dt =0

and ‘

(14) [*To(t)tte ' dt =0 fork=0,1,...,m 1.

By condition (13), f, , integrates to 1 and condition (14) makes m,(f, ;) =
my(f, 2) for & =0,1,...,m — 1. Thus choosing
m = m(n) =~ max X; = clog n/loglog n
J=<n

ensures contiguity of the Poisson mixture distribution, regardless of the size
of the scaling factor vy,,, which is determined by the requirements that
fu2 €%, y- This choice of perturbation, in the spirit of Donoho and Liu
(1991) d1sentangles the stochastic and analytic arguments.

To determine the size vy, putting f, , € Z, ), apply Bernstein’s theorem
[see Rahman (1982) or page 98 of DeVore and Lorentz (1993)] to obtain

27 \"
1Tl < m”||T,|l2,
b—a

and using Nikolskii’s bound [see page 102 of DeVore and Lorentz (1993)]
yields

1T, 1l <

b—a)(2m +
\/( )( D 17,12
Setting
C

m”||IT,,lls’

we first have that f, ,(¢) > 0, and hence a probability density, provided
v > 1/2 and C is small enough. Furthermore, || /{"ll2 < C, so that for C < M?,
fn, 2 = gv, M

The index m = m(n) will be chosen such that the Poisson mixture distri-
bution under f, ; and f, , satisfy (11) of Lemma 3.2. For this, note that by
construction ,(f, ) = m,(f, 5) for k =0,1,...,m — 1, so that for A > 1,

Ym =

7TX(fn,l) 77-X‘(fn,l)
(15) P |12~ <al=1-P, |T]—7—~>A
Pl e 7x(fn,2) i 7x(fn,2)
(16) >1- me[lmax X > m]
<J<n
b,
(17) >1- I’Lm

Taking m(n) = « log n /loglog n, the latter converges to one for any « > 1. In
fact, convergence to one still occurs if k = 1 + ¢ logloglog n /loglog n, for any
c> 1.
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With these choices, apply Lemma 3.2 and note that

||fn,1 - fn,2||2 = Ym(n)” (n)||2

= ———m(n) T,
1T ll2 () Ml
C( log n )‘2”
= —|— . O
loglog n
APPENDIX

Proof of Theorem 2.1. The following lemmas are needed in proving
Theorem 2.1.

LEMMA A.1. Let X have a Poisson mixture distribution, with mixing
density f supported on [a, b]. Define (X), =X(X — 1) (X — k + 1), then

(18) E[(X),] = ["4F(2) dt = m(f)
and
min(k, m) m\ [k
(19) CACSHE NS Vi [ e

Furthermore, the bound

(20) E((X),)"] < (b +m)"n,
holds for allm = 0,1, ... .

Proor. Equation (18) is found in Walter (1985). Without loss of general-
ity, assume k < m, so that

A l!
l
—m)! (- k)vlvfte

E[(X),(X),] = 2 () d.

m

All summands being positive, the order of summation and integration can be
interchanged, and with the help of the identity

o I tl
;n " (—my ¢ dtk[tm ]

min(k, m) m\ [k
— | ph+tm—1,t
y (z )(Z)l.t o,

=0

l
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conclusion (19) follows. Finally,

m

RS T T
<1 (’?)mlbm_lf’“m=(m+b)mum- O
1=0

LEMMA A.2. The coefficients

t
cm = (cm,()’cm,17cm,2""’cm,m)

of the orthonormal polynomial q,,(¢) of degree m with respect to the uniform
weight function on the interval [a, b] has squared norm bounded by

2m + 1
20

where w=(a +b)/2, 0 =(b —a)/2, and 7= 2 /o + o/u)l + 1/w)2.

2
e,z < ™,

ProorF. The orthonormal polynomial g, (¢) of degree m on [a, b] is the
translated, rescaled and normalized Legendre polynomial of degree m:

m [2m + 1 t —
qm(t)= Zcm ktk= Pm|: - .
oo 20 o

Expanding P, ((¢ — n)/0) into powers of ¢,

r ] B2

(o

Il

=~

Il

103
—_—
.

M=

—_——

.
==

it follows that the kth coefficient of ¢,, is

2m +1 (-1 m 5\
(21) e e P 14| ) W

The coefficients of the Legendre polynomials are [see page 157 of Rainville
(1967)]

, (-7 (2m - 2))!
mmTE2m (m= ) (m = 2))1)!
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and b,, ,,_(9j+1) = 0. This produces

R iy
20 c z(—l) Z m—2] (_ﬁ)m 2Jb A
b 9m +1 ™* p,k 2jem—t k o m,m=2j

=(_i)’"<—1>k
20 wk
(22) : 9
« Y (m—Zj) (2m — 2j)! (g)f
2j<m—# k (m—=7)!(m =2\ pn
g (2
20 wk k 2j<m—k m+k J 7
The sum in (22) is bounded by
. 2j 2j
2m — 2 milo 2 mi(©o
R e (1| G M W I 13 [
2j<m-r\ M+ Iz m 2jem—k\J 1
<( 2m ) 1+ g 2
- m+k i3 ’
from which it follows that
om + 1 o\2\ 2" m 2 1
SUES 7 tr1 i i D Y ([ PN |
20 20 I P k m+k
2m m
=2m+1 l(ﬁ+g) (Zm)z(mri
20 2\oc m ), = \k w2k
This last sum is less than
m 2 1 m 1 2m 1 1\2™
2m 2m
£ (1) < B (381 < E ) (2]
poo VR Pt T T\ 2k J T TN k)t 1
and therefore
2m + 11 a\\*" Zm 2
lle,, 13 < —(ﬁ+—) 1+ — (2’")
2\oc  u I m
2m+1( (p o 1\)\*"
< 2(—+—) 1+ — ,
20 T M 7
which is the desired bound. O
PrOOF OF THEOREM 2.1. Let
ck:c(km):(Ck’o,ckyl,ck’Q,...,Ckyk0,0,...,0)

m—k
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be the vector of coefficients of the orthonormal polynomial ¢,(¢). By (18) of
Lemma A.1, the estimator of the kth Fourier coefficient

k
ap=cLo+ X Cp,jMj
j=1
is unbiased for «,, and thus the integrated variance of f, , is

b . m A 9 m
| Varg[ £, .(0)] dt = E[ Y (& - a) ] = ¥ ci3e,,
a j=0 k=0
where ¥ denotes the variance-covariance matrix of the vector of moment
estimators (1, i, fy, ..., &,,)- It is easily verified that every element of ¥ is
nonnegative. The above sum is bounded by
m

m
2 2
Y cie, < Anu(2) T lleyll3 < m?( maxlie, 3)(maxs, , ).
E=0 E=1 k<m k<m

By Lemma A.1, the maximum of the variance-covariance matrix is bounded
by

(23) max 3, =3, . <—(b+m)",
Jyism ’ n

and by Lemma A.2,

(24) maxllckllgszm—'_l (b+a+b—a)(1+ 2 )2”‘
k<m b — b—a b+a b+a
Setting
b+a b-a 2 2
p=[2(b—a * b+a)(1+ b+a)
yields the upper bound
n/bVarf[fAn’m(t)] ds < M[(m +b) pb]™. ]
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