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ADAPTIVE DEMIXING IN POISSON MIXTURE MODELS

BY NICOLAS W. HENGARTNER

Yale University

Let X , X , . . . , X be an i.i.d. sample from the Poisson mixture1 2 n
Ž . Ž . ` x ys Ž .distribution p x s 1rx! H s e f s ds. Rates of convergence in mean0

Ž .integrated squared error MISE of orthogonal series estimators for the
w xmixing density f supported on a, b are studied. For the Holder class of¨

densities whose r th derivative is Lipschitz a , the MISE converges at the
Ž .y2 Žrqa .rate log nrlog log n . For Sobolev classes of densities whose r th

derivative is square integrable, the MISE converges at the rate
Ž .y2 rlog nrlog log n . The estimator is adaptive over both these classes.

For the Sobolev class, a lower bound on the minimax rate of conver-
Ž .y2 rgence is log nrlog log n , and so the orthogonal polynomial estimator

is rate optimal.

1. Introduction. Consider the following problem: given an i.i.d. sample
from a Poisson mixture distribution

`1
k yyw x1 P X s k s p f s y e f y dy,Ž . Ž . Ž .Hk k! 0

Ž .estimate the mixing density f. As shown in Teicher 1961 , the mixing
Ž . t Ž . Ž .distribution F t s H f s ds in 1 is identifiable, a modern proof of which is0

Ž .found in Lindsay and Roeder 1993 . Many estimators of the mixing density
Ž .have been proposed. Tucker 1963 smoothed the empirical frequencies

� 4 yt Ž . Ž .k!a X s k rn to solve a moment problem for e f t . Simar 1976 andj
Ž .Lambert and Tierney 1984 studied the non-parametric maximum likelihood

Ž . Ž .estimator. Walter 1985 and Walter and Hamedani 1991 considered esti-
mators based on Laguerre polynomials. All these estimators were shown to be
consistent without analyzing the rate of convergence.

Ž .More recently, Zhang 1992 considered smoothing kernel estimators for
demixing mixtures of exponential family for discrete variables. These include,
as a special case, the Poisson mixture distribution. Subsequently with Loh
w Ž .xLoh and Zhang 1993 , he derived upper and lower bounds for the inte-

Ž .grated mean squared error MISE , for densities f whose r th derivative is
Ž .y2 Žrqa . Ž .y2 Žrqa .Lipschitz a , of order log nrlog log n and log n , respectively.

Note that these bounds do not match.
In this paper we consider estimators of the mixing density obtained by

estimating the first m coefficients of the expansion of the density into a series
of orthonormal polynomials. We show that by estimating the first m sn
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Žlog nr log log n coefficients, the estimator converges in MISE at rate log nr
.y2 rlog log n , assuming the mixing density f has r square integrable deriva-

Ž .y2 Žrqa .tives and converges at rate log nr log log n when the true mixing
density f belongs to the Holder classes of functions whose r th derivatives are¨
Lipschitz a . Since the number of estimated coefficients does not depend on
the assumed smoothness, we say that our estimator is automatically adap-
tive, or universal, over the above function classes.

The orthogonal polynomial and the kernel estimator achieving the same
rate is suggestive that Zhang’s lower bound may be too small. Applying the

Ž . Ž .technique of Farrell 1967, 1972 and Bickel and Ritov 1988 , of finding pairs
of mixing densities far apart in the LL distance and whose Poisson mixture2

Ž .y2 rdistributions are contiguous, a lower bound of order log nrlog log n for
the minimax MISE over a Sobolev ball is obtained. Hence for this class, the
orthonormal polynomial and kernel density estimators achieve the optimal
rate. For Lipschitz classes of densities, it is conjectured that Zhang’s lower
bound can be improved to show rate optimality of kernel and orthonormal
polynomial demixing estimators.

2. Orthonormal function estimator. Throughout this paper, assume
the probability density f to be square integrable and supported on the

w xinterval a, b with known end points 0 - a - b - `. Then, for any complete
� 4̀ w xorthonormal basis q of LL a, b , f can be represented by the Fourierj js0 2

Ž . ` Ž . Ž .series f t s Ý a q t . Cencov 1962 first considered density estimatorsks0 k k
obtained by estimating the coefficients of the approximation

m

f t s a q tŽ . Ž .Ým j j
js0

of the density f. Slowly increasing the number of terms m, with the sample
size n, makes the estimator consistent for the density f in the LL sense.2

2.1. Estimating the Fourier coefficients. For the Poisson demixing prob-
lem, one needs to estimate the Fourier coefficients of the mixing density from
Poisson mixture observations. For this, assume that the basis functions qk

Ž .are analytic with radius of convergence at least b and define the kernel
Ž . m Ž . Ž . Ž .K t, s s Ý q s q t . The approximation f t is then written asm ks0 k k m

2 f t s K t , s f s ds.Ž . Ž . Ž . Ž .Hm m

For each fixed t, the latter is a linear functional of the mixing density f.
Ž .Following Hengartner 1994 , if there exists a linear functional of the form

`

3 f t s j t , k p fŽ . Ž . Ž . Ž .Ým m k
ks0
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Ž .of the Poisson mixture probabilities that agrees with 2 for every f , then
formally

` k
` s

ysf t s j t , k e f s dsŽ . Ž . Ž .Ý Hm m k!0ks0

`` j t , kŽ .m yss s e f s dsŽ .ÝH kk!0 ks1

`
s yss e K t , s e f s ds.Ž . Ž .H m

0

s Ž . Ž .A power series expansion of e K t, s identifies j t, k asm m

k km­ d
s s4 j t , k s e K t , s s e q s q t .Ž . Ž . Ž . Ž . Ž .Ým m j jk k½ 5­ s dsss0 ss0js0

Ž . n Ž .Substituting the empirical frequencies p s 1rn Ý I X s k for the Pois-ˆk js1 j
Ž .son mixture probabilities in 3 yields the estimator

`

f̂ t s j t , k pŽ . Ž . ˆÝm , n m k
ks0

k` m d
ss e q s q t pŽ . Ž . ˆÝ Ý j j kk½ 5ds ss0ks0 js0

km ` d
ss e q s p q t .Ž . Ž .ˆÝ Ý j k jk½ 5dsjs0 ks1 ss0

ˆThus f is an orthonormal function demixing estimator withm , n

Xn i1 d
s5 a s e q sŽ . Ž .ˆ Ýk kX½ 5in ds ss0is1

estimating the kth Fourier coefficient from Poisson mixture observations. By
ˆw < Ž . <xthe law of large numbers, if E j t, X - ` for all m, then f ism m , n

consistent for f , provided m increases slowly enough. Not every orthonormal
basis satisfies this requirement, and even fewer will lead to estimators of ak

Ž .having finite variance. However, if q is a polynomial, then the estimator 5k
has finite moments of all order. This motivates our interest in orthonormal
polynomial bases.

Ž . k jLet q t s Ý c t be the orthonormal polynomial of degree k onk js0 k , j
w xa, b . For this basis, the coefficient a is estimated byk

Xn ki1 d
s ja s e c sˆ Ý Ýk k , jX i½ 5ž /n dsis1 js0 ss0
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k n1
s c q c X X y 1 ??? X y j q 1Ž . Ž .Ý Ýk , 0 k , j i i injs1 is1

k

s c q c m ,ˆÝk , 0 k , j j
js1

Ž . Ž . Ž .where m s 1rn Ý X X y 1 ??? X y k q 1 estimates the kth momentˆk iF n i i i
of the mixing distribution. By Lemma A.1 in the Appendix, m is unbiasedˆk
and has finite variance for compactly supported mixing distributions. It can
further be shown that it has finite moments of all orders.

2.2. Order of convergence in mean integrated squared error. The difficulty
of estimating the mixing density using the orthonormal polynomial estimator

Ž .is assessed via the rate the integrated mean squared error MISE converges
to zero. By the usual argument, the MISE is decomposed into integrated
variance and integrated squared bias terms. The former is bounded by a
function of the sample size n and the number of terms m, while the latter
only depends on how well f approximates f , which depends on the smooth-m
ness class to which the density f belongs. Typical smoothness classes are
balls in Sobolev spaces

2Žn .6 GG [ f : f t dt F M ,Ž . Ž .Hn , M ½ 5
with integer n , and balls in Holder spaces¨

aŽr . Žr .7 FF [ f : f t y f s F M t y s ,Ž . Ž . Ž .� 4n , M

where n s r q a , r integer and 0 - a F 1. Here, upper bounds on the rate of
Ž . Ž .convergence of the maximal MISE over 6 and 7 are considered, while lower

bounds on the minimax MISE over Sobolev balls will be derived in Section 3.
The following theorem, whose proof is relegated to the Appendix, upper-

bounds the integrated variance.

THEOREM 2.1. The integrated variance of the orthonormal polynomial
estimator of the mixing density is bounded by

22m q 1 mŽ .b mˆ8 n Var f t ds F m q b rb ,Ž . Ž . Ž .H f n , m b y aa

where
2b q a b y a 2

9 r s 2 q 1 q .Ž . ž / ž /b y a b q a b q a

Jackson-type theorems from approximation theory are used to bound the
integrated squared bias. For example, specializing Theorem 6.3 of DeVore

Ž .and Lorentz 1993 gives the following bounds.
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THEOREM 2.2. Let PP be the collection of polynomials of degree at most mm
w xon a, b . The maximal integrated squared bias is bounded by

b 2 y2nsup inf f t y f t dt F c mŽ . Ž .Ž .H m 1
f gPP am mfgGGn , M

and

b 2 y2nsup inf f t y f t dt F c m ,Ž . Ž .Ž .H m 2
f gPP am mfgFFn , M

where c and c are positive constants depending on M and n .1 2

Combining these theorems results in the following theorem.

THEOREM 2.3. For mixing densities f g FF or f g GG , the orthonormaln , M r , M
Ž .demixing estimator with m n s log nrlog log n, has MISE converging to zero

Ž .y2 nat rate log nrlog log n .

REMARKS.

1. For densities f g FF , these rates are the same as those of the kerneln , M
Ž .demixing estimator in Loh and Zhang 1993 , and thus the orthogonal

polynomial demixing estimator is almost rate optimal. These two different
demixing methods’ converging at the same rate suggests that it may be

Ž .y2 npossible to improve upon the log n lower bound.
2. In the next section, MISE minimax lower bounds for densities in GG aren , M

Ž .y2 nshown to be of order log nrlog log n , and therefore, the orthonormal
polynomial demixing estimator is rate optimal.

Ž .3. The number of terms m n does not depend on the smoothness class to
which the density f belongs. Because the estimator, with a single choice

Ž . Ž .for m s m n , achieves or almost achieves the optimal rate for the
considered smoothness class of densities justifies naming these ortho-
normal polynomial demixing estimators as automatically adaptive or
universal.

4. Estimating only k log nrlog log n coefficients, with k - 1, does not affect
the rate of convergence but may change the constant. The choice of the k
leading to the best constant is expected to depend on the assumed class of
densities.

PROOF. Combining Theorems 2.1 and 2.2 yields for either f g FF orn , M
f g GGn , M

2b b b 2ˆ ˆE f t y f t s Var f t dt q f t y f t dtŽ . Ž . Ž . Ž . Ž .Ž .Ž . Ž .H H Hf n , m f n , m m
a a a

mm
y2nF C q C m ,1 2n
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for positive constants C and C . The optimal rate is obtained by choosing1 2
Ž .m s m n to equate the integrated variance to the integrated squared bias.

Ž .Taking m n s k log nrlog log n, with 0 - k F 1, the MISE converges at the
Ž .y2 nrate log nrlog log n . I

3. Optimal rate of convergence. For densities lying in the Sobolev ball
GG , the following theorem holds.n , M

THEOREM 3.1. Assume that n G 1. Then for every sequence of estimators
˜ Ž .f t , based on an i.i.d. sample X , X , . . . , X from a Poisson mixturesn 1 2 n
distribution,

y2 nlog n2b ˜10 lim inf sup P f t y f t dt ) c ) 0Ž . Ž . Ž .Ž .Hf n ž /log log nnª` afgGGn , M

holds for some constant c ) 0.

REMARKS.

1. The orthogonal polynomial estimator achieves this rate, and hence
Ž .y2 nlog nrlog log n is the optimal rate of convergence as defined by Stone
Ž .1980 .

2. Recall that in the definition of GG , n is an integer.n , M

Theorem 3.1 is proved by finding pairs of mixing densities f , f g GGn, 1 n, 2 n , M
with large LL distance and contiguous Poisson mixture distributions. This2

Ž . Ž .idea is implicit in Farrell 1967, 1972 and Bickel and Ritov 1988 and is
Ž .exploited in Zhang 1995 , whose Lemma 1 is key.

Ž .LEMMA 3.2. Let FF be a collection of probability distributions and let u F
Ž .be a mapping from FF to a metric space with metric d ?, ? . Let f and f ben, 1 n, 2

the joint density of X , X , . . . , X under F g FF, j s 1, 2, respectively. Set1 2 n n, j
Ž Ž . Ž ..d s d u F , u F r2. If for a l ) 0,n n, 1 n, 2

w x11 lim inf P f F l f G r ,Ž . F n , 1 n , 2n , 1nª`

then any estimator of T based on X , X , . . . , X satisfiesn 1 2 n

r
12 lim inf sup P d T , u F ) d ) .Ž . Ž .Ž .F n n 1 q lnª` FgFF

w xPROOF OF THEOREM 3.1. Let f be the uniform density on a, b andn, 1
Ž . Ž .f s f q p a perturbation thereof. In particular, let p t s g T t sn, 2 n, 1 n n m m

m Ž .g Ý a cos jt be an appropriately scaled trigonometric polynomial ofm js0 m , j
Ž .degree m s m n , whose coefficients a are uniquely determined by them , j
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requirements
b

13 T t dt s 0Ž . Ž .H m
a

and
b k yt14 T t t e dt s 0 for k s 0, 1, . . . , m y 1.Ž . Ž .H m

a

Ž . Ž . Ž .By condition 13 , f integrates to 1 and condition 14 makes p f sn, 2 k n, 1
Ž .p f for k s 0, 1, . . . , m y 1. Thus choosingk n, 2

m s m n f max X f c log nrlog log nŽ . j
jFn

ensures contiguity of the Poisson mixture distribution, regardless of the size
of the scaling factor g , which is determined by the requirements thatm
f g GG . This choice of perturbation, in the spirit of Donoho and Liun, 2 n , M
Ž .1991 , disentangles the stochastic and analytic arguments.

To determine the size g putting f g GG , apply Bernstein’s theoremm n, 2 n , M
w Ž . Ž .xsee Rahman 1982 or page 98 of DeVore and Lorentz 1993 to obtain

n2p
Žn . n5 5 5 5T F m T ,2 2m mž /b y a

w Ž .xand using Nikolskii’s bound see page 102 of DeVore and Lorentz 1993
yields

b y a 2m q 1Ž . Ž .
5 5 5 5T F T .(` 2m m2p

Setting
C

g s ,m n 5 5m T 2m

Ž .we first have that f t G 0, and hence a probability density, providedn, 2
5 Žn . 5 2n G 1r2 and C is small enough. Furthermore, f F C, so that for C F M ,2n, 2

f g GG .n, 2 n , M
Ž .The index m s m n will be chosen such that the Poisson mixture distri-

Ž .bution under f and f satisfy 11 of Lemma 3.2. For this, note that byn, 1 n, 2
Ž . Ž .construction p f s p f for k s 0, 1, . . . , m y 1, so that for l ) 1,k n, 1 k n, 2

p f p fŽ . Ž .X n , 1 X n , 1j j15 P F l s 1 y P ) lŽ . Ł Łf fn , 1 n , 1p f p fŽ . Ž .jFn jFnX n , 2 X n , 2j j

16 G 1 y P max X G mŽ . f jn , 1 1FjFn

bm
17 G 1 y n .Ž .

m!
Ž .Taking m n s k log nrlog log n, the latter converges to one for any k ) 1. In

fact, convergence to one still occurs if k s 1 q c log log log nrlog log n, for any
c ) 1.
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With these choices, apply Lemma 3.2 and note that

5 5 5 5f y f s g T2 2n , 1 n , 2 mŽn. mŽn.

C yn
5 5s m n TŽ . 2mŽn.5 5T 2mŽn.

y2 nC log n
s . I2n ž /log log nk

APPENDIX

Proof of Theorem 2.1. The following lemmas are needed in proving
Theorem 2.1.

LEMMA A.1. Let X have a Poisson mixture distribution, with mixing
w x Ž . Ž . Ž .density f supported on a, b . Define X s X X y 1 ??? X y k q 1 , thenk

b k18 E X s t f t dt ' m fŽ . Ž . Ž . Ž .Hkf k
a

and

Ž .min k , m
m k19 E X X s l!m .Ž . Ž . Ž . Ýk mf kqmylž / ž /l l

ls0

Furthermore, the bound

m220 E X F b q m mŽ . Ž . Ž .Ž .mf m

holds for all m s 0, 1, . . . .

Ž . Ž .PROOF. Equation 18 is found in Walter 1985 . Without loss of general-
ity, assume k F m, so that

` `l! l! 1
l ytE X X s t e f t dt .Ž . Ž . Ž .Ý Hm k l y m ! l y k ! l!Ž . Ž . 0lsm

All summands being positive, the order of summation and integration can be
interchanged, and with the help of the identity

` l kl! t d
k m tw xs t t eÝ kl y k ! l y m ! dtŽ . Ž .lsm

Ž .min k , m
m k kqmyl ts l! t e ,Ý ž / ž /l l

ls0
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Ž .conclusion 19 follows. Finally,

2m m m!2 m m my lE X s l!m F b mŽ .Ž . Ý Ým 2 myl mž / ž /l l m y l !Ž .ls0 ls0
m

mm l mylF m b m s m q b m . IŽ .Ý m mž /l
ls0

LEMMA A.2. The coefficients

tc s c , c , c , . . . , cŽ .m m , 0 m , 1 m , 2 m , m

Ž .of the orthonormal polynomial q t of degree m with respect to the uniformm
w xweight function on the interval a, b has squared norm bounded by

2m q 12 m5 5c F t ,2m 2s

Ž . Ž . Ž Ž .Ž ..2where m s a q b r2, s s b y a r2, and t s 2 mrs q srm 1 q 1rm .

Ž . w xPROOF. The orthonormal polynomial q t of degree m on a, b is them
translated, rescaled and normalized Legendre polynomial of degree m:

m 2m q 1 t y m
kq t s c t s P .Ž . (Ým m , k m2s sks0

ŽŽ . .Expanding P t y m rs into powers of t,m

kmt y m t y m
P s bÝm m , k ž /s sks0

jm k kt mks y y bÝ Ý m , kž /ž /j ž /½ 5m sks0 js0

jm m km tks y b y ,Ý Ý m , kž /ž /½ 5j ž /s mjs0 ksj

it follows that the kth coefficient of c ism

k m j2m q 1 y1 mŽ . j
21 c s y b .Ž . ( Ým , k m , jk ž /ž /k2s sm jsk

wThe coefficients of the Legendre polynomials are see page 157 of Rainville
Ž .x1967

jy1 2m y 2 j !Ž . Ž .
b sm , my2 j m2 m y j ! m y 2 j ! j!Ž . Ž .
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and b s 0. This producesm , myŽ2 jq1.

k my2 j2s y1 mŽ . m y 2 j
c s y b( Ým , k m , my2 jk ž /ž /k2m q 1 sm 2 jFmyk

kmm y1Ž .
s y kž /2s m

22Ž .
=

2 j2m y 2 j ! sŽ .m y 2 jÝ ž /ž /k m y j ! m y 2 j ! j! mŽ . Ž .2 jFmyk

k 2 jmm y1 sŽ . 2m y 2 j mm q ks y .Ýkž / ž / ž /ž / ž /jk m q k2s mm 2 jFmyk

Ž .The sum in 22 is bounded by
2 j 2 js s2m y 2 j m m2mFÝ Ýž /ž / ž /ž / ž / ž /j jm q km q k m m2 jFmyk 2 jFmyk

m2s2mF 1 q ,ž / ž /ž /m q k m

from which it follows that
2 m2 2m2m q 1 m s 1m q k 2m25 5c F 1 q Ým 2 kž / ž /ž /ž /ž / k m q kž /2s 2s m mks0

2 m 2m2m q 1 1 m s 1m2ms q .Ý 2 kž / ž /ž / mž / k2s 2 s m mks0

This last sum is less than
2 m2m m 2 m1 1 1 1m 2m 2mF F s 1 q ,Ý Ý Ý2 k 2 k kž / ž / ž / ž /k 2k k mm m mks0 ks0 ks0

and therefore
2 m 2 m 22m q 1 1 m s 12 2m5 5c F q 1 q2m ž /ž / mž / ž /2s 2 s m m

2 m2m q 1 m s 1
F 2 q 1 q ,ž / ž /ž /2s s m m

which is the desired bound. I

PROOF OF THEOREM 2.1. Let
t

Žm.c s c s c , c , c , . . . , c 0, 0, . . . , 0ž /k k k , 0 k , 1 k , 2 k , k̂ ` _
m y k
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Ž . Ž .be the vector of coefficients of the orthonormal polynomial q t . By 18 ofk
Lemma A.1, the estimator of the kth Fourier coefficient

k

a s c q c mˆ ˆÝk k , 0 k , j j
js1

ˆis unbiased for a , and thus the integrated variance of f isk n, m

m m
b 2 tˆVar f t dt s E a y a s c Sc ,Ž . ˆŽ .Ý ÝH F m , n F j j k k

a js0 ks0

where ÝÝÝÝÝ denotes the variance-covariance matrix of the vector of moment
Ž .estimators 1, m , m , . . . , m . It is easily verified that every element of S isˆ ˆ ˆ1 2 m

nonnegative. The above sum is bounded by
m m

2 2t 25 5 5 5c Sc F l S c F m max c max S .Ž .Ý Ý 2 2 ž /k k max k k k , kž /
kFm kFmks0 ks1

By Lemma A.1, the maximum of the variance-covariance matrix is bounded
by

bm
m

23 max S s S F b q m ,Ž . Ž .i , j m , m nj, iFm

and by Lemma A.2,
2 m2m q 1 b q a b y a 225 524 max c F q 1 q .Ž . 2k ž / ž /ž /b y a b y a b q a b q akFm

Setting
2b q a b y a 2

r s 2 q 1 qž / ž /b y a b q a b q a

yields the upper bound
22m q 1 mŽ .b mˆn Var f t ds F m q b rb . IŽ . Ž .H f n , m b y aa
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